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Abstract

La Nina events influence the tropical Indian Ocean (TIO) sea surface temperature, sea level and heat content significantly.
However, proper quantification in the context of ocean heat transport in the TIO and its persistence is lacking. So, in this
study, we have chosen the La Nina events which persist for more than 24-months to study the effects of such events in the TIO
using observational and reanalysis data. It is found that prolonged La Nina events promote intensification of cooling anomaly
and sea-level-low in the thermocline ridge region of the Indian Ocean (TRIO) and its eastward extension from its climatological
location (the southwestern TIO). This happens as a response to the cyclonic wind generated in the southeastern TIO and the
associated upwelling Rossby waves which propagate westward to shoal the thermocline in the TRIO region and also extending it
eastward while intensifying the cooling and sea level low there. Whereas, in the eastern Equatorial Indian Ocean (EIO) and Bay
of Bengal (BoB) a deepening of thermocline, east-west thermocline gradient, anomalous sub-surface warming, increase in the
upper ocean heat content and sea-level rise are in the characteristic features of all the prolonged La Nina events. Intense cooling
and anomalous sea level low in the Arabian Sea (AS) and intense warming and thermocline deepening in the head bay and the
eastward extension of the TRIO regions are found to be unique features of these prolonged La Nina events. These prolonged La
Nina events support cross-equatorial Sverdrup transport near the eastern boundary of EIO. This suggests a pathway of warm
western Pacific waters accumulated in southeastern EIO entering the north Indian Ocean increasing the heat-content of BoB
especially in the 50m—150m depth. The warming (cooling) of the BoB (AS) is speculated to enhance (suppress) pre and post

monsoon cyclones over these regions by modulating the tropical cyclone heat potential during these prolonged La Nina events.
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Abstract

In the present study, heat redistribution in the Tropical Indian Ocean (TIO) associated with the prolonged La Nifia events
during 1958-2017 is examined using reanalysis/observations. It is found that the prolonged La Nifia forcing strengthened
the east-west thermocline gradient in the equatorial Indian Ocean and propelled the eastward extension of thermocline ridge
of the Indian Ocean (TRIO) from its climatological location of southwestern TIO. The cyclonic winds over the southeastern
TIO and the associated upwelling Rossby waves are primarily driving the TRIO intensification and its eastward extension.
Anomalous subsurface warming, thermocline deepening, and the associated increase in the upper ocean heat content and
sea-level in the eastern equatorial Indian Ocean, southeastern TIO and Bay of Bengal (BoB) are found to be the character-
istic features of the prolonged La Nifia events. Cross equatorial Sverdrup transport near the eastern boundary during the
prolonged La Nifia events has increased the heat content of BoB and is found to be a pathway of Pacific water entering the

north Indian Ocean.
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1 Introduction

El Nifio—Southern Oscillation (ENSO) is the most promi-
nent interannual mode of climate variability. It influences
the Indian Ocean via the heat fluxes (Klein et al. 1999;
Alexander et al. 2002) and ocean dynamics (e.g., Masu-
moto and Meyers 1998; Chowdary and Gnanaseelan 2007).
The Tropical Indian Ocean (TIO) surface and subsurface
temperature are modulated by ENSO (e.g. Du et al. 2009,
2013; Singh et al. 2013; Sayantani and Gnanaseelan 2015).
The rapid Indian Ocean warming (Nieves et al. 2015; Lee
et al. 2015) and associated sea-level rise (Thompson et al.
2016; Srinivasu et al. 2017) in the early twenty-first cen-
tury have coincided with the global warming “hiatus” (e.g.
Meehl et al. 2011; England et al. 2014). This early twenty-
first century hiatus is primarily attributed to a “La Nifia”
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like negative phase of the Interdecadal Pacific Oscillation
(IPO) and the associated surface easterlies along the equa-
torial Pacific (Kosaka and Xie 2013). These easterlies pile-
up warm water in the western Pacific. Some of these warm
waters are advected into the southern TIO (STIO) (Lee et al.
2015; Nieves et al. 2015; Liu et al. 2016; Zhang et al. 2018;
Liet al. 2018, 2019) through Indonesian archipelago in the
form of the Indonesian Through Flow (ITF) increasing the
upper ocean heat content there (Wijffels and Meyers 2004).
The increased ITF transport, cooled the top 100 m tem-
perature of the west Pacific Ocean, whereas it was mostly
compensated by the subsurface warming of Indian Ocean
(100-300 m) in post 2000s (e.g., Nieves et al. 2015).

The La Nifia events tend to enhance the ITF transport,
responding to these easterlies over the equatorial Pacific
(Meyers 1996; England and Huang 2005). ITF plays a cen-
tral role in the heat budget of the Indo-Pacific region (God-
frey 1996). Using a HYCOM model, Li et al. (2018) have
shown that ITF is primarily dictated by the Pacific trade
winds which directly affects the STIO and affects the north
Indian Ocean (NIO) through meridional heat transport of
the western boundary current. In a classical La Niifia (EI
Nifio) event, a negative (positive) Sea Surface Temperature
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(SST) anomaly is seen in the eastern and central parts of
the equatorial Pacific which persists for 12—18 months. But
in prolonged or “protracted” ENSO events SST anomalies
persist for more than 2-years or so (e.g., Allan and D’Arrigo
1999). Prolonged La Nifia events induce anomalously strong
Pacific—Indian Ocean pressure gradient (England et al.
2014), which strengthens the easterly trade winds over the
equatorial Pacific and contributes to the enhanced ITF trans-
port (e.g., Lee et al. 2015).

The upper ocean heat content (UOHC) is an important
parameter in the STIO region as it modulates the SST, sea-
level anomaly (SLA) and the ocean—atmosphere interactions
(e.g., Xie et al. 2002). They are influenced significantly by
the local forcing of the Indian Ocean (e.g., Wyrtki 1973; Saji
et al. 1999). For example, in the eastern equatorial Indian
Ocean (EEIO) region, UOHC is high during monsoon tran-
sition months (May and November) (Wyrtki 1973, Hasten-
rath 1993) compared to other months. The equatorial cur-
rents (Yoshida jet/Wyrtki jet) and the eastward propagating
downwelling Kelvin waves are dominant in the equatorial
Indian Ocean (EIO) (5° S-5° N, 90° E-100° E) during the
monsoon transition periods or months (April-May and Octo-
ber-November). These downwelling Kelvin waves enhance
UOHC in EIO through mass convergence and depression
of the thermocline (Wyrtki 1973). On the other hand, low
UOHC of top 300 m is observed in the southwestern TIO
throughout the year. This is due to Ekman divergence associ-
ated with the clockwise (cyclonic) gyre. During the summer
monsoon, the UOHC is maximum in the central Arabian
Sea due to deeper surface mixed layer (Rao 1986) and the
deepening of thermocline is induced by negative wind stress
curl (Hastenrath and Lamb 1979) in the region south of the
Somali jet core.

More than El Nifio, La Nifia forcing could induce strong
subsurface warming over the EIO region (Srinivas et al.
2018), suggesting the possible influence of La Nifia or pro-
longed La Nifia events on TIO variability. It is well known
that Pacific Ocean variability modulates Indian Ocean con-
ditions on interannual (e.g. Xie et al. 2009; Sreenivas et al.
2012; Deepa et al. 2018) and decadal time scales (e.g. Han
et al. 2014; Deepa et al. 2019). The inter-annual and dec-
adal variability of UOHC and sea-levels are closely linked
with each other because of thermal expansion and connected
through the ocean transports (Verschell et al. 1995; Masu-
moto and Meyers 1998; Birol and Morrow 2001; Wijffels
and Meyers 2004; Trenary and Han 2012; Li et al. 2018;
Zhang et al. 2019).

Despite of several studies addressing cooling or warming
patterns/trends in TIO, it remains unclear how much of the
UOHC changes in the TIO are associated with the prolonged
La Nifia events. So, in this paper, we use ocean reanalysis data
to quantify the UOHC as well as sea-level variability in TIO
during the prolonged La Nifia events. We have used data from
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1958 to 2017 to better capture the natural variability. The data
sources are described in Sect. 2. The prolonged La Nifia events
and the associated SST and wind patterns in the Indo-Pacific
basins and vertical temperature profiles, spatial variations of
the heat content etc. are described in Sect. 3. The volume, and
meridional Sverdrup transport, the analysis of the UOHC and
Sea Surface Height (SSH) are described in Sect. 4, the sum-
mary and discussion of the results are given in Sect. 5.

2 Data and methods

The Ocean Reanalysis System 4 (ORAS4) data (Balmaseda
et al. 2013) during 1958-2017 is used in this study. The
ORAS4 has been identified as the best reanalysis product for
the Indian Ocean region compared to other widely used avail-
able reanalysis products (Karmakar et al. 2018). Anomalies
are calculated after detrending the data for the given duration.
Parzen smoother is used to obtain running mean and Lanczos
filter is used to low-pass filter the data. Parzen smoother uses
Parzen window to smooth the variable along the indicated
axis. It is a nonparametric method for estimating continuous
density function from the data and it uses weighted mean of
neighbouring points along the indicated axis instead of equal
weights.

ORAS4 zonal and meridional velocity fields, SSH and
vertical temperature profiles are used to calculate the trans-
ports and UOHC. ORAS4 employs the variational ocean data
assimilation system NEMOVAR using Nucleus for European
Modelling of the Ocean (NEMO) version 3.0 ocean model.
The vertical velocities from ORAS3 are used here as they are
not provided in ORAS4. The UOHC is computed as follows:

d2
UOHC = p,C, / T(2)dz (1
dl

where C,=4185] Kg~! K7! is the specific heat capacity of
the sea water and p,=1025 kg m~ is the reference sea water
density, T(z) is the vertical profile of potential temperature
and d;, d, are the corresponding reference depths.

Further meridional heat transport (MHT) is computed as
follows:

d2
MHT = p,C, / YTz @)
dl

The Wind Stress Curl (WSC) is estimated from the follow-
ing equation
Jr?  or*

wsc =92 _
ox  dy 3)

where t*=p,C,W, U, and ©¥=p,C,W,,V,, are the zonal
and meridional wind stress. U,,, V,, are respectively the
zonal and meridional winds at 10 m from ERA and JRASS,



Prolonged La Nifia events and the associated heat distribution in the Tropical Indian Ocean

W, is the wind speed, p,=1.25 kg m™ is density of air, p, is
the density of ocean water. The drag co-efficient or momen-
tum transfer co-efficient is wind dependent as in Parekh et al.
(2011), they have computed the drag co-efficient over the
NIO using ~ 40,000 in-situ observation from the region and
has given formula corresponding to different wind speed
range, which are as follows:

0.0011  WS™01475 jf (0 < WS < 3.75 ms™!
C, = 0.00005 * WS +0.0008 if 3.75 < WS < 18 ms™!
0.00004 % WS +0.0009 if WS> 18 ms™!
“
Near the equator the cross equatorial Sverdrup transport
is mainly dictated by the zonal wind stress curl component
(Miyama et al. 2003). The formula for the meridional Sver-
drup transport at the equator (equatorial belt) is as follows:

1 / ot~
Sy —— dx
Bpy J., Oy )

where B:% and f are the Rossby and Coriolis parameters

respectively, x, and x,, are the eastern and western bounda-
ries where the wind stress curl is integrated for calculating
the transport.

The contribution of zonal advection (of the heat budget)
on the temperature can be estimated as follows.
_or" 9T

_oT
+u—=+u

zonal u—
ox ox ox

advection = (6)
where T =potential temperature and u =zonal current
u,u', T, T' represents respectively the mean and anomalies

of zonal current and potential temperature.

3 Surface and sub-surface temperature
and heat content variability
during prolonged La-Nina

The prolonged La Nifia events are defined as the La Nifia
events which persisted for 24-months or more and is simi-
lar to the previous studies (e.g., Allan and D’Arrigo 1999;
Reason et al. 2000; Allan et al. 2003). In this study, the pro-
longed La Nifia events during 1958-2017 viz., 1973-1976,
1983-1986, 1998-2001, and 2010-2012 are subjected to
detailed analysis. The above prolonged La Nifia events
are selected as they are the most persisting and prominent
events in the equatorial Pacific. The list of prolonged and
non-prolonged La Nifia events with the durations are given
in Table 1. To study the impact of persisting La Nifia events
on the TIO temperatures in spatial and vertical levels, we
studied the time-depth section of anomalous temperature for
different regions of TIO as well as spatial pattern of SST
anomalies in the TIO (Figs. 1, 2). It is important to note that

Table1 The list of pro-longed and non-prolonged La Nifia events
during 1958-2017 and their duration

Prolonged La-Nina events Non prolonged La-Nina events

May 1973-May 1976 (37 months)
July 1983-May 1986 (35 months)

June 1998-December 2001
(43 months)

May 2010-April 2012 (24 months)

1964—-1965 (10 months)
1970-1972 (21 months)
1988-1989 (14 months)

2007-2009 (21 months)

the prolonged La Nifia events are selected based on three-
month averaged time series of Nifio3.4 index (Fig. 3). All the
prolonged La Nifia events considered for the study persisted
for 24-months or more, which showed that the SST anoma-
lies over the Nifio3.4 region are less than —0.5 (green dashed
line in the Fig. 3) for most of the period and it is more than 1
standard deviation (SD =0.83) (red dashed line in Fig. 3) for
significant part of the event. The prolonged La Nifia events
are shaded in beige in Fig. 3.

The anomalous vertical temperature profiles show that
during all the prolonged La Nifia events (marked by vertical
black lines in Fig. 1), the maximum temperature variability
is mostly confined to the 50-150 m depth levels (Fig. 1),
though the signatures are found up to 300 m during some
years (Fig. 1). Intense warming is seen in the east (Fig. 1b),
whereas cooling is seen in the western region (Fig. 1¢). The
intensity of warming is stronger in the southeastern region
(0°-10° S), compared to the northeastern region (0°-10° N)
(figure not shown). However, mixed layer cooling is evident
in this region during the prolonged La Nifia events and is
revealed in the basin wide SST pattern as well (Fig. 2). This
clearly suggests that both surface and subsurface tempera-
ture distributions in the TIO are influenced by prolonged La
Nifia forcing. Motivated by changes in temperature, we have
examined the factors that are responsible for upper ocean
heat distribution in the TIO associated with the prolonged
La Nifia events. Hereafter heat content over 50—150 m is
referred to as the subsurface heat content.

The composite of SST and wind anomaly during the
persistent La Nifia events is shown in Fig. 2. Anomalous
cyclonic wind circulation covering the southern tropical
Indian Ocean, maritime and Australian continents is a char-
acteristic feature of prolonged La Nifia events (Fig. 2a). This
circulation is primarily responsible for the wind anomalies
over EIO. Such cyclonic circulation is not evident during
the La Nifia events which are non-prolonged (Fig. 2b). The
strength and longitudinal extent of the cyclonic circulation
depends on the strength and extent of each prolonged La
Niifia associated cooling in the central and eastern equa-
torial Pacific. During 1998-2001 (strong long-lived) and
1983-1986 (moderate long-lived) La Nifia events with the
cold tongue of SST anomaly is mostly confined around
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Fig. 1 Time depth section of spatially averaged temperature anomaly
profiles averaged over different regions a 0°-10° S, 40° E-100° E, b
0°-10° S, 90° E-100° E, ¢ 0°-10° S, 40° E-75° E and d 0°-10° S,
75° E-100° E. The abscissa represents the time and the ordinate rep-

the equator (Fig. 2d, e). But during the 1973-1976 and
2010-2012 La Nifia events, the cold tongue spreads over
both north and south (Fig. 2c, f). These latitudinal spreads
of the cold tongues are associated with the Pacific Decadal
Oscillation (PDO) or IPO phases with more latitudinal
spread during the cold phase of PDO. During 1973-1976
and 2010-2012 when the cold tongues of the La Nifia
spreads both sides of the equator, the PDO was in cold
phase. Moreover, during the other two events when the
cold tongue of La Nifia is mostly confined near the equator,
PDO phase was positive. Enhanced warming all along the
western Pacific is seen only during the 1998-2001 La Nifia
event (Fig. 2e). Although enhanced warming is seen in the
southwestern tropical Pacific during 1973-1976, 1998-2001
and 2010-2012 La Nifia events, the warming in the north-
western Pacific is evident only during 1998-2001 (Fig. 2d).
This enhancement in the warming over northwestern Pacific
is closely associated with the strong anti-cyclonic surface
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resents depth. The dashed horizontal black lines represent the 50 m
and 150 m depth levels. The four black vertical line pairs represent
the prolonged La Nifia events

winds over the region (Fig. 2d) which effectively weakens
the mean winds over the northwestern Pacific and reduces
the evaporative cooling and promotes SST warming. During
all these La Nifia events, strong surface easterlies are seen
in the western and central Pacific region. These easterlies
are stronger during the cold PDO phase due to the stronger
SST gradient formed with intense cooling over the central
Pacific region and warming in the west. The easterly winds
are strongest in the western Pacific during the 2010-2012 La
Nifia event compared to the other La Nifia events.

During the prolonged La Nifia events, most of the Indian
Ocean displays cooling in the surface (Fig. 2) and is consist-
ent with earlier studies (e.g., Singh et al. 2013; Chowdary
et al. 2006). In all the events, weak warming over the south-
eastern TIO is apparent which is also part of a phenomena
known as Ningaloo Nifia off the west coast of Australia
(Benthuysen et al. 2014; Zhang et al. 2018) (Fig. 2). Dur-
ing these prolonged La Nifia periods, the winds over the
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Fig.2 SST anomaly (°C, shaded) and surface (10 m) wind anomaly
vectors (m s~!, arrows) for the prolonged La Nifia events. a Shows
the composite for all the prolonged La Nifia events. b Represents the
difference between the composites of all the prolonged and non-pro-

EEIO are prominently westerlies. During 1973—-1976 in the
southeastern part of TIO warming is weak, whereas stronger
cooling is seen in the southwestern part (Fig. 2b) of TIO. It
is worth reporting the coherent evolution of EIO winds and
TIO subsurface temperature with the Nifio3.4 (Fig. 3). The
time series of Nifio3.4 index and the possible response of
ENSO on the TIO in the form of EIO zonal winds, EEIO
upper ocean temperature are shown in Fig. 3.

Previous studies reported that the interannual variability
of the inter-basin exchanges such as ITF and winds over the
TIO are closely associated with ENSO (e.g., Wijffels and
Meyers 2004; Sprintall et al. 2009; Sprintall and Révelard
2014). The depth-time plot of area averaged temperature
(Fig. 1) reveals that strong positive anomaly is apparent in

[T T
-04 -03 -0.2 -0.1 0.0 0.1 0.2 03 04 05 0.6

longed La Nifa events. c—f Shows the composites for the individual
prolonged La Nifia events of 1973-1976, 1983-1986, 1998-2001 and
2010-2012 respectively. Horizontal green lines represent the equator
and 10° S latitude lines

the 50-150 m depth level. Therefore, the top 150 m and
50-150 m averaged temperature over EEIO is compared
with the Nifio3.4 index to examine its relationship with
the heat distribution (Fig. 3). It is important to note that
the upper ocean (and subsurface) temperature over EEIO
displays a clear out of phase relationship with the Nifio3.4
index (Fig. 3). The variability in the 50—150 m temperature
(Fig. 3) is consistent with Fig. 1. The temporal evolution
of subsurface temperature reveals that prolonged La Nifia
events strongly influence the 50-150 m depth temperature
(Fig. 3). The maximum intensity of the warming (cool-
ing) in the eastern (western) parts is seen in the 50-150 m
depth range (Fig. 1).The average winds along EIO during
the prolonged La Nifia events display strong and consistent
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150 m) average temperature over 90° E-100° E, 5° S-5° N region
represents the thick (thin) red lines. The left axis represents the val-

westerlies over the eastern half of the EIO region (Fig. 3).
Moreover, the 50-150 m temperature and the westerly wind
anomaly follow similar variations (Fig. 3). These strong
westerlies over EIO (Fig. 2) during the prolonged La Nifia
event, force downwelling Kelvin wave and Yoshida/Wyrtki
Jet (Yoshida 1960; Wyrtki 1973; Luyten and Roemmich
1982; Clarke and Liu 1993; Hastenrath et al. 1993; Yama-
gata et al. 1996; Meyers 1996; Vinayachandran et al. 2009;
Gnanaseelan et al. 2012). The downwelling Kelvin waves
deepen the thermocline in the east, and on the other hand
Yoshida/Wyrtki jet transports water from the west to east.
Further, it is found that the EIO westerlies are influenced
by the persistent La Nifia forcing (Fig. 3). In addition to the
eastern warming, there is intensified cooling over the west-
ern TIO during these prolonged La Nifia events (Fig. 2).
In order to investigate the effect of the prolonged and
non-prolonged La Nifia events (westerlies) on TIO ther-
mocline, the depth of 20 °C isotherm (D20) composite is
studied (Fig. 4). A deeper thermocline is evident along the
eastern TIO in the prolonged La Nifia composites espe-
cially for the northern and eastern part of BoB (Fig. 4c). In
the similar way, the anomalous subsurface warming (rise
in the 50-150 m heat content and temperature anomalies)
and sea-level rise are also seen in the eastern TIO in the
composites (Fig. 5). Also, anomalous shoaling of TRIO
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1995 2000 2005 2010

ues of Nifio3.4 index and zonal wind anomaly (m s~!), and the right
axis represents the temperature (°C). The prolonged La Nifia events
of 1973-1976, 1983-1986, 1998-2001 and 2010-2012 are marked by
beige shaded area. The dashed green line represents — 0.5 SST anom-
aly and red dashed line represents 1 standard deviation (0.83)

(5°S-15° S, 60° E-90° E) thermocline, anomalous sea-
level and heat-content low are seen with eastward exten-
sion during the prolonged La Nifa events (Figs. 4a, c,
e; 5c, d, e, f). Overall, remarkable difference in the east-
ward extension of TRIO region is evident from the ther-
mocline, heat-content and sea-level anomalies during the
prolonged La Nifia events (Fig. 4a; 5a, b). The eastward
extension of TRIO is closely associated with the wind pat-
terns in the southeast TIO, which will be discussed later
in Sect. 4. So, a thermocline deepening in the BoB and
an eastward extension of the TRIO region and stronger
westerlies in the eastern EIO are typical signatures associ-
ated with the prolonged La Nifia events. Transport plays
a crucial role in redistributing heat, so the spatial patterns
of UOHC anomaly and transport over 50-150 m are exam-
ined. Warming (positive UOHC anomaly) is seen in the
eastern parts of the TIO for each La Nifia event and their
composite (Fig. 6). The eastern warming is evident in the
difference between the composites of prolonged and non-
prolonged La Nifia events as well (Fig. 6b). This indicates
more intense warming in the 50-150 m depth levels for
the prolonged La Nifia events. Intense warming is however
confined to the eastern TIO (including southeastern and
eastern TIO and BoB) during the 1983-1986, 1998-2001
and 2010-2012 La Nifia events (Fig. 6). Only during



Prolonged La Nifa events and the associated heat distribution in the Tropical Indian Ocean

Prolong_Nina

25°N

20°N

15°N

10°N

5°N

0°

5°3

10°S

15°S

Noprol_Nina

120
115
110
105
100
95
90
85
80
75
70
65
60

45°E 55°E 65°E 75°E 85°E 95°E 105°E

Fig.4 The composites of the absolute values of D20 (m, shaded) and
wind (m/s, vectors) for all the prolonged La Nifla events of 1973—
1976, 1983-1986, 1998-2001 and 2010-2012 is given in frame (a).
b Is same as (a) but for all non-prolonged La Nifia events. Frame ¢

2010-2012, the warming is seen in the western parts also
and is related to the anomalous positive wind stress curl
over TRIO region from mid-2011 onwards (i.e. the later
phase of the prolonged La Nifia event) and the associated
downwelling (Fig. 6f). The warming during 1973-1976 is
weak and confined mostly to the eastern boundary with an
intense cooling in the TRIO region (Fig. 6b). The warm-
ing in the BoB is confined to the eastern boundary and
most part of the northern region north of 15°N including
northwestern boundary of BoB (Fig. 6), which is also evi-
dent in the positive sea-level anomaly (figure not shown).
This is an indication of downwelling coastal Kelvin waves
forced by the equatorial westerlies (Figs. 2 and 3). Moreo-
ver, downwelling Rossby waves radiated from the eastern
boundary propagate westward, redistributing heat towards

45°E -55°E 65°E 75°E ‘85°E :95°E 105°E

represents the D20 and wind vectors same as frame a but for the com-
posite of anomaly. Frame d represents the same as b but for the com-
posites of anomaly

the interior BoB. The warming is more intense in the
winter (November through February, NDJF) and spring
(March through May, MAM) seasons. Due to the pres-
ence of an intense cooling during the summer monsoon
(June through September, JJAS) season, 1973-1976 La
Nifia event witnessed weaker warming (figure not shown).
The prolonged La Nifla witnessed intense cooling in the
southwestern part including TRIO region (Fig. 6) and
the maximum cooling is seen during 1998-2001 La Nifia
whereas weaker cooling is observed during 1983-1986
(Fig. 6e, d). This cooling extends eastward for the pro-
longed La Nifia event and is also seen in the difference
between the composites of prolonged and non-prolonged
La Nifia events (Fig. 6b) and is consistent with the sea-
level anomaly composite as well (Fig. 5b).
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Fig.5 The composites of heat content (10% J m™2) for 50-150 m (left
panels; a, ¢, e) and sea-level-anomaly (cm) (right panels; b, d, f) for
prolonged La Nifia events (a, b), non-prolonged La Nifia events (c, d)

4 Volume transportin the 50-150 m level

The Rossby was propagating from the Pacific contributes
to the interannual variability in the southern TIO (e.g.
Vaid et al. 2007). It is noted by Rahul and Gnanaseelan
(2016) and Deepa et al. (2019) that the waves propagating
from the Pacific Ocean to the TIO through ITF contribute
to the sea level variations in the eastern TIO. In this study,
it is found that the warming (seen in the heat content) in
the eastern side of TIO is present mainly during the pro-
longed La Nifia events when a cyclonic wind circulation
is prevailing mainly over the southeastern TIO (Figs. 2,
7). This cyclonic circulation pattern in the southeastern
TIO is a unique feature of the prolonged La Nifia events
(Figs. 2,7). It is clearly visible in the composite of rota-
tional wind anomaly of all the prolonged La Nifia events
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and difference of the composites of the prolonged and non-prolonged
La Nifa events (e, f). The black lines represent the equator and 10° S
latitude in each panel

and also the difference between the prolonged and non-
prolonged La Nifia events (Figs. 7a,b).

The negative wind stress curl due to the cyclonic wind
(Fig. 7) forces upwelling Rossby waves that propagate west-
ward (Fig. 8) and contribute to the cooling around the TRIO
region (Fig. 6a). The negative wind stress curl shoals the
thermocline as well, extending the cooling eastward, thereby
extending the TRIO region eastward (Fig. 4d). These pat-
terns persist for the entire period and enhance cooling and
shoal the thermocline in the TRIO region (Figs. 4, 5, 6).
However, in the eastern EIO the winds are westerlies during
the La Nifa period and consequently east of 90° E edge of
this wind pattern exhibits strong positive wind stress curl
as well as eastward propagating Kelvin wave and Yoshida/
Wyrtki jet (as discussed in Sect. 3) along the eastern bound-
ary of southeastern TIO (Fig. 7). The eastward propagating
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downwelling Kelvin wave and Yoshida/Wyrtki jet promote
warming in the eastern EIO (Fig. 9) and deepens the ther-
mocline near the eastern boundary (Fig. 4).

The time longitude (Hovmoller) diagram (of 50-150 m
heat-content anomalies and sea level anomalies averaged
over 5° S—12° S) shows the Rossby wave propagation and
the associated UOHC anomaly during the prolonged La
Nifia events (Fig. 8). The cooling (warming) in this region
is associated with the negative (positive) sea-level anomaly
(SLA). As the propagation of the upwelling Rossby wave
is associated with the cooling, which is evident in the co-
propagation of heat content anomaly and SLA. Therefore,
the cooling process is triggered by these Rossby waves. It

I (108 ) m2)
1 2 3 4 5

Nifa events. c—f Show the composites for the individual prolonged La
Nifia events of 1973-1976, 1983-1986, 1998-2001 and 2010-2012
respectively. Horizontal green lines represent the equator and 10° S
latitude lines

is also important to note that the upwelling Rossby waves
shoal the thermocline in the TRIO region. The associated
upwelling is responsible for the cooling observed during the
prolonged La Nifia events.

The depth longitude cross sections of zonal and vertical
currents and temperature anomalies averaged in the east-
ern TIO show downward currents and subsurface warm-
ing (Fig. 9a—e) and cooling in the western or central region
(within 0-150 m depth), with maximum temperature anom-
aly between 50 and 150 m (Fig. 9). A stronger warming and
eastward zonal current in the southeastern TIO is evident
during the prolonged La Nifia events compared to non-pro-
longed La Nifa (Fig. 9b). In spite of the downwelling at the
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eastern boundary, the advection of colder water from the
western EIO weakens the intensity of the warming in the
EEIO region (Fig. 10).

The anomalous warm water advection from the western
Pacific is also evident during the prolonged La Nifia events
(Fig. 10). Figure 11 shows the meridional Sverdrup trans-
port at the equator and the equatorial belt of 5° S—5° N. The
entire longitudinal extent and only the eastern region are
shown to understand the relative contribution from the east.
The cross-equatorial Sverdrup transport is found significant
along the eastern part of the EIO during the prolonged La
Nifia events (Fig. 11). This supports the existence of cross-
equatorial oceanic heat transport near the EEIO region
through Sverdrup transport. The origin of this warm water
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La Nifia events. c—f represents composites for individual prolonged
La Nifia events of 1973-1976, 1983-1986, 1998-2001 and 2010-
2012 respectively. Horizontal green lines represent the equator and
10°S latitude lines

is from western Pacific through ITF to the southeastern TIO
(Fig. 10). As the transport from the western EIO is not con-
tributing to the warming in the east (Fig. 9), the warming
observed in the eastern EIO and BoB are contributed by the
cross-equatorial Sverdrup transport (Fig. 10). This suggests
the possible pathway for the warm western Pacific waters
entering in the northeastern EIO and BoB.

Further, the temporal variability of the 50-150 m
heat content and sea-level anomaly in the eastern
(5° S-5° N, 80° E-105° E), southeastern TIO (15° S-5° S,
100° E-120° E), part of BoB (5° N-20° N, 80° E-100° E)
and TRIO (15° S-5° S, 60° E-90° E) regions are studied.
To extract interannual variability the 2—7-year band-pass fil-
tered signals are considered. The co-evolution of anomalous
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Fig.8 Hovmoller diagram (longitude vs. time) for heat content
anomaly (HCA) for 50-150 m depth level along with sea-level-anom-
aly (SLA) averaged over 5° S—12° S during the prolonged La Nifia
events. The shaded colours represents the HCA (10® J m™2) and the

features in all the regions suggests the strong impact of pro-
longed La Nifia forcing through common mechanisms such
as equatorial westerlies. The time series of heat content
shows warming (positive anomaly) in the eastern TIO dur-
ing the prolonged La Nifia events similar to the spatial pat-
terns (Figs. 6, 12). This intense cooling in the TRIO region
during the prolonged La Nifia events are seen in the time
series (Fig. 12d). The sea-level anomaly mimics the heat
content pattern very closely (Figs. 12, 13). Figures 12 and
13 show the existence of strong inter-annual variability for
both the UOHC and sea-level anomaly over these regions. It
is evident that during these La Nifia events the inter-annual
variability (shown by the green curve in Figs. 12a—c, and
13a—c) is dominant (with respect to the magnitude in the
time series shown by the red curve in Figs. 12a—c, 13a—c).

[ I I (108] m-2)
2 4 6 8 10

contours represents SLA (cm). a—d Represents the HCA and SLA for
prolonged La Nifia events of 1973-1976, 1983-1986, 1998-2001,
and 2010-2012 respectively. Both HCA and SLA are derived from
the ORAS4 data

As TIO shows strong seasonality, it is important to
understand heat distribution patterns in the different sea-
sons of these prolonged La Nifia events. Our analysis
with the spatial plots for the different seasons confirms
the intense warming during the winter (November through
February, NDJF) and spring (March through May, MAM)
seasons. Each prolonged La Nifia event is characterized
by strong warming (cooling) in the eastern part (TRIO
region) of the TIO for the entire La Nifia period (Fig. 14).
Hence, the role of seasonality is less significant for this
phenomenon compared to the inter-annual variability.
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Fig.9 Depth longitude section temperature anomaly (°C) profiles
averaged over the prolonged La Nifia events within the latitude range
of 0°~10° S. The vectors represent the zonal vs. vertical (¥10%) cur-
rent (cm s~') averaged over the same spatial and temporal spans as
the temperature profiles. a Represents the composite of temperature
and current vector for all the prolonged La Nifia events. b Represents
the difference between composites of prolonged and non-prolonged
La Nifa events for the same. c—f Represents the temperature and cur-

5 Summary and discussion

In this paper the heat distribution in the TIO is examined
during the prolonged La Nifia events. We have considered
the recent four prolonged La Nifia events (1973-1976,
1983-1986, 19982001 and 2010-2012) as case studies in
addition to the composite analysis. It is found that prolonged
La Nifia events induce basin-wide surface cooling in TIO
(Fig. 2). In addition to the basin wide surface cooling, sub-
surface cooling in the southwestern and subsurface warming
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rent vector composites for the individual prolonged La Nifia events of
1973-1976, 1983-1986, 1998-2001, 20102012 respectively. In all
the frames the zonal velocity is taken from ORAS4 data but the verti-
cal currents are taken from the ORAS3 data. In frame d the vertical
currents are kept as zero for the 2010-2012 La Nifia event as they are
not available beyond 2009 in the ORAS3 data set. For the same rea-
son the first three prolonged La Nifia events represented in b, ¢ and d
are taken into account while taking the composite for frame (a)

in the southeastern TIO are seen (Fig. 6). Anomalous nega-
tive wind stress curl associated with the cyclonic wind pat-
tern over the southeastern TIO is found to be the unique
feature of a prolonged La Nifia event (Fig. 7). The upwelling
Rossby wave forced by the cyclonic winds in the southeast-
ern TIO propagates westward and contributes to the intense
cooling over TRIO region and the western TIO (Figs. 6, 8).
The anomalous transport of warm ITF water from the west-
ern Pacific helps to warm the southeastern TIO (Fig. 10).
In contrast, along the equator, anomalous zonal advection
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Fig.10 The zonal advectional heat flux component (°C year™'). of
the heat budget for 50-150 m depth level for the prolonged La Nifia
events. a Represents the composite of all the prolonged La Nifia
events. b Represents the difference of the composites for the pro-

brings cold water from the western EIO and reduces the
intensity of the warming in the eastern EIO at 50-150 m
during the prolonged La Nifia events (Figs. 3, 9, 10). The
cross equatorial Sverdrup transport during the prolonged
La Nifia events shows northward cross-equatorial flow in
the eastern TIO region, which is important in warming the
northeastern TIO or BoB (Fig. 11). The cross equatorial
meridional Sverdrup transport is found to transport the ITF
water to the northeastern TIO (BoB). The warming along
the eastern parts of TIO, thermocline deepening (Fig. 4),
northward cross-equatorial flow along the eastern boundary
(Fig. 11), intense cooling at the western TIO especially in
the TRIO region (Fig. 6), its eastward expansion are the typi-
cal characteristic features associated with the prolonged La
Nifia events (Figs. 4, 5). Analysis reveals that the warming

longed and non-prolonged La Nifia events. c—f Denote the zonal
advection term for the individual prolonged La Nifia event of 1973—
1976, 1983-1986, 1998-2001, 2010-2012 respectively. The horizon-
tal black line represents the equator

is not confined to the EEIO but extended all the way up to
the head BoB with a significant thermocline deepening there
(Figs. 4, 6). Most of the eastern TIO warming and western
cooling are restricted within the 50-150 m levels during
the prolonged La Nifia events (Fig. 1). Also, downwelling
Kelvin waves forced by the stronger westerlies induce down-
welling and deepening of the thermocline at the eastern
region (Figs. 4,7, 9).

Further, time series analysis of 50-150 m heat content
and sea-level shows that the inter-annual variability domi-
nates the eastern TIO during these prolonged La Nifia
events. It is found that the seasonality of the TIO is of less
significance compared to the interannual variability, though
the warming (cooling) along the eastern TIO (TRIO) region
are little more intense in winter (NDJF) and spring (MAM)
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during the prolonged La Nifia events compared to the other
seasons. Moreover, it is found that the warming along the
eastern TIO is greatly controlled by the La Nifia and IOD.
East—west gradient in SST and heat content in the TIO dur-
ing the prolonged La Nifia events may strongly influence
the local air sea interaction, mean state and the regional cli-
matic conditions. This study is important in the context of
possible pathways of heat entering the north Indian Ocean
from Pacific during the recent global hiatus period since the
mean state of Pacific resembled that of the La Nifia during
this period.

It is also worth noting that during the 1988-1989 event,
which is strong but short lived La Nifia, the typical anoma-
lous cooling over the western TIO is not seen. In the case of
2007-2009 La Nifia event, the anomalous cooling is seen in
the eastern TIO in the second half. This cooling is related to
the successive occurrence of positive Indian Ocean Dipole
(IOD) events during 2006, 2007 and 2008. The associated
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over 5° S—5° N. The black and red curve in each panel represents the
Sverdrup transport calculated from ERA data and the green curve
represents the same calculated from JRAS55 data

equatorial winds are easterlies during this period (Fig. 3).
This suggests the possible role of local forcing (within the
basin) in modulating the influence of La Nifia impact (both
warming or cooling over the TIO region).

It is seen that when La Nifia and negative IOD (EIl Nifio
and positive IOD) conditions co-occur, they contribute to the
enhanced warming (cooling) and sea-level rise (fall) in the
eastern TIO. The enhanced warming events over the eastern
TIO are reported during 1974, 1996, 1998, and 2010 when
La Nifia co-occurs with the negative IOD events. All these
strong negative IOD events co-occurred with strong La Nifia
events resulting enhanced eastern warming (w.r.t. heat con-
tent) and sea-level rise (Figs. 12a—c; 13a—c). In contrast,
enhanced cooling and negative sea-level anomaly is seen
in the TRIO region (Figs. 12d, 13d). During 1974, 1998,
2010 the sea-level anomaly in the TRIO region reduces up
to 12-15 cm (Fig. 13d). Maximum anomalies are observed
during the prolonged La Nifa events. It is worth noting that
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Fig. 12 Time series of UOHC anomaly integrated over 50-150 m
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during the moderate La Nifia year 1996, which co-occurred
with negative IOD supported the enhanced warming, how-
ever the amplitude is less than that of the prolonged La Nifia
events (Fig. 12).

The recent studies have shown that the heat transport
from the Pacific Ocean to Indian Ocean is not only confined
to the southern TIO but also influences the NIO (Nieves
et al. 2015; Cheng et al. 2015; Ma et al. 2019). Moreover,
the heat storage in the subsurface layers, especially in the
thermocline, over a long period of time (typically a few
years) may have cumulative impact on the sea level, and SST
anomalies compared to that of shorter period. Such influ-
ences on the BoB are of prime importance, mainly due to

1990

1995 2000 2005 2010 2015

(TRIO region). In each panel black curve represents 3-month running
mean and red curve represents 25-month running mean. The green
curve in each panel represents the inter-annual (2-7 year periodicity)
component. The beige shaded area represents the prolonged La Nifia
events chosen for the study

their potential influence on the cyclone activity, convection,
and monsoon rainfall. In general, ENSO is known to have
strong impact on Indian Ocean climate (Klein et al. 1999;
Schott et al. 2009; Wu et al. 2010; Xie et al. 2016; Chen
etal. 2017, 2019; He et al. 2020). Compared to the conven-
tional ENSO the prolonged ENSO have stronger impacts on
the TIO SST and heat content variability as evidenced in our
study. In particular, many La Nifia events persisted for more
than 24 months. These prolonged La Nifia events modulate
the upper ocean heat distribution and sea-level over TIO to a
greater extent. Intense cooling and anomalous sea-level low
across the TRIO and the Arabian Sea is also found during
the prolonged La Nifia events.
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Fig. 13 Time series of sea-level anomaly (cm) during 1970-2016.
The frame a represents the sea-level averaged over the region
5° N-20° N, 90° E-100° E. Likewise frame b—d represents the same
averaged over the region 5° S-5° N, 80° E-100° E; 5° S-15° S,
100° E-120° E; 5° S-15° S, 60° E-90° E (TRIO region). In each
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panel black curve represents 3-month running mean and red curve
represents 25-month running mean. The green curve in each panel
represents the inter-annual (2-7 year periodicity) component. The
beige shaded area represents the prolonged La Nifia events chosen for
the study
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Fig. 14 Time series of average UOHC anomaly integrated over the
50-150 m depth level for the prolonged La Nifia events of 1973—
1976, 1983-1986, 1998-2001 and 2010-2012. a-d Shows the time
series for 1973-1976, 1983-1986, 1998-2001 and 2010-2012.
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