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Abstract

Injection of CO, for geologic carbon sequestration (GCS) into deep sedimen-
tary formations involves fluid pressure increases that engage hydromechanical
processes that can cause seismicity by activation of existing faults. In this work,
we use a coupled multiphase fluid flow and geomechanical simulator to model
spatiotemporal fluid pressure and stress changes in order to study the poroelastic
effect of CO, injection on faults in crystalline basement rock below the injec-
tion zone. The seismicity rate along features interpreted to be basement faults
is modeled using Dieterich’s rate-and-state earthquake nucleation model. The
methodology is applied to microseismicity detected during CO, injection into
the Mount Simon formation during the Illinois Basin — Decatur Project. The
modeling accurately captures an observed reduction in seismicity rate when the
injection in the second well was into a slightly shallower zone above the base of
the Mount Simon formation. Moreover, the modeling shows that it is important
to consider poroelastic stress changes, in addition to fluid pressure changes for
accurately modeling of the observed seismicity rate.

Keywords: geomechanics; induced seismicity; geologic carbon sequestration;
modeling; Illinois Basin, Mount Simon

1. Introduction

One contemporary critical challenge is to significantly mitigate emissions of
greenhouse gases in order to prevent a dramatic global climate change. In
the last decades, geological carbon sequestration (GCS) has been investigated
as one possible solution to reduce emissions of carbon dioxide (CO,) into the
atmosphere (Benson and Cole, 2008). GCS cousists in injecting captured CO,
into deep subsurface geological reservoirs such as deep saline aquifers or depleted
oil and gas fields (Celia, 2017; Metz et al., 2005).

The underground injection of large volumes of CO, causes pressure rise that
results in geomechanical strain and stress changes within and surrounding the



targeted storage formation (Rutqvist, 2012). Activation of pre-existing fractures
and faults may be an issue of concern for the potential of inducing seismicity that
could be felt by humans on the ground surface or for the potential of opening
up a new flow path through an overlying caprock (Rutqvist, 2012; Rutqvist et
al., 2016; Vilarrasa et al., 2019; M. D. Zoback and Gorelick, 2012). In this
context the concept of fractures and faults in the host rock being near critically
stressed for activation by shear slip is relevant (Zoback and Zoback, 1989). It
means that a small change in reservoir pressure by injection may be sufficient
to trigger activation of pre-existing faults and cause seismic events.

Although no significant seismic event induced by CO, injection has occurred
at any GCS site to date, it is necessary to understand whether industrial scale
sequestration can lead to seismic events of magnitudes that can be perceived by
humans. Indeed, a felt seismic event could potentially lead to the abandonment
of a project as it has been the case in some geothermal projects (e.g., Deichmann
and Giardini, 2009).

Events of significant magnitude have been associated with wastewater injection
in the United States mid-continent region (Weingarten et al., 2015). Seismicity
in these areas has been attributed to basement faults triggered by wastewater
injection into deep reservoirs close to crystalline basement rock. Seismicity has
been inferred to be triggered by very small pressure changes indicating activation
of faults that are critically stressed (i.e., close to instability) (Hombach et al.,
2015; Keranen et al., 2014).

The potential for fault activation and induced seismicity associated with under-
ground fluid injection during GCS activities, has been the subject of a num-
ber of modeling studies in recent years (Cappa and Rutqvist, 2011; Jha and
Juanes, 2014; Rutqvist et al., 2016; Vilarrasa et al., 2019). Fault reactiva-
tion mechanisms involve complex coupled physical processes that are still not
fully understood, but it is generally acknowledged that the first-order cause of
injection-induced fault reactivation is changes in pore pressure which reduce the
shear strength of optimally oriented faults and bring them closer to the point
of failure where classical Mohr-Coulomb failure criteria is used to characterize
the susceptibility of faults to slip.

With the recent surge in seismicity attributed to anthropic activities in United
States mid-continent, post-mortem numerical modeling studies serve to increase
understanding of the mechanisms underlying induced seismicity (Choy et al.,
2016; Ellsworth et al., 2015). Most studies assume that fault reactivation is
primarily driven by pore pressure diffusion and thus neglect injection-induced
poroelastic stress changes. However, several recent numerical studies indicate
that poroelastic effects must be captured by numerical models in order to cor-
rectly forecast fluid-induced seismicity (Barbour et al., 2017; Zhai et al., 2019).
Most of these studies are related to wastewater injection or enhanced geothermal
systems (Barbour et al., 2017; Hakimhashemi et al., 2014; Norbeck and Rubin-
stein, 2018), while only a handful of sites reported fluid-induced microseismicity
(i.e., M,, < 2, not felt by humans) associated with CO, injection, namely at



In Salah, Algeria (Rutqvist et al., 2016; Verdon et al., 2015); Otway, Australia
(Myer and Daley, 2011; Siggins, 2010), and the Illinois Basin — Decatur Project
(IBDP), United States (Bauer et al., 2016; Kaven et al., 2015; Will et al., 2016).

The IBDP is the first carbon capture and sequestration project in the United
States that injected commercial volumes of CO, into a deep saline aquifer for
GCS (Finley, 2014). One million tons of CO, was injected over a 3-year in-
jection period from November 2011 to November 2014 at the well CCS1 into a
high permeability Mount Simon Sandstone interval at a depth of around 2140 m.
Nearly 20,000 induced microseismic events were detected with most events lo-
cated within the underlying crystalline Precambrian basement (Williams-Stroud
et al., 2020). Identified clusters of microseismic events form semilinear features
oriented within 30° of the direction of the maximum horizontal principal stress
(azimuth N068°) and indicate that the seismicity at the IBDP is occurring along
pre-existing basement faults (Goertz-Allmann et al., 2017). In April 2017, CO,
started to be injected in the CCS2 well in a zone less than 50 m shallower than
the injection zone in the CCS1 well. Injection was into the Lower Mount Simon
in both wells, but with a higher injection rate in the CCS2 well compared to
that of CCS1. Yet, there is very little microseismicity occurring during injection
into CCS2 (Williams-Stroud et al., 2020).

Here, we demonstrate an approach for modeling the induced seismicity observed
at the IBDP along basement faults using multiphase fluid flow and geomechan-
ical model simulations coupled with a rate-and-state nucleation model. The
organization of the paper is as follows: In Section 2, we describe the compu-
tational model used in this study. In Section 3.1, we show the result of the
earthquake catalog declustering that is used to calibrate the rate-and-state pa-
rameters in Section 3.2. The modeling results for both injections in wells CCS1
and CCS2 are then detailed in Section 3.3. Finally, we use our model to study
the effect of varying injection scenarios on predicted induced seismicity in Sec-
tion 3.4.

1. Numerical model

In this work, we consider a three-dimensional domain that includes discretized
faults within the basement inferred from the microseismic clusters observed
at the IBDP site. We simulate the CO, injection and stress evolution using
the coupled multiphase flow and geomechanical model and apply the rate-and-
state seismicity model to study the response of the basement faults to the CO,
injection.

1. Computational model

We consider a simplified version of the subsurface structure at the Decatur site
with a three-dimensional layer-cake model geometry consisting of ten homoge-
neous geological layers with the top layer representing the primary seal Eau
Claire formation (1540 m depth below ground surface (bgs)) and the bottom
layer representing the crystalline basement (2100 to 3000 m bgs) (Bauer et al.,
2016). The Mount Simon sandstone formation is divided into six different lay-



ers in the model, representing from bottom to top, the Lower Mount Simon A
— lower zone, Lower Mount Simon A — upper zone, and the Mount Simon B,
C, D, and E zones. The injection interval is located in the Mount Simon A —
lower zone which has been divided into three sublayers to improve flow model-
ing within the reservoir. A thin continuous mudstone layer is included to honor
multilevel pressure data recorded at the IBDP site which shows that vertical
migration of the CO, plume that formed after injection into CCS1 is limited by
discontinuous low-permeability layers that inhibit vertical fluid flow within the
reservoir (Senel et al., 2014; Strandli et al., 2014; Williams-Stroud et al., 2020).
Hydromechanical properties of the geological layers are summarized in Table 1.

Sixteen microseismic clusters are identified using the DBSCAN algorithm (Ester
et al., 1996) and used to map faults in our model. Faults are discretized as
finite-thickness elements within the basement and are displayed in Figure 1
(middle). All faults are about 20 m thick and uniform in properties (i.e., fault
core is not distinguished from damage zone). A detailed microseismic analysis
showed that the basement faults at Decatur are hydraulically connected to the
reservoir (Goertz-Allmann et al., 2017). Therefore, the faults discretized in
our model vertically extend from the bottom of the reservoir (2146 m) to the
bottom of the model (3000 m). We consider the faults to be hydraulically
conductive with permeability logarithmically decreasing with depth from 1 mD
at the top (2146 m) to 0.1 mD at the bottom (3000 m). This type of permeability
variation has been reported to be associated with critically stressed crystalline
basement faults (Barbour et al., 2017; Townend & Zoback, 2000). For the sake
of simplicity, we consider that all faults are vertical (dip angle # = 90°) and
have the same elastic properties as the host rock units they transect (i.e., only
the permeability of faults are different).
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Figure 1. (Left-hand side) Computational mesh and boundary conditions.
(Middle) Faults discretized within the model and well locations. (Right-hand
side) Initial stress conditions.

Table 1. Hydromechanical properties of model layers. Reservoir hydrological
properties are history-matched against pressure transient and saturation data
recorded at verification well VW1 and mechanical properties are estimated from
well logs (see Appendix A for details).

Layer Top K, K, ¢, V, V, E
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Figure 1 (left-hand side) shows the computational mesh with the applied bound-
ary conditions. The mesh consists of 200 x 200 x 50 (2 million) hexahedral
elements uniformly discretized horizontally and refined vertically in the vicinity
of the injection zone. Lateral and bottom boundaries are open to fluid flow with
only the top boundary being closed to flow. We apply fixed stress conditions
at lateral and top boundaries, and rollers at the bottom (no vertical displace-
ment). Following Senel et al. (2014), we assume an initial hydrostatic gradient
for pore pressure (10.15 MPa/km) and vertical geothermal gradient for temper-
ature (18.2 ° C/km). The system is initially 100% brine-saturated with salinity
of 20% and hydrostatic initial fluid pressure. Initial in-situ stress conditions
are defined according to Bauer et al. (2016) and correspond to a strike-slip
faulting system with o > o, > o0, (Figure 1, right-hand side). In-situ stress
measurements show that the maximum horizontal stress direction has a fairly
constant azimuth and is oriented N068 ° (Bauer et al., 2016; Williams-Stroud
et al., 2020). The minimum horizontal stress gradient in each formation is esti-
mated based on measurements, whereas the maximum horizontal stress gradient
is calculated assuming that the host rock is near critically stressed conditions
for instability for a friction coefficient p = 0.6.

Figure 2 shows capillary pressure and relative permeability curves used in the
multiphase fluid flow simulation. We follow Mehnert et al. (2019) and use van
Genuchten capillary pressure model (Genuchten, 1980) with fitting parameter
A = 0.55, residual liquid saturation S, = 0.6, saturated liquid content S), =
0.999 and maximum capillary pressure P, = 6.9 MPa. Relative permeability
curves are constructed using the van Genuchten-Mualem model with fitting
parameter A = 1.36, residual liquid saturation S, = 0.65 and residual gas
saturation S, = 0.01.
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Figure 2. Capillary pressure (left-hand side) and relative permeability curves
(right-hand side).

For simplicity, all coordinates shown in this work are relative to injection well
CCS1 (i.e., well CCS1 is located at # =y = 0 m and its top is at z = 0 m).

1. Seismicity rate modeling
(a) Rate-and-state seismicity model

We model the seismicity rate using a hybrid approach where seismicity rate
is calculated from time-dependent pressure and stress changes simulated by
our coupled hydromechanical model (Hakimhashemi et al., 2014). We use Di-
eterich’s rate-and-state earthquake nucleation model to assess the evolution of
seismicity rate due to injection-induced stress changes along basement faults
(Dieterich, 1994). The rate-and-state seismicity model estimates the number of
independent events in response to a change in stress on a set of faults and is
described by the following ordinary differential equation (Dieterich, 1994; Segall
and Lu, 2015)

dR _ R (i

T=tE-8)

where R = % is the seismicity rate r relative to the background rate 7y, ¢, = =
is the characteristic relaxation time, 7 and 7, are the Coulomb and background
stressing rates, respectively. We solve the ordinary differential equation using a

fifth-order adaptive time step Runge-Kutta-Fehlberg algorithm (Fehlberg, 1969)
with a relative error tolerance €, = 1076.

We note that the rate-and-state seismicity model is only applicable if optimally



oriented faults are already critically stressed prior to injection (Chang and Segall,
2016; Zhai et al., 2019). In addition, the theory only relates to earthquake nu-
cleations (mainshocks) and does not account for the physical processes involved
in aftershock sequences. More specifically, while the geomechanical model ac-
counts for stress transfer from injection pressure changes and poroelastic stress
propagating ahead of the pressure front, stress changes induced by seismic slip
of individual fractures or faults that can trigger another event are not included.
Thus, earthquake catalogs must be declustered (removal of aftershocks) to be
able to compare observed seismicity rates with results of the rate-and-state
model. This model limitation also implies that it does not forecast magnitudes
of earthquakes. However, physics-based seismicity-rate models can be combined
with the Gutenberg-Richter law to calculate the probability of occurrence of an
earthquake of magnitude M (Navas-Portella et al., 2020; Segall and Lu, 2015).
For magnitudes M > M, the total number of events at time step ¢ is defined

min»
as

R(t, M) = ry (blog10) 10~ M~Muin) R(t) (2)

with b being the b-value. The number of earthquakes in time interval [t;, t5] is
written

ty pMpax
Nty t) = [ f R(t, M)dMdt (3)

min

where M ;, and M, are the minimum and maximum magnitudes simulated.
In the following, M, ;, is set to the catalog’s magnitude of completeness and

M, . is chosen sufficiently large. Assuming that earthquake occurrence is de-
scribed by a inhomogeneous Poissonian process, Zhai et al. (2020) estimates
the magnitude probability of exceedance (i.e., the probability of having at least

one event of magnitude larger than M) following

Pop (g, ty) =1 —exp (N>M (t1, t2)> (4)

where N.,/(t;, ty) is the expected number of earthquakes with magnitude
greater than or equal to M.

1. Stressing rate modeling

Dieterich’s rate-and-state seismicity model relates changes in Coulomb stress to
changes in seismicity rate. We define the Coulomb stressing rate as the change
in Coulomb stress ACFS per unit of time which is calculated at each time step
of the simulation following

ACFS = A1, + (Ao, + AP) (5)

where p is the friction coefficient (assumed to be 0.6 for all faults), Ar, is the
change in shear stress, Ao, is the change in normal stress (positive for tension),
and AP is the change in fluid pressure. Shear stress 7, and normal stress o,
acting on a fault plane can be calculated from the stress tensor following



{Ts = (I -0l =02)" (5

o,=1- -n

where n is the normal vector of a given fault plane and ||| denotes the Euclidean
norm.

We simulate the spatiotemporal distributions of fluid pressure, shear, and nor-
mal stresses using the latest version of the coupled fluid flow and geomechanical
software TOUGH-FLAC (Rutqvist et al., 2002; Rutqvist, 2011) that sequen-
tially couples the finite-volume multiphase flow simulator TOUGH3 (Jung et
al., 2017) and the commercial finite-difference geomechanical software FLAC3D
V7. The latest version of TOUGH-FLAC (Rinaldi et al., 2021) integrates all
the new features of TOUGH3, in particular the use of PETSc parallel solvers
which allows execution of coupled simulations with a large number of grid blocks
(here, 2 million elements). By the use of TOUGH-FLAC, we account for full
hydromechanical coupling with porosity changes modeled as a function of bulk
modulus and volumetric strain. Fluid pressure and stresses are calculated at dis-
crete time steps controlled by TOUGH3 using adaptive time stepping based on
the number of Newton-Raphson iterations needed for each time step. However,
we set the maximum time-step size to three days to better capture amplitudes
of pressure changes due to the numerous shut-in phases. We further fit cubic
splines to the simulated pressures and stresses which are used to calculate the
changes in Coulomb stress ACFS. Finally, the stressing rate 7 is taken as the
numerical time derivative of ACFS with a time step size dt = 1 day, following

. _ dACFS
The coupled hydromechanical model generates spatial and temporal distribu-
tions of pressure and stress in the whole model. However, we assume that
seismicity occurs only along pre-existing critically stressed faults and therefore
only calculate Coulomb stress changes at integration points corresponding to

the finite-thickness fault elements.
1. Results

We apply our coupled hydromechanical rate-and-state nucleation model to gen-
erate seismicity forecasts for both injections in wells CCS1 and CCS2. Modeled
seismicity, especially for the first injection during which most of the seismicity
is observed, is compared to the declustered catalog.

1. Catalog declustering

At the IBDP, more than 5,000 microseismic events have been located with magni-
tudes ranging from -2.1 to 1.2, and the magnitude of completeness is M, = —0.7
(Goertz-Allmann et al., 2017; Williams-Stroud et al., 2020). Earthquake cata-
logs usually contain independent earthquakes (mainshocks) and earthquakes
resulting from stress release after a mainshock (aftershocks). As explained in
Section 2.2.2, the rate-and-state theory mainly focuses on the mainshocks and
therefore aftershocks must be removed from the catalog to compare the hy-



brid seismicity model with observed seismicity. We consider a complete catalog
and remove events with magnitudes lower than the magnitude of completeness
(M < —0.7). We decluster the earthquake catalog using the nearest-neighbor
method (Zaliapin and Ben-Zion, 2020). By this approach, for each earthquake in
the catalog, we calculate the nearest-neighbor interevent distance in the space-
time-magnitude domain. Given a pair of events i and j, the nearest-neighbor
n;; is calculated following
My = RijTij (8)
where R;; and Tj;
_ d. o wm,/2
Ry = (rij) 107w/ (9)
Ty = t;;1070mi/2

are the rescaled time and distance, respectively, written

with 7; is the Euclidean interevent distance, #;; the interevent time, d the frac-
tal dimension of earthquake epicenter, w a weighting coefficient, and m, the
magnitude of event ¢. In this paper, we followed Zaliapin and Ben-Zion (2020)
and set d = 1.5 and w = 0 (i.e., earthquakes’ depths and magnitudes are not
considered for the declustering).

Figure 3 shows the 2D distributions of calculated nearest-neighbor distance for
the full (left-hand side) and declustered (right-hand side) catalogs. An earth-
quake that yields a low distance is close in space and time to its nearest-neighbor
and is thus discriminated as an aftershock.

Full catalog Declustered catalog

Rescaled distance (logqgR)

Rescaled time (log19T) Rescaled time (log197)

10



Figure 3. 2D distributions of nearest-neighbor distances for the full catalog
(left-hand side) and declustered catalog (right-hand side). The red dashed line
corresponds to the initial cutoff threshold 7, used for the declustering.

It should be mentioned that declustering algorithms are usually tailored to re-
move aftershocks in natural earthquake catalogs. Nevertheless, the bimodality
of the nearest-neighbor distribution has been observed in induced earthquake
sequences (Schoenball et al., 2015; Schoenball and Ellsworth, 2017).

1. Parameter calibration

The rate-and-state seismicity model is governed by three parameters, namely
the background stressing rate, the background seismicity rate and a constitutive
parameter A that controls the characteristic relaxation time. The background
stressing rate is usually obtained through geodetic measurements and the back-
ground seismicity rate can be estimated by monitoring the seismicity prior to
the injection. We use a background stressing rate of 7, = 5 Pa/year as esti-
mated for the Southern Illinois Basin (Hamburger et al., 2010). Continuous
microseismic monitoring has been carried out at the IBDP site prior to the first
injection during 18 months and eight earthquakes with magnitude M < —1.5
were interpreted as local events (Smith and Jaques, 2016). Because of the lack
of recorded natural earthquakes with magnitude M > —0.7 in the area of study,
we calibrate the background seismicity rate r, along with the parameter A
by manually fitting the modeled cumulative number of events during the first
injection to the observed one (Hakimhashemi et al., 2014). We use a global
optimization algorithm, namely the CMA-ES (Hansen and Ostermeier, 2001),
to further refine the two parameters with a population size of 20 for the evo-
lutionary algorithm, a maximum of 100 iterations and the manually calibrated
parameters as initial mean. Eventually, we found a background seismicity rate
ro = 0.375 events/year (M > —0.7) and Ao = 0.032 MPa. It should be men-
tioned that the background seismicity rate is estimated so that model outputs
(relative to background seismicity) can be compared with the declustered cata-
log. The calibrated value of the background seismicity rate is fairly uncertain
(see SI, Section S1). Figure 4 shows the calibration result displayed against the
observed cumulative number of events.
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1. Seismicity induced by injection in wells CCS1 and CCS2

Figure 5 shows the modeled seismicity rate considering both injections in wells
CCS1 (from November 2011 to November 2014) and CCS2 (from April 2017 to
April 2018). To model the first injection, we inject CO, below a low perme-
ability mudstone layer simplified in the model to represent the discontinuous
baffles in the Mount Simon that restrict vertical flow. The two perforated zones
(2121 m and 2129 m bgs) are modeled as single injection element. For the sec-
ond injection, CO, is injected above the low permeability layer 50 m shallower
(2178 m bgs) compared to the first injection. We note that only the first year
of the second injection is modeled. Overall, the modeled seismicity rate fol-
lows the average behavior of the observed seismicity rate. More specifically, the
modeled seismicity rate is consistent with the declustered catalog in terms of
onset timings and peak rate amplitudes for the first injection, which means that
the model is able to reproduce the main temporal features of the earthquake
sequence. We observe that many of the longest shut-in phases (e.g., September
2012, March 2013, February 2014, October 2014) yield a sharp decrease in the
modeled seismicity rate which indicates that the modeled seismicity rate and
the injection rate are correlated. After the end of the injection in well CCS1,
the modeled seismicity rate progressively decreases and predicts a lower rate
than the background seismicity from July 2015 due to negative stressing rates.
Despite larger injection rates in well CCS2 (1.7 times the injection rate in well
CCS1), the modeled seismicity rate is negligible compared to the seismicity in-
duced by the first injection (about two orders of magnitude smaller in seismicity
rate).

12
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The 2D spatial and temporal distributions of the modeled seismicity rate for the
first injection are shown in Figure 6. These seismicity rate maps are obtained
by integrating the modeled seismicity rate with respect to depth. The maps are
then further smoothed by applying a Gaussian filter with a correlation length
of 40 m to improve the readability of the figure. Seismicity rate maps are
generated every six months starting from January 2012. The modeled seismicity
rate largely replicates the principal features of the observed seismicity, with
several discrepancies likely due to the limitations and assumptions used for
our modeling. For instance, the model forecasts an increase in seismicity in
the vicinity of the injection well CCS1 in 2014 although only few earthquakes
have been observed in this area in that time period. This may be due to the
lack of heterogeneity in the hydromechanical model which results in a rather
symmetrical pressurization of the reservoir around the injection well.
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Figure 6. Seismicity rate maps. The black dots indicate the earthquake epi-
centers from the declustered catalog (M > —0.7).

We further investigate the relative contributions of pressure and injection-
induced stress changes to the Coulomb stress by tracking their evolutions at
different points throughout the model. According to Equation 5, contribution
to the Coulomb stress changes are changes in shear stress Ar,, changes in
normal stress Ag,, and changes in fluid pressure AP. The changes in shear
stress and normal stress are induced by poroelastic stresses in the system that
are in turn due to injection-induced pressure changes in the system. In the
following, we define AP as the pressure contribution and terms Ar, + AP
of Equation 5 as poroelastic contribution to the Coulomb stress change. To
monitor the evolution of the pressure and poroelastic stress to the Coulomb
stress, we select a first point midway between wells CCS1 and CCS2 to study
the near-field, and a second point on the westernmost fault for the far-field. For
both points, we display in Figure 7 the evolution of the Coulomb stress change
(black) along with the contribution from pore pressure (purple) and poroelastic
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stress (green) changes at different depths (2200 m, 2400 m, and 2600 m bgs).
Poroelastic stress effects are not negligible at the top of the basement in the
near-field (upper left plot) and seem to impede reactivation by reducing the
changes in Coulomb stress as ACFS < pAP. However, farther from the
reservoir, we have At, + puAo, ~ 0 and ACFS ~ pAP, which indicates
that the poroelastic stress impact decreases with depth where direct pressure
effects become dominant. The modeled relative seismicity rates at the selected
points are also shown in Figure 7 on a logarithmic scale (blue). We note the
exponential relationship between the Coulomb stress and the relative seismicity
rate, consistent with the solution to the ODE described by Equation 1 (Segall
and Lu, 2015). We also consider a case where we neglect the first injection and
only model the second injection (black dashed line). For this case, the injection
starts at the original reservoir pressure. This is to investigate the relevance of
the stressing history on the seismic response. Looking at the modeled seismicity
rate (right vertical axis of Figure 7), we observe that in the near-field, it
becomes lower than the estimated background seismicity (R < 1) after the end
of the first injection. This behavior is not observed in the far-field where the
seismicity rate goes back to the estimated initial background value (R = 1 at
the end of the first injection). The low seismicity rate in the near-field is likely
due to the continuous post-injection pressure decrease resulting in a negative
pressure rate (Almakari et al., 2019). Interestingly, the relative seismicity rate
in the near-field at the top of the fault is about one order of magnitude larger
for the second injection if we neglected the first one. Nevertheless, while this
local decrease in seismicity rate following the shut-in of the first injection may
have contributed to the lack of recorded seismicity during the second one, its
impact is negligible compared to the overall lower pressure changes acting on
the faults.
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Figure 7. Calculated Coulomb stress along with contributions of pressure
and poroelastic stress changes and relative seismicity rate evolutions at selected
(left-hand side) near-field and (right-hand side) far-field points. The changes
in Coulomb stress, and contribution to the Coulomb stress by pressure and
stress changes are represented in black, purple and green, respectively. The
blue solid line corresponds to the relative seismicity rate. The black dashed line
represents the relative seismicity rate during the second injection if we neglect
the first injection.

1. Effect of injection rate on seismicity rate

For equivalent total injected volume, Barbour et al. (2017) showed that a vari-
able injection rate may induce more seismicity compared to a constant injection
rate. Here, we investigate the effect of four different injection scenarios by
comparing the seismicity rate generated by our hydromechanical earthquake nu-
cleation model for different injection rates. We note that we only simulate and
compare with the injection in well CCS1 for which fluid-induced seismicity has
been observed. More specifically, given a total volume of approximately one
million tons injected within the span of three years, we consider a first constant
injection rate at 11 kg CO,/s (Scenario A), and a second piecewise constant in-
jection rate increasing from 10 kg CO, /s to 12 kg CO,/s (Scenario B). For both
rates, in Scenarios C and D, we also consider a variant with two-week shut-in
phases every six months (equivalent to the longest shut-in period during in-
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jection in CCS1). Figure 8 shows the seismicity rates and annual magnitude
probabilities of exceedance for the four injection rates using a b-value of b = 1.1
(Bauer et al., 2016), and a minimum and maximum magnitudes of M, = —0.7
and M., = 4. Figure 9 shows the same annual magnitude probabilities of ex-
ceedance as Figure 8 with the results displayed for each year. The seismicity rate
and magnitude of exceedance probability modeled for the first injection in well
CCS1 are also displayed for comparison. For the reference case, the probability
for exceeding M2 is 24%, 21% and 18% in 2012, 2013 and 2014, respectively.
For Scenario A, most seismicity occurs at the beginning of the injection and
decreases over time resulting in a higher probability for exceeding M2 in 2012
(32%). For Scenario B, the seismicity rate steadily increases up to a maximum
of 0.9 events/day and followed by a steady decrease, annual probabilities for
exceeding M2 are similar throughout the injection (about 22%). Scenarios C
and D show that the shut-in phases induce an immediate drop in the seismicity
rate, followed by a larger seismicity rate increase when the injection restarts,
compared to scenarios A and B. This behavior is also observed in the reference
case where long shut-in phases (e.g., March 2013, February 2014, October 2014)
yield an instantaneous drop in seismicity rate which subsequently increases with
a time lag. Yet, annual probabilities for exceeding M2 are only slightly lower
for both Scenarios C and D. Overall, in our model, we observe a correlation be-
tween the injection rate and the modeled seismicity rate for which the response
appears to depend on the amplitude variations of the injection rate.
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Figure 8. Modeled seismicity rate (blue solid line) for different injection rates
(left-hand side). The injection rate is represented by the thin gray solid line.
Annual magnitude probability of exceedance (right-hand side).

2012 2013
1.0 £
=
= 0.8t
Q
@®
S
s 0.6
[]
[&]
G 0.4}
el
[}
8
% 0.2f
|
0.0 40
Magnitude Magnitude Magnitude
—— Reference - Scenario A —-—- Scenario B ----- Scenario C Scenario D

Figure 9. Annual magnitude probability of exceedance for different injection
rates sorted by year.

1. Discussion and conclusion

In this paper, we modeled the seismicity induced along the Precambrian base-
ment faults by the two CO, injection wells at Decatur Illinois, specifically wells
CCS1 and CCS2 from November 2011 to April 2018. Our coupled hydrome-
chanical model reproduces characteristic features of the observed microseismic
activity. The modeled seismicity rates are comparable to recorded seismicity in
terms of onset timings and peak rate amplitudes for the first injection, while
modeled seismicity is negligible for the second injection consistent with field
observations. Our modeling results suggest that the seismicity at Decatur is
strongly influenced by pressure effects. However, modeling of injection in CCS1
indicates that poroelastic stresses are not negligible and tend to impede reacti-
vation, in particular in the vicinity of the injection wells. Because the seismicity
rates forecast by the rate-and-state earthquake nucleation model are exponen-
tially related to the pressure and poroelastic stress rates, ignoring poroelastic
effects (i.e., only flow modeling and using ACFS = pAP) would overpredict
the seismicity rate by approximately one order of magnitude according to our
model (using the same parameters for rate-and-state simulation). This result
highlights the necessity of coupled hydromechanical modeling to accurately cap-
ture the main physical processes related to fluid-induced seismicity, in agreement
with recent studies (Barbour et al., 2017; Chang and Segall, 2016; Fan et al.,
2019; Zhai et al., 2019).

In addition, the rate-and-state model used in this study estimates the induced
seismicity rate relatively to the background seismicity rate. Due to the lack of
earthquake with magnitude M > —0.7 recorded prior to the injection, we could
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not derive a background seismicity rate based on recorded data. Hence, we
calibrated the background seismicity rate along with the constitutive parameter
to match the observed seismicity rate. The background seismicity rate has been
calibrated for comparison purpose and the inverted value is fairly uncertain (see
SI, Section S1). An analysis of the sensitivity of the seismicity rate with respect
to the background seismicity rate shows that modeled seismicity rates would
fit the observed seismicity rate comparably well for background seismicity rates
ranging between 0.3 and 0.6 events/year. Outside this range, the main peak
amplitudes of the earthquake sequence are not properly captured. Given these
uncertainties on the background seismicity rate, the modeled seismicity rates
shown in this work must be interpreted within the context of a probabilistic
analysis (Barbour et al., 2017). Nevertheless, regardless of the value of the
background seismicity rate, our numerical model shows that the seismicity rate
after the end of the first injection becomes lower than the initial background
seismicity rate (R < 1), in particular near the injection well CCS1. Similar
results have been observed in other modeling studies (Almakari et al., 2019) and
is linked to negative pressure rates as the pressure is diffusing out of the faults.
Due to the stressing history, seismicity rates forecast for the second injection
are lower than if we had ignored the first injection phase. Nevertheless, despite
the higher injection rate, the modeled pressure changes induced by the second
injection on the basement faults are significantly lower which indicates that the
absence of observed seismicity during the second phase is principally due to the
injection zone in the CCS2 well location above the low permeability mudstone
layer and the higher porosity and permeability in CCS2 injection zone relative
to the CCS1 injection zone (Williams-Stroud et al., 2020).

We note that our model domain is fairly simple and consists of a three-
dimensional layer-cake model that only includes vertical basement faults
inferred from the observed microseismic clusters. Structural faults interpreted
in the 3D seismic volume that could potentially impede pressure diffusion
have not been modeled. For the sake of simplicity, we also assumed that
the basement faults are merely hydraulically connected to the lower part
of the reservoir, but do not vertically extend across it. Additionally, we
only considered a homogeneous set of faults with invariable permeability.
Several numerical simulations have demonstrated that location and timing
of fluid-induced seismicity is affected by the variations of fault permeability
(Chang and Segall, 2016; Zhang et al., 2013). Besides, we considered the
rate-and-state parameters to also be homogeneous across the area of study.
All these simplifications yield some discrepancies between the model outputs
and the observations. For example, in our model, seismicity initiates at the
top of the faults and propagates downward into the basement, while in some
clusters, the observed seismicity starts within the basement. Despite these
disagreements and the low complexity of our model, it is able to reproduce the
principal features of the earthquake sequence recorded at the site, implying
that the main physical processes involved are captured by our model.

Finally, we used our coupled hydromechanical earthquake nucleation model to
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study the effect of different injection scenarios on the seismicity rate, assuming
equivalent total injected volumes of CO,. We found a correlation between the
injection rate and the modeled seismicity rate. More precisely, seismicity rate
immediately decreases in response to a shut-in phase and increases with a time
lag when the injection restarts, the peak amplitude of the seismicity rate de-
pending on the amplitude of the injection rate increase. However, we did not
find significant changes in terms of modeled seismicity (total number of events
and magnitude probability of exceedance) between the few scenarios tested and
the actual injection rate, which can be explained by the already fairly constant
injection rate used for the first injection in well CCS1. Additional studies are be-
ing planned to improve the model by considering heterogeneity in several model
parameters and to identify factors leading to more accurate characterization of
the risk of inducing earthquakes in GCS activities.

Data and resources

The induced seismicity catalog (2019 version) and injection data used in this
work were acquired by the Illinois State Geological Survey under projects funded
by the U.S. Department of Energy through the National Energy Technology
Laboratory. The three-dimensional computational mesh is generated using the
open-source meshing software LaGriT. Hydromechanical properties are taken
from published literature. The numerical simulations are carried out using
TOUGHS3-FLAC. TOUGHS is a fluid-flow numerical simulator developed at
Lawrence Berkeley National Laboratory and FLAC3D is a geomechanical simu-
lator commercialized by Itasca Inc. Rate-and-state seismicity modeling, earth-
quake catalog declustering and optimization codes are written in Python.
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Nomenclature

Symbol Definition Unit
Declustering

d Fractal dimension of earthquake epicenters

m,; Magnitude of earthquake i

Tij Euclidean interevent distance km
R; Rescaled distance

¢ Interevent time year
T Rescaled time

w Weighting coefficient

s Nearest-neighbor proximity

Mo Nearest-neighbor proximity cutoff threshold
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Symbol Definition Unit
Reservoir model

c, Pore compressibility Pa!

E Young’s modulus Pa

G Shear modulus Pa

K, K, Permeability (horizontal and vertical) mD

V., Vs Velocity (P- and S-wave) m/s

o Biot’s coeflicient

0 Fault dip angle °

v Poisson’s ratio

p Density kg/m?
Oy, Ofs Op Principal stress (vertical, max. and min. horizontal) Pa or Pa/m
10} Porosity

Seismicity model

A Rate-and-state constitutive parameter Pa

b b-value

M Magnitude of earthquake

M, Magnitude of completeness

r, Ty Seismicity rate (absolute and background) event/day
R Relative seismicity rate

ACFS Coulomb stress change Pa

AP Pore pressure change Pa
Ao, Normal stress change Pa

AT, Shear stress change Pa

1] Friction coefficient

T, Tp Stressing rate (absolute and background) Pa/day
van Genuchten model

P ax Maximum capillary pressure Pa

Ser Residual gas saturation

Sir Residual liquid saturation
Sls Saturated liquid content
A Fitting parameter
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Appendix A. Calibration of hydromechanical model parameters

We history-matched hydrological model parameters against multilevel pressure
data and saturation profiles measured at verification well VW1 located approxi-
mately 300 m away from injection well CCS1 (see Figure 1, right-hand side). We
inverted porosities and permeabilities of layers Mount Simon A-upper through
Argenta by minimizing the joint objective function defined by Equation Al,
written

E(m) = w, (d — g, (m)) " (d2 — g, (m))+w, (42> — g, (m))' (A2 — g, (m)) (A1)

where m is the vector of model parameters to invert (porosities and permeabil-
ities of layers), subscripts p and s respectively denote pressure and saturation,
doP® and dg* are the measured data vectors to history-match, and g, (m) and
gs (m) the data vectors calculated by the forward operator g. w,, and wy are
coefficients that weigh the contributions of each dataset to the joint objective
function, and are arbitrarily set to 1 and 2, respectively (with pressure expressed
in MPa). The objective function is optimized using the CMA-ES (Hansen and
Ostermeier, 2001) which is known to be a robust stochastic global optimization
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algorithm, especially when the number of parameters to invert is relatively high
(Auger, 2016). For the CMA-ES, we use a population size of 20 and 100 it-
erations, the initial means and standard deviations are summarized in Table
Al.

To reduce the computational cost of the forward modeling (TOUGH3 simu-
lation), we considered a radially symmetric layer-cake model with the same
layering as our 3D computational mesh. Only the pressure data measured in
the vicinity of the injection zone (zones 1 through 4) and the saturation profiles
measured in March and July 2012 are inverted. Results of the history matching
for the best fit model are represented in Figure Al.

Poisson’s ratio, bulk modulus, Biot’s coefficient and pore compressibility are
calculated using mechanical conversion functions or empirical models (see Table
A2). Figure A2 shows the pressure change front and CO, plume modeled for
March 2012 using the 3D geomechanical model with porosity and permeability
values inverted using the radial layered mesh.

Table A1l. Initial means and standard deviations for the CMA-ES of each

model parameter. Permeability values (horizontal and ratio) are given as logy,

with permeability expressed in m?2.

Layer Parameter Initial mean Initial std.
Mount Simon A-upper Horizontal permeability -13.5 0.2
H/V permeability ratio 2.0 0.2
Baffle Permeability -15.0 0.2
Mount Simon A-lower-1  Horizontal permeability -13.0 0.2
H/V permeability ratio 3.5 0.2
Porosity 0.15 0.02
Mount Simon A-lower-2  Horizontal permeability -13.0 0.2
H/V permeability ratio 3.0 0.2
Porosity 0.22 0.02
Mount Simon A-lower-3  Horizontal permeability -13.0 0.2
H/V permeability ratio 2.0 0.2
Porosity 0.15 0.02
Argenta Horizontal permeability 15.0 0.2
H/V permeability ratio 2.0 0.2
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Figure Al. (Left-hand side) History-matched and modeled pressure data for
zones 1 to 4. (Right-hand side) History-matched and modeled saturation profiles
for March and July 2012. The black dotted and blue solid lines correspond to
the history-matched and modeled data, respectively.
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Figure A2. Modeled (left-hand side) pressure change front and (right-hand
side) CO, plume for March 2012 using the 3D geomechanical model.

Table A2. Functions and empirical models used to calculate mechanical pa-
rameters. Young’s moduli are given in Table 1.

Parameter Function/Empirical model Reference
: : . () -2
Poisson’s ratio (dynamic) v4y, = 0.5(V5 >2
®) -1
Vs
Poisson’s ratio (static)
0.5_
(Will, Smith, et al., 2016)
E‘tat
Bulk modulus Kstat = m
Biot’s coefficient a = 1.75¢%51 (Laurent et al., 1993)
s 212wy, .
Pore compressibility cp = Kstlat 3 (1 — ;(17,/;%))) (Settari et al., 2005)
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