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Abstract

Machine learning (ML) parameterizations of subgrid physics is a growing research area. A key question is whether traditional

ML methods such as feed-forward neural networks (FNNs) are better suited for representing only specific processes. Radiation

schemes are an interesting example, because they compute radiative flows through the atmosphere using well-established physical

equations. The sequential aspect of the problem implies that FNNs may not be well-suited for it. This study explores whether

emulating the entire radiation scheme is more difficult than its components without vertical dependencies. FNNs were trained

to replace a shortwave radiation scheme, its gas optics component, and its reflectance-transmittance computations. In addition,

a novel recurrent NN (RNN) method was developed to structurally incorporate the vertical dependence and sequential nature

of radiation computations. It is found that a bidirectional RNN with an order of magnitude fewer model parameters than FNN

is considerably more accurate, while offering a smaller but still significant 4-fold speedup over the original code on CPUs, and

a much greater speedup on GPUs. The RNN predicts fluxes with less than 1\% error, and heating rates computed from fluxes

have a root-mean-square-error of 0.16 K day$ˆ{-1}$ in offline tests using a year of global data. Finally, FNNs emulating gas

optics are very accurate while being several times faster. As with RNNs emulating radiative transfer, the smaller dimensionality

may be crucial for developing models that are general enough to be used as parameterizations.
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Key Points:6

• Feed-forward and recurrent neural networks (NN) were developed to emulate a7

shortwave radiation scheme, as well as its components8

• The recurrent NN has far better accuracy than usual approaches, while offering9
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Abstract12

Machine learning (ML) parameterizations of subgrid physics is a growing research area.13

A key question is whether traditional ML methods such as feed-forward neural networks14

(FNNs) are better suited for representing only specific processes. Radiation schemes are15

an interesting example, because they compute radiative flows through the atmosphere16

using well-established physical equations. The sequential aspect of the problem implies17

that FNNs may not be well-suited for it.18

This study explores whether emulating the entire radiation scheme is more diffi-19

cult than its components without vertical dependencies. FNNs were trained to replace20

a shortwave radiation scheme, its gas optics component, and its reflectance-transmittance21

computations. In addition, a novel recurrent NN (RNN) method was developed to struc-22

turally incorporate the vertical dependence and sequential nature of radiation compu-23

tations.24

It is found that a bidirectional RNN with an order of magnitude fewer model pa-25

rameters than FNN is considerably more accurate, while offering a smaller but still sig-26

nificant 4-fold speedup over the original code on CPUs, and a much greater speedup on27

GPUs. The RNN predicts fluxes with less than 1% error, and heating rates computed28

from fluxes have a root-mean-square-error of 0.16 K day−1 in offline tests using a year29

of global data. Finally, FNNs emulating gas optics are very accurate while being sev-30

eral times faster. As with RNNs emulating radiative transfer, the smaller dimensional-31

ity may be crucial for developing models that are general enough to be used as param-32

eterizations.33

Plain Language Summary34

Numerical weather and climate simulations are being performed at increasingly res-35

olution, making the energy cost of simulations significant. Computing how solar and ter-36

restrial radiation interact with Earth’s atmosphere, surface, and clouds is one of the most37

computationally expensive parts in climate models especially. This has invited efforts38

to replace these computations with predictions from a neural network, which is approx-39

imative but considerably faster than physical radiation computations.40

In this paper, different ways of emulating a radiation code with neural networks41

have been explored. Its main contribution is developing a novel emulation method based42

on recurrent neural networks, which more closely resemble physical radiative transfer com-43

putations. The accuracy is found to be considerably higher than with traditional neu-44

ral network approaches which use an order of magnitude more model parameters.45

1 Introduction46

Climate and weather simulations are being performed at increasingly high resolu-47

tions. The implications for energy use are significant: even with an atmospheric model48

fully ported to a state-of-the-art GPU supercomputer, kilometer-scale global simulations49

consume 596 MWh energy per simulated year (Fuhrer et al., 2018). This is the same as50

the yearly electricity consumption of 161 average EU households in 2018 (Odyssee-Mure,51

2021). For the energy costs of earth system simulations not to become untenable, both52

hardware and and algorithmic improvements are needed.53

An algorithmic development which could improve both the accuracy and compu-54

tational efficiency of weather and climate simulations is the use of machine learning (ML)55

methods to represent sub-grid diabatic processes. Recent years has seen an influx of pa-56

pers on this topic where the typical approach has been training neural networks (NNs)57

or random forests on coarse-grained data from cloud-resolving or high-resolution sim-58

ulations, and representing all sub-grid processes with a single model (Rasp et al., 2018;59
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Brenowitz & Bretherton, 2018; Gentine et al., 2018; Yuval et al., 2021). Results have in60

many cases been promising: NN-parameterized simulations have shown to reproduce sev-61

eral features of high-resolution simulations not found in coarse-resolution ones (Rasp et62

al., 2018; Gentine et al., 2018). Issues with instability, model drift or energy conserva-63

tion have been widely reported, but also overcome; for instance by using loss functions64

or model architectures which incorporate conservation laws (Beucler et al., 2019, 2021).65

This is in itself an impressive feat considering the challenge of the problem. However,66

all of these simulations have used highly idealized aquaplanet setups. It has yet to be67

demonstrated that unified NN parameterizations can improve realistic climate simula-68

tions, which are much more complex and require reliable predictions across different cli-69

mates.70

One of the most time-consuming components in coarse-resolution simulations (50%71

in ECHAM) is the radiation scheme. This has led to attempts to replace the entire ra-72

diation scheme with machine learning models, the outputs being column radiative fluxes73

and/or heating rates (radiation was also included in the subgrid physics emulation in many74

of the aforementioned studies). Impressive speed-ups (1-2 orders of magnitude) relative75

to the physical parameterization have been obtained using this approach, but it is un-76

clear if the accuracy and reliability is sufficient for state-of-the-art numerical weather pre-77

diction (NWP) and climate simulations. For instance, surface fluxes deviated by 10 Wm−278

from the reference simulation in a prognostic evaluation with a climate model (Pal et79

al., 2019). Recently, Song and Roh (2021) developed NNs to emulate a radiation scheme80

in a regional NWP setting. In offline tests with independent data, predicted shortwave81

radiation had a root-mean-square-error of roughly 0.2 K day−1 in heating rates and 2082

Wm−2 in fluxes.83

Although these differences seem large compared to parameterization errors for clear-84

sky radiation (Hogan & Matricardi, 2020, Figure 5,7), they are less so relative to the85

noise caused by Monte Carlo Independent Column Approximation (McICA) which rep-86

resents cloud sub-grid cloud variability stochastically and is used in many climate and87

weather models (Räisänen et al., 2005). Stable climate simulations incorporating ML have88

been demonstrated in several studies, with the differences in prognostic tests being sim-89

ilar to the models internal variability (Krasnopolsky et al., 2010). Yet again, a realis-90

tic climate is not sufficient evidence for accuracy. Detailed evaluation of fluxes and heat-91

ing rates across the whole atmosphere using fully independent data is rarely presented.92

Heating rates are particularly prone to errors in the upper stratosphere: Yuval and OGor-93

man (2020) emulated subgrid tendencies from specific processes and found ML predic-94

tions of radiative heating rates in upper layers to be poor, and had to use the original95

parameterization above 11.8 km, while Yuval et al. (2021) made the cut-off at 13.8 km.96

An as alternative to emulating the entire radiation code, one can use ML for pre-97

dicting optical properties while still computing fluxes using a traditional solver. This may98

be easier from a physical and algorithmic perspective since the former relies on empir-99

ical methods (look-up table interpolation) and has no dependency between adjacent at-100

mospheric layers, while the latter requires solving the radiative transfer equations to com-101

pute radiative flows through an atmospheric column. (Here a parallel can be drawn to102

the dynamical or ”resolved” part of large-scale models, since they both rely on solving103

well-established physical equations to compute flows). Ukkonen et al. (2020) and Veerman104

et al. (2021) demonstrated high accuracy of NN-predicted optical properties of the gaseous105

atmosphere, which were 3-4 times faster than the original RRTMGP gas optics scheme.106

In the former study the NN gas optics were combined with a refactored radiative trans-107

fer solver to speed up clear-sky flux computations by a factor of 2-3, while the fluxes and108

heating rates were almost identical to the original scheme when evaluated against line-109

by-line radiation computations.110

While NN methods are powerful algorithms capable of modeling complex relation-111

ships, it is not clear that regular feed-forward neural networks (FNNs) are algorithmi-112
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Figure 1: Feed-forward neural networks, shown to illustrate the potential algorithmic
issue with using them to model radiative transfer as is commonly done by stacking the
vertical profiles of input variables (such as temperature and pressure) into one FNN input
column. Because the variables or nodes are only connected horizontally to nodes in other
layers, the vertical dependencies between atmospheric layers (Variable 1, Variable 2...)
can only be represented indirectly through the horizontal connections (weights) to shared
nodes in one or more hidden layers. Information does not propagate directly in the verti-
cal direction, as it does in radiative transfer equations. Figure adapted from Aldakheel et
al. (2021).

cally well-suited for radiative transfer problems which involve computing radiative flows113

between mediums. In the case of radiation parameterizations used in weather and cli-114

mate models, radiative flows in a column are computed layer by layer, requiring several115

iterations through a column. Emulating a radiation scheme by stacking vertical profiles116

of several variables into a single input column of a machine learning model, and predict-117

ing profiles of fluxes and/or heating rates as a single output column, means that infor-118

mation needs to propagate between different inputs or nodes corresponding to adjacent119

layers (as in the physical equations). This does not occur ”directly” in an FNN where120

nodes are connected horizontally to nodes in other layers, but not vertically to nodes in121

the same layer (Figure 1). These vertical dependencies can of course be represented via122

the weights connected to at least one hidden layer, but it is unclear how this can be done123

accurately with simple neural network architectures.124

In many ways, the results obtained in previous studies are impressive, as not only125

does the NN approach skip explicit layer-to-layer computations, but also explicit spec-126

tral computations. Radiation codes have evolved for many decades, and the current state-127

of-the-art is to combine the two-stream approximation to the one-dimensional radiative128

transfer equation (Meador & Weaver, 1980) with the correlated-k -distribution (CKD)129

method (e.g., Goody et al., 1989) for the spectral integration. CKD can accurately re-130

solve broadband fluxes (i.e. fluxes integrated over the electromagnetic spectrum, which131

relate to heating rates) while reducing the number of monochromatic computations by132

many orders of magnitude compared to line-by-line methods. If it was true that an NN133

could reduce the problem further by several orders of magnitude, not incorporate any134

physical laws, and still be accurate and reliable, this would essentially mean that cur-135

rent parameterizations include wasted computations.136

In this study, we aim to shed some light on the suitability of neural networks to137

replace radiation computations by addressing the following research questions:138
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1) Can FNNs closely emulate an entire radiation scheme, i.e. directly predict fluxes139

or heating rates with similar accuracy to existing parameterizations?140

2) Is it easier to predict fluxes and heating rates accurately by only emulating com-141

putations without a vertical dependency, such as gas optics or reflectance-transmittance142

computations using FNNs?143

3) Do recurrent neural networks (RNNs) which structurally incorporate the ver-144

tical dependence of radiation computations better emulate radiative transfer then FNNs?145

4) How does the trade-off between efficiency and accuracy vary across the differ-146

ent emulation strategies?147

To help answer these questions, we train neural nets to emulate: A. the entire ra-148

diation scheme (gas optics and radiative transfer combined), B. gas optics, and C. the149

reflectance-transmittance computations in the solver. Method A, which maps atmospheric150

conditions to fluxes or radiative heating rates, has been used in several papers but here151

a novel method based on RNNs is developed and compared to the standard approach152

using FNNs.153

These emulation strategies are then compared in terms of accuracy and general-154

ization through offline validation with independent profiles, acquired from reanalysis data,155

that span a wide range of atmospheric conditions. Since the goal is to evaluate how well156

simple neural networks can emulate complex radiative transfer computations, this pa-157

per restricts itself to shortwave computations accounting for clouds, where the need to158

consider scattering results in a much harder problem. Generation of training data, model159

implementation, and verification is carried out using the recently developed RTE+RRTMGP160

radiation scheme (Pincus et al., 2019).161

Below, we introduce the data and codes (Section 2), followed by an overview of the162

different emulation strategies and associated machine learning methodologies (Section163

3). The results in terms of accuracy and speed-up are then presented (Section 4) and164

discussed in the context of previous literature (Section 5). Finally, conclusions are given165

in Section 6.166

2 Data and codes167

2.1 Data168

Global CAMS reanalysis (Inness et al., 2019) data was acquired for 2009-2018, with169

4 dates and 2 times of day (03 and 15 UTC 1.2, 1.5, 1.8 and 1.11) in order to encom-170

pass seasonal and diurnal variability of atmospheric fields. Model level variables consist171

of temperature, pressure, cloud liquid water and ice mixing ratio, and mixing ratios of172

five gases that are radiatively active in the shortwave: water vapor, ozone, carbon diox-173

ide, methane and nitrous oxide. The radiation computations also account for oxygen and174

nitrogen, but these are assumed constant (with mole fractions of 0.209 and 0.781, respec-175

tively) and therefore not included in NN inputs. The gases correspond to all the gas species176

considered by RRTMGP-SW, with the exception of nitrogen dioxide which was not avail-177

able in CAMS. The single-level variables obtained were surface pressure, 2-metre tem-178

perature, and forecast albedo. We also computed true solar zenith angles for the pur-179

pose of model evaluation, but when generating training data, the solar angle of each col-180

umn was assigned a random value between 0 and 90. The total solar irradiance at top181

of atmosphere is assumed constant at 1412 Wm−2.182

To avoid over-representation of polar regions in the training data, the CAMS data183

was interpolated from a longitude-latitude grid to a global 320 km resolution triangu-184

lar grid as specified for the ICON model (Zängl et al., 2015), while keeping the the orig-185

inal vertical grid of 60 layers (top at 10 Pa). Each year consists of 5120 × 8 = 40960 columns.186

Data was partitioned into validation (the year 2014), testing (2015, in which 09 and 21187

UTC data was additionally included), and training (remaining 8 years in 2009-2018) sub-188
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sets. It may be noted that the evaluation data does not sample new climate conditions,189

but given the high variability and dimensionality of fields associated with column-wise190

radiation computations, even one ”in-sample” testing year should give some indication191

of model generalization.192

The amount of training samples depends on the emulation method (Table 1). When193

training an emulator for the whole radiation scheme, the model inputs are columns of194

atmospheric variables, resulting in 40960 × 8 = 327680 training samples. For training195

other models, which take input variables defined at a single spectral and/or atmospheric196

layer, the potential training data is enormous, especially for the reflectance-transmittance197

model which operates on individual g-points. In this case, we extract random samples198

from the data, limiting the number of training samples to roughly 50 million (reflectance-199

transmittance) or 10 million (gas optics).200

2.2 RTE+RRTMGP201

RTE+RRTMGP (Pincus et al., 2019) is a recently developed radiation scheme for202

dynamical models combining two codes: Radiative Transfer for Energetics (RTE), which203

computes fluxes given a description of boundary conditions, source functions and opti-204

cal properties of the atmosphere, and RRTM for General circulation model application-205

sParallel (RRTMGP), which computes optical properties and source functions of the gaseous206

atmosphere. The combined package can be used to compute broadband radiative fluxes207

from input profiles of temperature, pressure and gas concentrations. The gas optics scheme208

RRTMGP uses a k -distribution based on state-of-the-art spectroscopy, and has 256 g-209

points in the longwave and 224 g-points in the shortwave, which is high compared to many210

other schemes. RRTMGP continues to evolve and preliminary reduced-resolution k -distributions211

with roughly half the number of g-points (similar to the predecessor code RRTMG), was212

available at the time of writing, but in this study the original 224 g-point model is used.213

When profiling code this should favour the approach of emulating the entire radiation214

scheme, as this method avoids explicit g-point computations while the runtime of the215

original code (as well as emulators of components) is proportional to number of g-points.216

Indeed, reducing the number of g-points, for instance by using full-spectrum correlated-217

k -methods, is a promising way to improve the accuracy/speed trade-off in radiation schemes218

(Hogan, 2010).219

2.3 RTE+RRTMGP-NN220

In this work, a refactored version of RTE+RRTMGP developed in tandem with221

NN emulators for RRTMGP (Ukkonen et al., 2020) is used in order to utilize existing222

NN code infrastructure and to get a more meaningful measure of the speedup given by223

emulators. The refactored version (RTE+RRTMGP-NN) has columns as the outermost224

dimension in both RRTMGP and RTE and therefore avoids expensive array transposes,225

and also features smaller efficiency optimizations such as an optional inlining of the broad-226

band flux computation inside a column loop for reduced memory use. (This feature was227

at the time of writing available in RTE+RRTMGP).228

The NN inference and I/O code in RTE+RRTGMP-NN is based on neural-Fortran229

(Curcic, 2019) but has been optimized for efficiency by packing (or re-interpreting us-230

ing pointers, when possible) the data into batches, resulting in the core operations - mul-231

tiplying layer weights with inputs - becoming a matrix-matrix multiplication that is del-232

egated to a BLAS library. Other changes include fusing the activation and bias additions,233

as well as GPU support based on OpenACC directives and the NVIDIA cuBLAS library.234

The end result is a highly efficient Fortran implementation of feed-forward neural net-235

works that can be used in production code.236
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The data generation workflow consisted of acquiring reanalysis data, pre-processing237

it into yearly netCDF files that can be read by RTE+RRTMGP (for instance, gas mix-238

ing ratios were converted to mole fractions), and performing shortwave cloudy-sky com-239

putations which account for gases and clouds (but not aerosols) to generate the input-240

output pairs for machine learning. The radiation computations account for scattering,241

and cloud optical properties were generated with a cloud optics extension in RTE+RRTMGP242

that is based on Mie calculations. Aerosols are not included; for the purpose of evalu-243

ating the ability of NNs to emulate the physical radiation code, this should not be im-244

portant as the aerosol optical properties are simply added to the optical properties from245

clouds and gases. The NNs were designed and trained in Tensorflow (https://www.tensorflow246

.org) using the Keras front-end (https://keras.io), but PyTorch (https://pytorch247

.org) code was also written to facilitate further research. A Python script was used to248

convert the Keras models into ASCII files from which neural-Fortran loads the model249

weights.250

3 Emulation strategies251

3.1 FNN-RadScheme - emulation of the full radiation scheme using feed-252

forward neural networks253

Emulating the full radiation scheme is the best approach from the perspective of254

efficiency, since explicit layer-to-layer computations as well as spectral computations can255

be avoided. Internally, the radiation scheme computes many intermediate variables with256

a higher dimensionality than the parameterization input and outputs: first RRTMGP257

computes gas optical properties (optical depth and single-scattering albedo) at each g-258

point and model level. The cloud optical properties (optical depth, single-scattering albedo,259

and asymmetry parameter) are then generated for each spectral band and model level260

and added to the gas optical properties. The radiative solver takes the optical proper-261

ties and boundary conditions (incoming solar flux, zenith angle, and surface albedo) and262

performs radiative transfer computations for each g-point, resulting in upward and down-263

ward fluxes F↓, F↑ (total flux, given by diffuse plus direct flux) and direct shortwave fluxes264

F↓,dir, F↑,dir for each g-point and model half-level. Finally, broadband fluxes are obtained265

F↓, F↑ by summing the spectral fluxes together. In the NN approach, the broadband fluxes266

are predicted directly from profiles of gas and cloud mixing ratios. This is very efficient,267

but assumes that the spectral and vertical dependencies can be represented by the NN268

mapping.269

RTE+RRTMGP was used to generate output downward and upward flux profiles270

from profiles of gas concentrations, temperature, pressure, cloud ice and water mixing271

ratios, as well as the scalar variables surface albedo and cosine of the solar zenith an-272

gle. The NN outputs in this study consist only of downward and upward fluxes, and is273

smaller compared to other studies. Direct downward flux is omitted; while this variable274

would likely be needed in the host model, its computation is more straightforward and275

it’s not needed for heating rates, and therefore less interesting for NN emulation.276

Earlier studies (Krasnopolsky et al., 2010; Roh & Song, 2020; Pal et al., 2019) have277

predicted heating rates (HR) profiles directly as NN output, often omitting prediction278

of flux profiles completely and instead adding scalar flux variables at the surface and top-279

of-atmosphere as additional NN outputs (Krasnopolsky et al., 2010; Roh & Song, 2020).280

Here we test predicting fluxes, while HR is given by the vertical divergence of net fluxes281

at each model layer i as in physical radiation codes:282

(
dT

dt

)
SW radiation

= − g

cp

Fi+1/2, SW − Fi−1/2, SW

pi+1/2 − pi−1/2
, (1)
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where Fi+1/2, SW is the difference between the downward and upward SW fluxes at the283

interface between model layers i and i+ 1, cp is the specific heat a constant pressure,284

g is the gravitational constant and ∂T
∂t is the rate of temperature change.285

Computing heating rates from fluxes ensures physical consistency and energy con-286

servation Yuval et al. (2021). On the other hand, it can result in large errors in HR be-287

cause NN-predicted fluxes tend to be noisy and HR are very sensitive to the vertical gra-288

dient in fluxes, especially in the stratosphere where pressure is low. The problem can be289

alleviated by taking special care in the NN design. Firstly, normalizing the fluxes by the290

downward direct flux at the top layer of each column (incoming flux multiplied with the291

cosine of the solar zenith angle) is found to reduce errors in fluxes. Effectively this phys-292

ically re-scales the output values to a range between 0 and 1. Although in some cases293

the flux at a lower layer can exceed the incoming flux (Jiang et al., 2005), the training294

data only had a handful of values above 1. Therefore the flux scaling is combined with295

a sigmoid activation in the output layer to constrain outputs within the 0-1 range, which296

was found to reduce errors. Second, a custom loss function can be used to explicitly min-297

imize the error in both flux and heating rates:298

loss = α(y − ypred)2 + (1 − α)(HR−HRpred)2,

where y is the target value (scaled flux), ypred is the NN output, HR is the heat-299

ing rate computed using equation (1), and α is a manually tuned coefficient controlling300

how much heating rates are weighted relative to fluxes. In practice, the benefit from us-301

ing a hybrid loss function was limited by the heating rates being very noisy when not302

predicted directly, and the sensitivity of computed HR to flux errors in the upper atmo-303

sphere. This issue with noisy heating rates when predicting fluxes, manifesting in large304

swings in the training losses (not shown), seems to be specific to FNNs as it was not seen305

with RNNs (section 3.2).306

Figure 2 compares the flux and heating rate errors for models using different pre-307

dictands and scaling methods. Included in the comparison is a model which predicts heat-308

ing rates profiles directly in addition to fluxes at the boundaries, as in Krasnopolsky et309

al. (2010); Roh and Song (2020). Heating rate errors are much smaller using this method.310

However, adding the full flux profiles as output in addition to heating rate profiles (182311

outputs in total) led to very poor predictions at the surface in quick tests with models312

with up to 256 neurons in two layers (not shown). To avoid the issue with physically in-313

consistent heating rates and fluxes at the boundaries, and to allow an equal footing with314

other emulation strategies (sections 3.2 - 3.4) which can all produce flux profiles, method315

c) in Figure 2 is used in the final evaluation despite the larger heating rate errors. This316

may be a questionable choice, but for operational implementation the conservation of317

energy is important, and is only guaranteed when predicting fluxes and computing heat-318

ing rates from those (the incoming solar radiation will then be equal to the energy heat-319

ing the atmosphere and the surface).320

The FNNs have 128 neurons in three hidden layers. Two hidden layers produced321

only slightly worse results, but a model with a single hidden layer and 128-192 neurons322

had substantially larger errors.323

3.2 RNN-RadScheme - emulation of the full radiation scheme using bidi-324

rectional recurrent neural networks325

While the feed-forward neural network can predict heating rate profiles and scalar326

fluxes reasonably well, on paper it still appears ill-suited for predicting radiative flows327

due to the lack of inter-node connections in a NN layer. The FNN approach also has the328

drawback of being tied to vertical resolution of the training data, as the number of in-329

puts and outputs are fixed. A type of NN which can avoid this problem is found in the330
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Figure 2: Impact of scaling, loss function and predictand on the vertical profiles of mean
absolute error in downwelling flux (left column), upwelling flux (middle column) and heat-
ing rate (right column) for the validation data from 2014 with randomly sampled solar
zenith angles. The outputs of the different feed-forward NN models are unnormalized
fluxes (a), fluxes scaled by the incoming flux (b-c), and heating rate profiles plus three
flux scalar variables (d). Adding heating rate to the loss function is helpful when predict-
ing scaled fluxes (c); with a regular loss function (b) the heating rate errors reach up to
20 K day−1 at the top of atmosphere (the x-axis has been cropped at 10 K day−1). All
fluxes are total (direct + diffuse) shortwave fluxes. Overall mean absolute error (MAE) is
annotated, with the number in parenthesis indicating the MAE value as a percentage of
the column and layer mean of the variables, which only have positive values for physically
computed SW radiation. When testing each method, three separate NNs were trained,
and the results with smallest heating rate errors were saved and compared.
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recurrent neural network (RNN), in which connections form a directed graph. RNNs are331

usually applied to problems associated with temporal sequences. A RNN layer takes the332

input at a given sequence, updates its internal state, and then processes the next point333

in the sequence. The sequential nature is not present in an FNN where the output of one334

layer forms the input of a separate NN layer with different weights. The internal state335

allows the RNN to have memory so that prior inputs, i.e. from earlier in time when deal-336

ing with a temporal problem, can influence the current prediction.337

This idea can be exploited for radiative transfer by letting the sequence be repre-338

sented by vertical levels. However, a basic RNN is not appropriate because the radia-339

tive fluxes at a given level depend not only on conditions at the levels above but also on340

the levels below. Fortunately, information can propagate from future states in a bidi-341

rectional RNN (BiRNN). A BiRNN comprises of two RNNs of opposite directions con-342

nected to the same output, meaning that one RNN begins from the beginning of the se-343

quence and moves in the positive direction, while the other begins from the end of the344

sequence and moves in the negative direction. A single BiRNN layer approach, as illus-345

trated in Figure 3 was tested. In this method the input for a given atmospheric layer is346

used to predict the scaled downward flux at the bottom of this layer (the next half-level)347

as well as the upward flux at the top of the layer (the previous half-level). Two output348

variables then remain; the downward flux at the top and upward flux above the surface.349

The first of these is actually an input and used here for scaling the fluxes, while the lat-350

ter can be physically computed from the downward flux above the surface times the sur-351

face albedo.352

The above approach is elegant, but requires the albedo to be a broadband quan-353

tity. This happens to be true for the data used here, but may not be a valid assumption354

generally. Furthermore, the inconsistency in how upward fluxes are computed led to larger355

heating rate errors at the surface for a BiRNN model which otherwise performed well356

(not shown). To remedy these issues, the model structure can be refined to output the357

full flux profile at layer interfaces (nlay + 1), despite the inputs being defined at lay-358

ers (nlay). One way of achieving this is by concatenating layer-wise RNN outputs with359

the output from a dense NN layer, which takes as input the albedo(s) and/or other sur-360

face quantities. This more complex approach is illustrated in Figure 4. A third RNN layer,361

where the information propagates downward, has also been added; this was found to work362

better than just two RNNs (one BiRNN). The structure in Figure 4 was inspired by the363

physical equations in the radiative transfer solver, and resembles them quite closely. Three364

vertical iterations are used there, too: one to compute direct downwelling flux starting365

from top-of-atmosphere, one starting from the surface and computing the albedos at each366

level using the adding-doubling method (Hansen, 1971), and a final downward pass from367

the top-of-atmosphere to compute upward and downward fluxes.368

While three vertical iterations within the NN model reduce the potential for speedup,369

on the other hand the number of hidden neurons needed for accurate results is very small.370

Here we evaluate a model using only 16 neurons in each of the three RNN layers. For371

the RNN layers, we use gated recurrent units (GRU), which are more complex than sim-372

ple RNN layers. A GRU layer consists of an ”update gate” and a ”reset gate”. Here the373

former decides if the cell state should be updated with the past (accumulated) state or374

not, while the reset gate allows the network to forget past information. It is not clear375

how these mechanisms specifically benefit radiative transfer, but they have been found376

to alleviate problems with vanishing gradients by allowing information to be passed with-377

out going through a nonlinear activity, thus helping preserve information from earlier378

states. For radiation such information could relate to optical properties, or reflectances379

and transmittances, as computed in prior states. In practice, GRU layers gave substan-380

tially better results than simple RNN layers.381
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Figure 3: A RNN-based approach to predicting radiative fluxes. Input variables defined
at N model layers (X0, X1...XN ) form the sequential input to the Bidirectional RNN
(BiRNN), while the output consist of two scalar values: the (scaled) upward flux at the
upper layer boundary (the N+1 layer boundaries are referred to as levels), and downward
flux at the lower boundary. Note that the figure shows the unrolled network structure;
there is actually just one BiRNN layer which forms a directed graph to itself by saving
a hidden state h; or two hidden states h↓, h↑ in the case of the BiRNN which internally
comprises of a forward and backward RNN (not shown). The auxiliary scalar inputs,
albedo α and cosine of the solar zenith angle µ, are incorporated through a dense layer
(DNN) which predicts the initial states of the BiRNN h0,↓, hN,↑. The diagram depicts
input variables in gray, output variables in light yellow, and NN layers in light blue. The
upward flux near the surface (dark yellow) is not an NN output but computed explicitly
from the albedo and the downward flux at the surface.
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Figure 4: A RNN-based approach to predicting fluxes at layer interfaces (N+1) from
layer-wise inputs (N), consisting of three RNNs to mimic two-stream radiative transfer
equations with scattering. The first RNN (RNN↓) has a forward (downward) direction,
and when it reaches the end of the sequence, i.e. the last vertical layer at N , its hidden
state h↓,N is concatenated (”concat”) with the surface albedo and fed to a dense layer,
whose output is then concatenated with the RNN sequence. The dense layer essentially
replaces the RNN at the boundary, where layer-wise inputs are missing. Hereafter the
sequence has a length of (N+1), and is connected to a backward/upward RNN (RNN↑).
Then, the first two sequences are concatenated (as is usually done in a bidirectional RNN)
and connected to a third and final RNN (RNN2↓). Finally, the sequential output from
this RNN is connected to a dense layer which predicts two values, the upwelling and
downwelling fluxes scaled by incoming flux.
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3.3 FNN-RRTMGP - emulation of gas optics only382

Successful NN emulators for RRTMGP gas optics have been developed in earlier383

work: in Veerman et al. (2021), average flux errors were within 0.5 Wm−2 of RRTMGP,384

while in Ukkonen et al. (2020) root-mean-square-errors (RMSE) in heating rate with re-385

spect to line-by-line results were virtually identical with RRTMGP. Here an identical NN386

methodology as in Ukkonen et al. (2020) is used, which involves predicting absorption387

and Rayleigh cross-sections with two separate NNs.388

The main advantage of using neural networks for gas optics is efficiency: whereas389

the original kernel computes optical properties separately for each band and each mi-390

nor gas species (the absorption due to two major gases in a band is computed separately391

and parameterized to account for overlap in the absorption spectra), the NN can take392

all gases as one input vector and predict the optical properties for all g-points as one out-393

put vector. Consequently, minor greenhouse gases can be included with almost no ad-394

ditional cost. NNs are also suitable for predicting optical properties from a physical per-395

spective, since the original kernel relies on empirical look-up-tables and incorporates no396

physical laws explicitly. Further benefits are generalization to arbitrary vertical grids by397

predicting layer-wise optical properties normalized by number of molecules (cross-sections),398

and that a NN can treat gas overlap implicitly. In theory, a novel NN gas optic model399

could be trained directly on data generated with line-by-line radiation codes to avoid er-400

rors associated with gas overlap assumptions, but the data generation would be a sig-401

nificant computational challenge.402

3.4 FNN-RefTrans - emulation of reflectance-transmittance computa-403

tions404

Training NNs to emulate the radiative transfer solver was considered for this work,405

but because RTE and other solvers perform computations per g-point, an emulator which406

respects the underlying physics and similarly operates on g-points is unlikely to be more407

efficient (broadband fluxes could be predicted directly, but the inputs are still defined408

per g-point).409

An alternative is focusing on computations of reflectance and transmittance in the410

shortwave solver. While the efficiency drawback of explicit g-point computations remain,411

this may be more promising for FNNs since the problem has a simpler nonlinear input-412

output mapping which does not include vertical dependencies. The reflectance-transmittance413

computations (kernel sw two stream) are furthermore the slowest part of RTE and exhibit414

a high sensitivity to numerical precision.415

Simple neural networks are able to predict direct and diffuse reflectance and trans-416

mittances with high accuracy (Figure 5). However, when implementing the NNs into the417

radiation code it was discovered that even very small inaccuracies overall (with R-squared418

> 0.999 for each variable) can translate into significant RMSE and maximum errors in419

net fluxes; typically tens and hundreds of Wm−2 respectively. A possible explanation420

is a larger sensitivity for errors at specific values of reflectance and transmittance, spe-421

cific g-points (which contribute to broadband flux more strongly than others), or spe-422

cific atmospheric levels, or just a high sensitivity in the dependence of flux on reflectance423

and transmittance in general. For instance, predicting intermediate values of transmit-424

tance accurately may be more important than values near zero, since the latter case is425

likely to be associated with radiation being fully extinguished (reflected or absorbed).426

The distribution of the predictands is highly skewed with such intermediate values be-427

ing rare, and as a result are also associated with larger errors when employing a regu-428

lar loss function.429

To combat this problem, one could devise custom loss functions, data transforma-430

tion, or synthetic data generation to create more samples for the important but under-431
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Figure 5: Comparison of the predicted (y-axis) and true (x-axis) reflectance and trans-
mittance values using the validation data set and final REFTRANS model, which has 12
neurons in two hidden layers. The colors on the scatter plot correspond to the occurrence
on a log-scale.

represented parts of the distribution. A simple data transformation which reduced er-432

rors in radiative flux was to take the square root of the output prior to training, which433

makes the distribution more Gaussian (albeit still highly non-Gaussian). We then tested434

custom loss functions which give smaller weights to intermediate values of all four out-435

puts, and/or a smaller weight to diffuse transmittance, but found no clear improvements436

in predicted fluxes. Figure 5 shows the validation performance of the final model.437

3.5 Summary of model architectures and methodologies438

The architecture and pre-processing used for the different NN emulators are de-439

scribed in Table 1. The model hyperparameters (number of hidden neurons, hidden lay-440

ers and activation functions) as well as suitable pre-processing methods - which were of-441

ten found to be more important than NN hyperparameters - were tuned by hand. The442

objective of this laborious tuning process was to find a reasonable trade-off between ac-443

curacy and model complexity, which determines the computational cost. This restricted444

the reflectance-transmittance emulator to a very simple NN model, as it turned out to445

be difficult to surpass the efficiency of the original computations. For the FNN emulat-446

ing the entire radiation scheme, efficiency was less of a consideration, as the inference447

code using this method was very fast regardless.448

The hyperparameters of the gas optics emulator were taken from Ukkonen et al.449

(2020). All models were trained using the Adam optimizer (Kingma & Ba, 2015) and450

the early-stopping method, which stops training when the validation error has not im-451

proved for a certain number of epochs (here 28). The batch size was set to 1024.452
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Model FNN-RadScheme RNN-RadScheme FNN-RRTMGP FNN-RefTrans

Emulated compo-

nent

Radiation scheme

with gas and cloud

optics

Radiation scheme

with gas and cloud

optics

Gas optics Reflectance-

transmittance

computations

Input scalars α and µ0 +

vertical profiles of

gas mole fractions,

T, p, cloud ice and

cloud water

same as for FNN-

RadScheme but

one layer at a time

gas mole fractions,

T, p

τ , ssa, g, mu,

Tnoscat

Input size 2 + 9 · nlay = 542 2 + 9 = 11 5 7

Output vertical profiles of

broadband fluxes

vertical profiles of

broadband fluxes

absorption/Rayleigh

cross-sections as a

vector of g-points

Rdif , Tdif , Rdir,

Tdir

Output size 2 · nlev = 122 2 ngpt = 224 4

Hidden layers Dense, Dense,

Dense

RNN, Dense,

RNN, RNN, Dense

Dense, Dense Dense, Dense

Activation func-

tions in hidden

layers and output

layer

relu, relu, relu,

sigmoid

tanh, linear, tanh,

tanh, sigmoid

softsign, softsign,

linear

softsign, softsign,

hard sigmoid

Neurons in each

hidden layer

128 16 16 12

Total parameters 118,266 5,698 4,208 280

Required itera-

tions

ncol ncol (× 3 nlay

internallly)

ncol × nlay

(× 2 NN models)

ncol × nlay × ngpt

Flexible with re-

gards to vertical

grid

No Yes Yes Yes

Input scaling xi = xi
max(xi)

xi = xi
max(xi)

x = log(x) for p;

x = x
1
4 for H2O

and O3;

xi =
xi−min(xi)

max(xi)−min(xi)

x = x
1
8 for τ ;

x = x
max(x)

for

τ (other features

already in 0-1

range)

Output scaling yi = yi
F↓,0

yi = yi
F↓,0

y = y
1
8 ;

yi = yi−ȳi
σy

y = y
1
4

Table 1: Description of the different models. Abbreviations: α = surface albedo, µ0 = co-
sine of solar zenith angle, T = temperature, p = pressure, ssa = single-scattering albedo,
g = asymmetry parameter, T = transmittance, R = reflectance, H2O = mixing ratio of
water vapor, O3 = mixing ratio of ozone.
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Figure 6: Vertical profiles of the error in shortwave downwelling flux (left column), up-
welling flux (middle column) and heating rates (right column) for the test data (2015)
using different emulation methods: replacing the radiation scheme with (a) a feed-
forward NN or (b) a bidirectional recurrent NN, (c) replacing only the radiative solver’s
reflectance-transmittance computations with a FNN, or (d) replacing the gas optics com-
putations with a FNN. The solid and dotted lines show the mean error and mean absolute
error, respectively, while the shaded area indicates the 5th and 95th percentile of mean
absolute error. For FNN-Radscheme (a) the mean heating rate errors at TOA (0.01 Pa)
reach around 3.5 K day−1 (the x-axis has been cropped). In the annotated statistics, the
number in parenthesis gives the error as a percentage of the column and layer mean of the
variable.

4 Results453

4.1 Accuracy454

The models are evaluated by comparing the final output of the radiation code, fluxes455

and heating rates, to a reference result computed in double precision using RTE+RRTMGP.456

(Comparison to a single precision result would be very similar, as the NN errors are larger457

than those from using reduced precision.)458

The errors in flux and heating rate using different emulators is shown in Figure 6.459

In this offline evaluation based on one year of independent global data, all emulation meth-460

ods produce fluxes with R-squared values very close to 1 and mean absolute errors around461
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1% or less. In the case of gas optics emulation (FNN-RRTMGP), there is practically no462

error in fluxes. The emulation of the whole scheme (FNN-RadScheme) gives a similar463

accuracy in flux compared to emulating only reflectance-transmittance computations (FNN-464

RefTrans), which is a poor result for the latter method, as it is far more expensive.465

Heating rates computed from these fluxes show much larger differences across em-466

ulators. FNN-RadScheme has the largest heating rate errors with a mean absolute er-467

ror (MAE) of 0.50 K day−1, or 25.5% when expressed as a percentage of the mean HR468

in the dataset. The radiation scheme emulator based on recurrent NNs (RNN-RadScheme)469

produces far more accurate heating rates despite not predicting them directly, with a MAE470

of 0.07 and RMSE of 0.16 K day−1. FNN-RefTrans reproduces heating rates well rel-471

ative to fluxes; with errors well below 0.5 K day−1 throughout most of the atmosphere472

despite the flux errors being comparable to FNN-RadScheme. The most accurate heat-473

ing rates are seen with FNN-RRTMGP with a MAE of only 0.02 K day−1.474

For simulating climate, the upwelling flux at the top-of-atmosphere (TOA) is an475

important quantity. All emulators have small errors in TOA upwelling flux (Figure 7):476

less than 1 Wm−2 for all models but FNN-RefTrans. Likewise, the downwelling flux at477

surface is predicted within roughly 1% by all emulators (Figure 8).478

4.2 Speed-up479

Speedup of the radiation codes were measured on a modern workstation with both480

reference and NN computations performed in single precision. A fair comparison is en-481

sured by implementing all NN models, with the exception of the RNN, in the RTE+RRTMGP-482

NN Fortran code and including the overhead from pre- and post-processing. Principal483

timings were done using the AMD Ryzen 7 5800H processor and GNU compiler version484

11 (compiler options -march=native -O3 ). The matrix-matrix computations in RTE+RRTGMP-485

NN were accelerated using AMD BLIS (https://developer.amd.com/amd-aocl/) ver-486

sion 3.0.6. The Fortran code uses blocking of the columns for better cache performance;487

for each emulator, an optimal block size was used. All timings represent the best result488

from three trials.489

The computation of cloudy-sky fluxes for the 81920 test columns took roughly 18.5490

seconds using the reference code a single CPU core. By comparison, the FNN-RadScheme491

computed fluxes in just 0.35 seconds, a 52-fold speed-up. This is similar to what has been492

reported in other studies (e.g., Song & Roh, 2021). Replacing only the gas optics com-493

ponent with a FNN reduces the the runtime of the gas optics by a factor of 3, but the494

total runtime by only 25%. This reflects that the solver is the most expensive part of495

SW radiation computations in optimized RTE+RRTMGP (Ukkonen et al., 2020). Fi-496

nally, the reflectance-transmittance emulator is not faster than the original code, but 40-497

45% slower. This is despite the FNN being a very simple model with only 280 param-498

eters. The slowness of the method can be attributed to it operating on individual spec-499

tral points as does the original code, but not being tailored as the physical equations,500

resulting in redundant computations.501

Finally, the RNN and FNN models predicting fluxes was evaluated within Python502

using the ONNX Runtime Library (ORT) version 1.9.0, first using a CPU (single core).503

This was necessary because the neural-Fortran library does not support RNNs. These504

timings do not include pre- and post-processing, but those accounted for less than 10%505

of the runtime of FNN-RadScheme in Fortran. The inference with the RNN emulator506

took roughly 4.1 seconds using ORT, representing a speed-up of 4.5X over the reference507

code in Fortran. This is a significant speed-up, but much smaller than obtained with the508

FNN model. To compare the FNN and RNNs on a single platform, the ONNX timings509

were also done for FNN-RadScheme, which in this instance took 0.21 seconds. It can be510

concluded that the recurrent NN approach is roughly 20 times slower than an FNN-based511

approach on CPUs. The performance on a GPU (RTX 3060 Mobile) was then briefly512

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

(a) REF

Flux (W m 2)
40
80
120
160
200
240
280
320

Bias: 0.75 (0.6%)
MAE : 0.93 (0.7%)

(b) REF - 
FNN-RadScheme

Bias: -0.45 (-0.3%)
MAE : 0.69 (0.5%)

(c) REF - 
RNN-RadScheme

Bias: -0.82 (-0.6%)
MAE : 1.82 (1.4%)

(d) REF - 
FNN-RefTrans

Bias: -0.07 (-0.1%)
MAE : 0.08 (0.1%)

(e) REF - 
FNN-RRTMGP

4 3 2 1 0 1 2 3 4

Flux (W m 2)

Upwelling flux at top-of-atmosphere

Figure 7: Global upwelling shortwave flux at top-of-atmosphere for the testing year 2015
as computed with RTE+RRTMGP (a) and the grid box mean differences in this quantity
using different emulators (b - e). Bulk error statistics with respect to individual columns
are displayed on the right hand side.
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Figure 8: As in Figure 7, but for downwelling flux at surface.
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evaluted using ORT. The RNN inference time is reduced to 0.34 seconds on the GPU,513

while the FNN inference took a mere 0.046 seconds. The performance gap between the514

FNN and RNN-based approaches for radiative transfer is therefore reduced considerably515

when using GPUs, here to roughly 7.4X.516

5 Benefits of targeted and physics-informed machine learning517

All the emulators evaluated here produce very reasonable fluxes, but the large sen-518

sitivity of heating rates and noise in the fluxes predicted by feed-forward NNs results in519

relatively large heating rate errors. Some other studies have sidestepped this issue by520

predicting heating rates directly, implying a lack of energy conservation which may or521

may not be an issue in practice but is nonetheless undesirable in an operational setting.522

The heating rate errors with flux-predicting FNN seems to be caused by the fact523

that the NN outputs at different atmospheric levels are not structurally correlated with524

outputs at other levels. The recurrent NN, which does have incorporate the vertical de-525

pendence, produces far more accurate heating rates. The RMSE of 0.16 K day−1, eval-526

uated across the whole atmosphere with the uppermost layer at 10 Pa, is smaller than527

the errors reported in other studies. For instance, shortwave heating rates had an offline528

RMSE of 0.5 K day−1 in Roh and Song (2020) and 0.17 K day−1 in Song and Roh (2021).529

In both of these studies, the vertical grid only reached 50 hPa and heating rates were530

predicted directly with an FNN. With this in mind these initial results with an RNN are531

very promising, and the errors are in fact similar in magnitude to parameterization er-532

rors associated with the correlated-k distribution method (Hogan & Matricardi, 2020,533

Figure 7). The drawback of the RNN approach is that its sequential nature, which lets534

it emulate a radiation parameterization more closely, also makes it less efficient than FNNs.535

However, a speed-up of more than 4 times is still significant, and when testing with a536

GPU a much larger speed-up was seen (a factor of 54 relative to a single CPU core).537

Smooth flux profiles, associated with small heating rate errors, are also seen with538

FNN-RRTMGP and FNN-RefTrans, demonstrating the advantage of retaining the ra-539

diative transfer equations. While the FNN-RefTrans model is considerably slower than540

the original code, and therefore found to be an unsuccessful emulation target, the gas541

optics emulation produces extremely accurate results while speeding up the original look-542

up-table by several factors.543

Regarding the choice of output, while it may seem attractive to predict heating rates544

directly in addition to fluxes at boundaries, it should also be noted that it could lead to545

larger errors in fluxes: the RMSE in SW flux was around 15 Wm−2 in offline evaluation546

in both Roh and Song (2020) and Song and Roh (2021). By comparison, the MAE in547

SW upwelling flux at TOA and downwelling flux at surface were around 1 Wm−2 or less548

for both FNN-RadScheme and RNN-RadScheme. It is unclear, however, why tests with549

a heating rate predicting FNN had relatively small errors in the boundary fluxes in this550

study (Figure 2). Our experience is that hyperparameters (number of hidden layers, ac-551

tivation functions used in the output layer) and other technical details in how ML mod-552

els are developed can have a substantial impact on the results. Unfortunately, these are553

not always well documented. A great example is pre-processing of both inputs and out-554

puts, which can have a major impact. Besides such more overlooked aspects, the quan-555

tity of training data can obviously be an important factor. In this study, the number of556

training profiles was initially an order of magnitude smaller, and model errors significantly557

worse.558

How the NN emulators would perform in a prognostic evaluation when embedded559

in a large-scale model is a critical question. Such experiments were considered to be out560

of the scope of the present work. Nonetheless, comparison with studies which have per-561

formed both offline and online errors should give some indication. These include the stud-562
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ies mentioned above with larger offline errors, where prognostic evaluation based on a563

squall-line simulation (Roh & Song, 2020) and a regional NWP simulation (Song & Roh,564

2021) did not show a significant degradation for precipitation and temperature forecasts,565

and forecasts were improved relative to infrequent calls of the original scheme at the same566

computational cost. In another study, NN output consisting of both flux and heating rate567

profiles had mean errors of a few percentage points in an offline setting (Figure 1 in Pal568

et al., 2019). In year-long climate simulations, the NN parameterization resulted in time-569

and area-averaged SW surface downwelling fluxes that differed substantially from the570

reference simulation, but the differences were comparable to the internal variability of571

the model.572

6 Conclusions573

Emulating a sub-component of a physics scheme reduces the potential to speed-574

up, but can greatly improve accuracy and generalization. For operational implementa-575

tion, the fact that the dimensionality is much smaller is important, because it allows sam-576

pling the input space more thoroughly. Accelerating computations of reflectance and trans-577

mittance using NNs was not successful, but the gas optics component is relatively straight-578

forward to emulate at high accuracy, and the FNNs are much faster than the look-up-579

table method of the original code.580

It was also found that transforming inputs and outputs prior to training can have581

a substantial impact on the accuracy in both the physical output variable as well as de-582

rived variables which are not directly predicted. Scaling shortwave fluxes by the incom-583

ing TOA flux reduces flux errors substantially, but at the expense of heating rate errors584

when using a feed-forward NN. A loss function which computes the heating rate error585

alleviated the issue, but predicting heating rates directly (as opposed to fluxes) may be586

necessary to produce accurate heating rates with a feed-forward NN.587

Finally, this study has contributed to more accurate emulation of radiation com-588

putations by developing a recurrent NN method that can predict fluxes at layer inter-589

faces from inputs defined at levels and the surface. The author is not aware of previous590

work using recurrent NNs to compute radiative fluxes in a vertical column. This method591

is in principle flexible with regards to the vertical grid. A model of roughly 5,600 param-592

eters which consists of three RNN layers, propagating information in both directions of593

the vertical column (mimicking radiative transfer computations), is able to predict fluxes594

and heating rates far better than a FNN with more than 100,000 parameters. Fewer pa-595

rameters, in turn, makes it much easier to build general models which can replace pa-596

rameterizations in real applications. While the speedup offered by the RNN is smaller597

than with FNNs, it still offered a 4-fold speedup on a CPU and a 54-fold speedup on GPU598

relative to running the original scheme a single CPU core. Future work should investi-599

gate the RNN approach further by implementation in a large-scale model.600
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