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Abstract

The Gulf of Mexico circulation is modulated by a mesoscale current, the Loop Current (LC), and large anticyclonic eddies that

detach from it. The LC dynamics are recurrent, and its evolution is in and from a few preferential states. This observation

points to the existence of a low-dimensional dynamical attractor. Building upon advancements in dynamical system theory,

this work characterizes the average and instantaneous dimensions of such an attractor. The instantaneous dimension and its

evolution in time are compared among an altimeter-based dataset, an ocean reanalysis and an operational hindcast. The LC

complexity, measured by its dimension, differs among them, especially when the dimension is high. During shedding events,

on the other hand, differences between datasets emerge in the second principal component. The information provided by this

analysis is relevant to operational ocean forecasts and points to where improvement should occur.
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Key Points:

• A metric from dynamical system theory is applied to the Gulf of Mexico
to characterize the attractor of the Loop Current.

• Model products (reanalysis and hindcast) portrait a different local dimen-
sion than GCOOS data.

• Results point to where improvement is needed for better ocean forecast
skills.

•

Abstract

The Gulf of Mexico circulation is modulated by a mesoscale current, the Loop
Current (LC), and large anticyclonic eddies that detach from it. The LC dy-
namics are recurrent, and its evolution is in and from a few preferential states.
This observation points to the existence of a low-dimensional dynamical at-
tractor. Building upon advancements in dynamical system theory, this work
characterizes the average and instantaneous dimensions of such an attractor.
The instantaneous dimension and its evolution in time are compared among an
altimeter-based dataset, an ocean reanalysis and an operational hindcast. The
LC complexity, measured by its dimension, differs among them, especially when
the dimension is high. During shedding events, on the other hand, differences
between datasets emerge in the second principal component. The information
provided by this analysis is relevant to operational ocean forecasts and points
to where improvement should occur.

Plain Language Summary

We characterize the evolution of the large-scale circulation of the Gulf of Mexico,
which is dominated by the Loop Current, using a metric from dynamical system
theory. Comparing results from an altimetry-based sea surface height dataset
and model-based products, it is found that the model misrepresents in part the
set of states toward which a system tends to evolve. This is the case especially
when the Loop Current is in an intermediate configuration, not fully retracted
towards Cuba or extended towards the Florida Panhandle. This analysis points
to aspects that models should improve before ocean forecasts for the region
can be extended successfully beyond five days. The forecast extension, which
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is theoretically supported by our work, would bring societal benefits to people
working in the oil and fishery industry and those living on the coastlines of a
basin often traversed by tropical storms and hurricanes.

1 Introduction

The circulation of the Gulf of Mexico is dominated by the anticyclonic Loop
Current (LC). The LC enters the Gulf from the Yucatan Channel and exits it
through the Florida Straits, bringing into the enclosed basin between 23 and
27 Sv (1 Sv = 106 m3s-1) of relatively warmer, saltier and nutrient poor waters
(Johns et al., 2002). The LC is the largest mesoscale feature in the region, about
200 - 300 km wide and 1200 m deep, with surface velocities of 0.8 ms-1 increasing
to 1.5 ms-1 below the mixed layer (Gordon, 1967).

The LC’s position varies greatly over time. It can be found in its retracted
state in the Yucatan Channel or in its extended state all the way into the De
Soto Canyon, and any state in between. At irregular intervals, the LC in its
extended state sheds a Loop Current eddy (LCE) or Ring, with size of 200 km
in diameter. The large anticyclone then migrates slowly westward (Hamilton,
1990; Lipphardt et al., 2008), losing coherence once it reaches the continental
shelf on the western boundary. The time interval at which the LCEs form varies
between half month to over a year, with limited evidence of preferred shedding
events in spring and fall (Hall and Leben, 2016).

The evolution of LC and LCEs in the Gulf is generally accompanied by the
formation of smaller mesoscale eddies, cyclonic and anticyclonic (e.g. Gopalakr-
ishnan et al., 2013). LC and LCEs, together with the smaller eddies, are often
called the LC system, or LCS. The mechanisms and processes that control the
penetration of the LC into the Gulf of Mexico and trigger the Rings’ separation
are neither well simulated and forecasted by ocean models, nor fully understood
(National Academies of Sciences and Medicine, 2018). More skillful predictions
of the LC dynamics would have consequential societal benefits, ranging from
improved weather forecasts, especially relevant in the event of tropical storms
and hurricanes, to better oil spill and emergency preparedness and response,
and improved fishery management.

Recent theoretical advances (McMahon et al., 2021) found in an idealized 1-
layer model that the LC-like system transitions between five steady states, three
stable and two unstable. The analysis suggests that relatively few degrees of
freedom may be sufficient to describe the LC system most of the time, and its
potential predictability may be higher than previously realized and currently
achieved by ocean forecast systems. In this work, we aim to characterize and
compare the attractor of the LC in an observational dataset, a reanalysis and a
model analysis of the Gulf of Mexico, adopting a metric from dynamical system
theory.

Oceanic motions are chaotic. In an enclosed system, these motions are typi-
cally contained on low-dimensional attractors (Lorenz, 1980) with an average
dimension that quantifies the number of degrees of freedom needed to describe
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the flow (for the well-studied double-gyre case see e.g. Primeau, 1998 and for a
general introduction to dynamical system approaches to physical oceanography
Dijkstra, 2000). While the average dimension of the LC system - or of any
chaotic system - is an important, first-order, property that should be correctly
reproduced by models, its transient states are also of interest for forecasting pur-
poses. The dynamical properties of these LC states, from retracted to extended,
depend on the instantaneous, instead of the average, dimension of the attractor
(Vautard and Ghil, 1989). Lucarini et al. (2016) have shown that these instan-
taneous properties can be uniquely identified by their local dimension, which
has been so far applied to atmospheric fields (Faranda et al., 2016; Hochman et
al., 2019; De Luca et al., 2020; Messori et al., 2021; Falasca and Bracco, 2021).
In the case of the LC system the comparison between this metric calculated on
the observational and modeled datasets points to important limitations of the
model realizations and suggests ways to improve the forecast skill.

2 Methods and Data

The high-dimensional dynamics of dissipative flows such as the ocean typically
live on nonlinear, low-dimensional “inertial manifolds” or attractors (Foias et
al., 1988; Gudorf, 2021). Here we characterize the Loop Current (LC) attractor
using the instantaneous (local) dimension metric proposed in Lucarini et al.
(2016).

The instantaneous dimension indicates the number of degrees of freedom (DoF)
of each state � of the attractor and describes, in physical space, the largest, dom-
inant mesoscale features, which are given by the LC in the eastern half of the
Gulf of Mexico and the Rings in the western one. While very useful to establish
the predictability potential of a given dynamical system, d(�) has been applied
only to a handful of flows so far because a robust way of calculating it has been
proposed only recently and its computation requires relatively long, spatially
extended high-frequency measurements. The methodology stems from theoreti-
cal advances in understanding Poincaré recurrences in chaotic systems and their
connection to extreme value theory (Lucarini et al., 2016). The instantaneous
dimension relates to the density of state space points in a neighborhood of the
state � (i.e. how many similar configurations can be found) and quantifies the
number of directions the system can evolve from/into. If the number of states
considered is sufficiently large, an estimation of the attractor dimension can be
obtained from the average over time of the local dimensions as D = < d(�) >.
Faranda et al. (2016) verified that this is indeed the case for the Lorenz system.

In more detail, let us consider a trajectory of a geophysical flow as a high-
dimensional vector X � RN,T, with N being the dimensionality of the spatial
grid and T the number of time steps. Given a state � = X(t) at time t, we
define our observable as:

g(X(t), �) = -log( �(X(t), �) ) , (1)

where g(X(t), �) represents the distance between a state � and other states on
the trajectory, �(x, y) is the Euclidean distance between two vectors x and y
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and the logarithm discriminates between close recurrences. The minus sign
turns minima into maxima and is chosen for practical convenience.

Freitas et al. (2010) and Lucarini et al. (2016) proved that the probability that
the flow returns in the neighbourhood of a state � converges to a Generalized
Pareto Distribution:

Ρ(g(X(t), �) > s(q,�)) � exp(- u(�)
�(�) ) . (2)

Here � is the scale parameter of the Pareto distribution and s(q, �) is a thresh-
old defined as the qth quantile of each time series g(X(t), �) with q = 0.96.
Exceedances of g(X(t), �) over s(q, �) are referred to as u(�) and represent recur-
rences of the state �.

Lucarini et al. (2016) proved that the instantaneous or local dimension of a
state �, which yields the number of degree of freedom, can be computed as the
inverse of �(�), i.e. d(�) = 1/�(�).

Robust estimates of d require high frequency, spatially well resolved data, cov-
ering a sufficiently long period so that recurrences can be captured. We chose
SSHa (sea surface height anomalies) as a representative field for the large-scale
mesoscale circulation in the Gulf of Mexico and adopted the GCOOS (Gulf of
Mexico Coastal Ocean Observing System) SSHa dataset, in which observations
from four altimetry satellites are merged into daily gridded maps following Leben
et al. (2002). GCOOS SSHa data have a spatial resolution of 0.25 o × 0.25o

and we consider the available period January 2004 - December 2019. To date,
satellite observations are the best available long-term oceanographic data avail-
able in the GoM, despite their limited spatial and temporal resolution. The
geostrophic currents derived from GCOOS have been shown to be somewhat
more accurate than those from data assimilative models to hindcast drifter tra-
jectories observed in the eastern Gulf of Mexico during spring and summer 2010
(Liu et al., 2014). Here the GCOOS dataset is compared to the SSHa field from
the HYCOM-NCODA reanalysis for the Gulf of Mexico available with 3-hourly
frequency on a 0.04o × 0.04o horizontal resolution grid. The reanalysis is pro-
duced by the Naval Oceanographic Office that provides also a real-time, widely
used forecast for the basin. The reanalysis system assimilates satellite altimeter
and SST observations as well as all available in-situ temperature and salinity
profiles using the Navy Coupled Ocean Data Assimilation (NCODA) system
(Cummings and Smedstad, 2013). Following repeated upgrades in the forecast-
ing system, only limited periods have been run for any given version of the
HYCOM-NCODA reanalysis. We consider one of the longest experiments avail-
able at the resolution mentioned, GOMu0.04/Exp50.1, covering the GCOOS
data range until 12/31/2012. The ocean model is forced by fields from the Na-
tional Centers for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR, Saha et al., 2010), and the boundary conditions are from the
global HYCOM reanalysis. Additionally, we consider the GOMl0.04/expt_31.0
and the GOMl0.04/expt_32.5 analysis or hindcast, available respectively from
April 2009 to July 2014 and from April 2014 to February 2019 at the same hori-
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zontal resolution of the reanalysis to extend GOMu0.04/Exp50.1 from January
2013 (GOMl0.04/expt_32.5 is used over the common period April-June 2014).
The analysis is run in real time, assimilates SST and profiles using FGAT (first
guess at appropriate time) and is forced by atmospheric fields from the Center
for Ocean-Atmospheric Prediction Studies (COAPS), using different and better
resolved wind and heat forcing compared to the reanalysis. In this case HYCOM
is used to perform one day of analysis using all observations received since the
previous analysis. The analysis data are made available within two days after
the integration.

Qualitative assessments of current products derived from altimetry data and
assimilative numerical models, were performed in the eastern Gulf of Mexico
-the region of interest in our work- using satellite-tracked drifter trajectory ob-
servations (Liu et al., 2014), as mentioned. Altimetry-derived products (SSH
and geostrophic currents) have been shown to be accurate as - and at times
more than - data-assimilative models on time-scales relevant in this work in few
analyses of the LC patterns (Alvera-Azcárate et al., 2009; Liu et al., 2011; 2016;
Weisberg and Liu, 2017). The GCOOS SSH product is obtained by applying
objective mapping to along-track satellite altimetry, then gridding the outcome
on a 0.25 o × 0.25o latitude-longitude grid with daily sampling. As a result, the
effective spatiotemporal resolution of the gridded product is lower than its nom-
inal one (see e.g. Ballarotta et al., 2019 for a general discussion of this problem)
and of HYCOM. Given the size of the mesoscale structures in the GoM, and
the fact that the attractor describes the larger, dominant dynamics, the spatial
resolution remains sufficient to resolve the attractor’s dimension. In terms of
temporal resolution, on the other hand, the orbital characteristics and repeat
cycles of altimeters, that in the GoM vary between 10 and 35 days depending on
the satellite, may suppress temporal variations up to ~ 10-14 days (Ballarotta
et al., 2019). To account for it, we low-passed GCOOS and Hycom data using
Butterworth filter with a 14-days cutoff frequency.

3 Results

A key characteristic in the evolution of the LC is its penetration into the north-
ern Gulf of Mexico and the apparent stability in its extended configuration
lasting up to several months, which is seldom captured by forecasting models
(NASEM, 2018). Figure 1 shows an example of this state, dating to July 2011.
In the reanalysis the LC appears closer to separating an eddy than in the ob-
servations despite the assimilation of sea surface height data. The domain used
in this investigation is also indicated in Figure 1. We separately considered a
domain to the west of it with identical size, where the Rings are the most promi-
nent mesoscale pattern. A number of degrees of freedom larger than that for the
LC is expected to describe the Rings’ trajectory across the Gulf, being eddiesless
recurrent and more chaotic, and this is verified in the Suppl. Information (SI).
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Figure 1. a) Domain considered in our analysis indicated by the black box with
the mean 0.2 m sea surface height anomaly contour averaged over the period
of 01/2004 to 12/2012 normalized to have zero-mean. Color shading represents
bathymetry, GCOOS is indicated in black and HYCOM in red. The analysis
over the western domain (dashed black box) is presented in the SI. b) and c)
SSHa normalized to have zero mean and averaged over the month of July 2011
in GCOOS and HYCOM; Units: m.

Figure 2 visualizes the LC attractor as a 3-dimensional phase space projection of
the first three principal components, PC1, PC2 and PC3 over the sixteen years
considered in GCOOS and Hycom. The low-dimensional projection highlights
qualitatively different dynamics among datasets, with somewhat straighter tra-
jectories in the altimeter dataset and a rotation difference of about 30o - 40o.
The first principal components are well correlated, with a Pearson coefficient
of 0.87, but the correlation decreases to 0.59 for PC2 and 0.57 for PC3. The
PCs explain respectively 23%, 21% and 15% of the variance in GCOOS and
similarly 25%, 21% and 13% in Hycom. The correlations and the variance ex-
plained do not depend on the filtering and we verified that analogous values are
found using daily unfiltered data or 10-days low-pass filtered data. High values
of PC2 correspond to LC shedding events or shedding and re-attaching events,
which tend to be slightly overestimated by Hycom compared to GCOOS. This
can be seen in the video of the time evolution of PC2 and SSHa available in the
Suppl. Information; large differences in the two datasets are found, for example,
around July 14th, 2005, October 25th, 2007, July 2011, September – October
2014.

The instantaneous dimension time-series for the two datasets are shown in Fig-
ure 3, together with their probability density function and a zoom of the attrac-
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tor manifolds over 2009-2016 colored by their respective d values. This shorter
period covers the Deepwater Horizon (DHW) disaster, when despite many in-
situ observations being collected most forecast models predicted the spinoff of
a Ring in spring, which did not occur until well into the summer, and a pro-
longed time between the second half of 2014 and spring of 2015 during which
the LC was in an extended state but stable, and its forecast was poor. Also in
this occasion, model forecasts continued to predict shedding events, while the
LC remained in an extended state most of the time. In both cases the PC1
evolution is captured by Hycom, but PC2 differs significantly among datasets.

Several features further emerge from Figure 3. First, the average dimension D
of the LC is around 9.5 in both datasets, or in other words, less than 10 DoF
are on average sufficient to describe its dynamics. Its distribution is overall well
captured by Hycom even if underestimated in its right tail (it is worth noting
that in the western domain Hycom underestimates more significantly GCOOS
d(�), as shown in the SI). Twenty or more DoF, however, are needed whenever the
LC transitions from an elongated to a retracted state and immediately following
Ring shedding events (see the video in the SI). This analysis indicates that low-
dimensional models cannot capture the complexity of the LC transitions and the
shedding of the Rings. We verified that the averaged dimension is insensitive to
the low-pass filtering.
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Figure 2. LC attractor shown as a 3-dimensional phase space projection of the
first three principal components in (a) GCOOS and (b) Hycom. (c) PC1, (d)
PC2 and (e) PC3 time series for the two datasets.

The correlation coefficient between d time-series in GCOOS and Hycom is only
0.35. Large discrepancies can point to forecasting issues. For example, in spring
and summer of 2010, during the DWH spill, the LC was in an extended state
in April and retreated at the end of the month, until May. An anticyclonic
eddy began forming towards the end of May 2010, but the LC remained fairly
to the south (Liu et al., 2011), contributing with its state to maintaining the
surface oil sleek in the northeastern Gulf and away from Florida. Forecasting
was problematic, and an overestimation of the instantaneous dimension in May
is apparent in the reanalysis (Figure 3a).
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Figure 3. (a) Daily time evolution of d(�) based on low-pass filtered data.
Horizontal dotted lines indicate the 2nd and 98th percentiles for GCOOS (black)
and Hycom (red) below and above which the LC state is presented in Figure
4. (b) Probability density functions (PDFs) of d(�) in GCOOS and Hycom. (c)
and (d) Attractors colored by d values over the 2009-2016 period in GCOOS
and Hycom, respectively.

It is worth remarking that the dynamics described by the attractor with dimen-
sion D is that of the large mesoscale features and is essentially unaffected by
small scale circulations. As such, the evolution of d in Hycom is nearly identi-
cal if the model output is upscaled to the (spatial) resolution of GCOOS. This
has been verified by spatially interpolating or downsampling Hycom data to
GCOOS resolution or by applying a six-by-six grid point low-pass filter to Hy-
com that acts to remove information on dynamical processes at smaller scales
(not shown).

Finally, Figure 4 exemplifies typical configurations that require far below average
(< 2nd percentile) and above average (> 98th percentile) degrees of freedom for
their description according to Figure 3. Retracted LC configurations (Figure
4a-b) are responsible for the minima. Noticeably two recurrent quasi-stable
states can be identified, with the LC extending to ~ 25.5oN or just above 26oN.
These two states are closer in GCOOS and better separated in Hycom. For the
relative maxima in d, on the other hand, the LC is found most frequently in
its extended stage immediately before and after a LCE detachment, and more
recurrent or preferred LC trajectories can be identified in GCOOS compared to

9



Hycom.

Figure 4. GCOOS and Hycom SSHa patterns normalized to zero-mean for
episodes of low d(�) (below 2nd percentile, a and c) and large d(�) (above 98th

percentile, c and d). Green contours indicate the 0.2 m contour in the mean
SSHa field. Thin gray contours indicate the 0.2 m SSHa contour of each event
in the two groups; d(�) average values for each case are indicated in the legends.

4 Discussion and Conclusions

We characterized the Loop Current attractor via a novel dynamical system met-
ric and compared it in altimeter-derived SSH data and in HYCOM products over
16 years. The instantaneous dimension d is linked to predictability, with states
characterized by low d values being more predictable and vice versa (Faranda et
al., 2017). The LC has a relatively low instantaneous dimension and less than
10 DoF are sufficient to describe the average dimension of its attractor, with
a few episodes that deviate strongly, whenever a Ring is formed and detaches
from the current. Our comparison supports the notion that the LC phase-space
trajectory is more stable in GCOOS than in simulated data-assimilative prod-
ucts given the characteristics of the attractor trajectories. This is in agreement
with recent theoretical results (Sheremet et al., 2021) and with the widespread
conjecture that forecast skills could be improved in forecast models (NASEM,
2018).

The simultaneous evaluation of d and of the first three principal components on
which the n-dimensional attractor manifold has been projected, allows us to dis-
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tinguish between extended LC events that last several months and those that
result in the shedding of a Ring, and can inform operational ocean forecasts.
It is conventional wisdom that forecast models and ocean models in general
tend to overestimate the rate of formation of Rings in the Gulf of Mexico, with
poignant examples in spring 2010 and in fall 2014 into spring 2015 (see NASEM
2018 for an in-depth discussion of the limitations in ocean forecasts for the LC
system). Among the causes for the discrepancy, a lack of mesoscale air–sea in-
teraction with the atmosphere in ocean-only model runs could concentrate too
much energy in the mesoscale structures and increase the instability potential
of the LC, similarly to what was found for western boundary currents (Ma et
al., 2016; Renault et al., 2016). Alternatively, current ocean models may be
unable to correctly represent processes inherently related to the stability prop-
erties of the attractor, as for example diffusive processes, and may not capture
properly the steady states of the system (Pichevin and Nof, 1997; Kuehl and
Sheremet, 2014). This last possibility has been recently suggested by Sheremet
et al. (2021).

In summary, our work introduces to the ocean community a tool for quanti-
fying model biases that opens new pathways for improving forecast skill. For
example, short-term forecasts improvements could be achieved by coupling ex-
isting data-assimilative models with machine-learning data-driven techniques to
constrain the LC spatiotemporal dynamics to the observed attractor dimension-
ality. Alternatively, for forecasts on times longer than 2 - 3 weeks manifold
learning methodologies could prove useful. A growing subfield of machine learn-
ing, manifold learning builds upon the assumption that observed data lie on a
low-dimensional manifold embedded in a higher-dimensional space: in the LC
case nearly 60% of the variance is captured by the first 3 principal components
and d is usually less than 20. The adoption of nonlinear algorithms instead of
linear PC analysis for dimensional reduction may further improve the amount of
variance captured by the first few components (Falasca and Bracco, 2021). Pre-
dicting the evolution of these few components could prove easier than forecasting
the evolution of the physical system. Furthermore, a simplified but physically-
based model coupled with manifold learning could facilitate the prediction of
specific events, such as the shedding of a Ring or an enduring extended state.

To conclude, the above suggested strategies for improving forecast and simu-
lations of the Loop Current behavior, may not extend to a generic ocean sys-
tem, as they build upon the concept of recurrence (Lucarini et al., 2016). In
the Supplementary Information we show that forecasting the movement of the
Rings or large eddies in general poses a greater challenge, with d being larger,
the disagreement among principal components in GCOOS and Hycom much
higher, and most importantly the variance explained by the first three PCs
small. The LC has been shown to behave as a nonlinear, dampened oscillator
(Lugo-Fernández, 2007), while eddies are intrinsically chaotic.
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All datasets analyzed in this work are publicly available. The GCOOS seas
surface height data can be downloaded at https://geo.gcoos.org/ssh/ (last
access: 08/17/2021). The HYCOM sea surface height data can be accessed
through the https://www.hycom.org/dataserver (https://www.hycom.org/da
ta/gomu0pt04/expt-50pt1, https://www.hycom.org/data/goml0pt04/expt-
31pt0, and https://www.hycom.org/data/goml0pt04/expt-32pt5) (last access:
08/17/2021).

The python codes for the metrics applied can be found at https://github.c
om/yrobink/CDSK/tree/master/python/CDSK and will be deposited in a
permanent archive such as Zenodo upon revision/acceptance.
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