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Abstract

The short-term statistics of wave conditions in coastal waters around the UK have been investigated using over 40,000 half-hour

long sea state records with significant wave height greater than 3 m. The extensive data set facilitates an assessment of various

wave height and period distribution models in shallow and intermediate waters. The results reveal that the relative wave height

Hs/D (where Hs is the significant wave height and D the water depth) can serve as a key indicator in choosing the distribution

with least error in a given sea state. The Naess model is found to be the most accurate in describing the tail of the wave

height distribution in a sea state for low relative wave heights (Hs/D < 0.2), and the depth-dependent van Vledder model

for high relative heights (Hs/D > 0.4). In between these sea states, a transition in the performance of the deep-water and

the depth-dependent models is visible. When details of the spectrum are not available, the Weibull distribution is the most

accurate amongst applicable models, in spite of considerable variability in its parameter values. While the spectral bandwidth

appears to have minimal impact on the distribution of wave heights in a sea state, it does appear to influence the distribution

of wave periods. Wave period relationships based on measurements are found to deviate from empirical relationships proposed,

for example, by the US Army Coastal Engineering Manual. Improved formulas that incorporate the spectral width are therefore

proposed.
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Abstract 

The short-term statistics of wave conditions in coastal waters around the UK have been 

investigated using over 40,000 half-hour long sea state records with significant wave height greater 

than 3 m. The extensive data set facilitates an assessment of various wave height and period 

distribution models in shallow and intermediate waters. The results reveal that the relative wave 

height Hs/D (where Hs is the significant wave height and D the water depth) can serve as a key 

indicator in choosing the distribution with least error in a given sea state. The Naess model is found 

to be the most accurate in describing the tail of the wave height distribution in a sea state for low 

relative wave heights (Hs/D < 0.2), and the depth-dependent van Vledder model for high relative 

heights (Hs/D > 0.4). In between these sea states, a transition in the performance of the deep-water 

and the depth-dependent models is visible. When details of the spectrum are not available, the 

Weibull distribution is the most accurate amongst applicable models, in spite of considerable 

variability in its parameter values. While the spectral bandwidth appears to have minimal impact 

on the distribution of wave heights in a sea state, it does appear to influence the distribution of 

wave periods. Wave period relationships based on measurements are found to deviate from 

empirical relationships proposed, for example, by the US Army Coastal Engineering Manual. 

Improved formulas that incorporate the spectral width are therefore proposed. 

 

PLAIN LANGUAGE SUMMARY The distribution of wave heights and periods is usually 

obtained by a number of theoretical models. The validity of these models is examined using a large 

data set off the coast of the UK for sea states indicated by significant wave heights greater than 3 

m. A large data set, exceeding 40,000 sea states, enables a comprehensive assessment of these 

models, which is performed, for the first time, as a function of the relevant sea-state characteristics.  

The wave height distribution models with the lowest errors are identified. For wave periods, 

commonly used empirical formulas are shown to deviate from observations and improvements are 

recommended.  
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1. Introduction 

 

Certain “characteristic” ocean wave heights (i.e. averages relating to various percentiles in a time 

series) are frequently employed in the planning of various coastal and maritime operations. In 

many cases, one relies on wave hindcast/forecast models or in situ measurements (e.g. Panchang 

and Li 2006; Panchang et al. 2013; Singhal et al. 2010) for obtaining the needed wave information. 

Although these sources are based on spectral calculations or time series of water surface elevations, 

only summary information, consisting typically of the mean or peak wave period, the mean 

direction, and the significant wave height (Hs, usually defined as 4√𝑚0 where  𝑚𝑛= nth spectral 

moment), is generally available. However, this information may not be sufficient since other 

quantities such as H1/10, H1/100 etc. are frequently needed for practical applications, e.g. engineers 

require H1/10 for the design of breakwaters using Hudson’s formula. (Here, H1/n represents the 

average of highest n% of the wave heights in a typical, say 20-minute, sea-state). The different 

percentile averages may be estimated from Hs using several available distributions. These include 

the well-known Rayleigh distribution (Longuet Higgins, 1952) and modifications to it, as well as 

a number of others, for instance, those developed by Forristall (1978); Naess (1985); Boccotti 

(1989); Tayfun (1990); Battjes and Groenendijk (2000); Mendez et al. (2004); and Wu et al. (2016).  

 

Several authors have examined the reliability of some of these distributions by comparing their 

results to field data. However, the field observations used were often fairly limited both in terms 

of the data duration as well as in the number of locations examined. For example, Cartwright and 

Longuet-Higgins (1956) examined the validity of Rayleigh model using only two wave records 

measured by a shipborne instrument. Earle (1975) analyzed ten hours of wave data during 

Hurricane Camille in the Gulf of Mexico; Forristall (1978), Nolte and Hsu (1979), and Longuet-

Higgins (1980) examined additional wave records for this hurricane.  Tayfun and Fedele (2007) 

reviewed the performance of three distributions using two datasets, again quite short in length (viz. 

eight and nine hours in duration), from one location in the North Sea. Other efforts based on a 

specific storm event or relatively short measurement programs include Chakrabarti and Cooley 

(1977), Dattatri et al. (1979), Larsen (1981), Amrutha and Kumar (2015), and Nayak and Panchang 

(2016). Relative to these efforts, Vinje (1989) used a significantly larger data set, viz. eighty 

months of data at one location in the North Sea, to assess the performance of the Raleigh, Longuet 

Higgins (1980), and Naess (1985) models.   
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With the passage of time and improvements in technology, long wave records at multiple locations 

have become more readily available, enabling a comprehensive inter-comparison of the 

distributions. Attempts in this direction include the work of Casas-Prat and Holthuijsen (2010), 

who utilized data (varying between three and twelve years in length) from four buoys in water 

depths of 45-74 m off the coast of Spain. They report that some “Raleigh-like” models and the 

Forristall (1978) models were the most accurate. Kvingedal et al. (2018) used 7.6 years of data 

from one location in the North Sea (depth = 190 m) and compared the Raleigh, Naess and Forristall 

distributions. They found the Rayleigh distribution to be a “conservative upper bound” and the 

Forristall distribution to have high accuracy in most sea-states. For very severe sea states (Hs > 9.5 

m), though, they found all three distributions to be deficient. At ten locations shallower than those 

in the aforementioned two studies, Karmpadakis et al. (2020) used about six years of 

measurements in the North Sea (water depths mostly varying between 23.3 m and 45 m). They 

found the Boccotti (1989) model to be the most reliable for describing the observed wave height 

statistics for the case of low relative wave heights (defined as Hs/D, where D = water depth), and 

the depth-dependent models to be optimal for larger relative wave heights. They also found model 

performance to be influenced by the sea state (i.e., Hs/D, the relative depth KpD (where Kp = wave 

number corresponding to the peak period), the spectral width, and the steepness).   

 

The present paper is a continuation of these efforts, with an emphasis on coastal regions. We use 

approximately five to eight years of data from 34 locations around the entire UK coast (Fig. 1). 

The majority of the locations have depths of around 10 m, which is shallower than those in the 

previous three studies; and, since 70% of the locations are less than 5 km from the coast and nearly 

90% less than 8 km, the present effort may be viewed as an investigation of the distributions in the 

“coastal” regime. Finally, since studies involving wave period distributions are relatively few, we 

examine the relationships between the maximum period Tmax, mean period (𝑇̅ ), and the average 

of the highest one-third (T1/3) using a database of approximately 41,120 sea states. 

 

The major questions that motivate the current study relate to the extent to which different 

theoretical models predict the observed wave height and period distributions in intermediate and 

shallow waters. In particular, based on recent research noted above, we examine the performance 

of various distributions relative to the sea state characteristics.  Their performance must also be 

considered in the context of practicality (that can influence model selection). To be specific, some 
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of the distributions require only bulk parameters such as the significant wave height, while others 

require more detailed spectral information. The paper is organized as follows. Section 2 provides 

the details of the data used along with the quality control procedures and identifies key sea state 

characteristics that enable subdividing the data into appropriate groups. The different theoretical 

distributions considered here are described in Section 3, and Section 4 provides the results of the 

wave height and period comparisons. The paper ends with concluding remarks in Section 5. 

 

2. Data  

The wave data used in this study are obtained from the Channel Coastal Observatory (CCO) in the 

UK, which operates a network of coastal measurement programs. Santos et al. (2017) and Dhoop 

and Mason (2018) have used these data for studying spatial variations in relation to meteorological 

forcing and to estimate extreme wave height climatology. Dhoop and Mason (2018) also provide 

a detailed description of the measurements; therefore, here we only describe the salient features.  

The wave data, collected using Datawell wave rider buoys deployed at about 40 locations (Fig. 1) 

in 30-minute segments, are available on the CCO website (https://coastalmonitoring.org).   

 

The Datawell MKIII wave rider buoys use vertical accelerometers mounted on a gravity-sensitive 

platform to measure heave. The analog output from the sensor is subjected to a low pass filter with 

a cut off frequency of 1.5 Hz and then sampled at 3.84 Hz; it is then subjected to a high pass filter 

with a cutoff of 30 seconds and converted to a sample rate of 1.28 Hz. The 1.28 Hz water surface 

elevation data as well as the computed spectra are provided on the website. Some details regarding 

the wave buoys are summarized in Table 1. For most locations, the 1.28Hz water surface elevation 

data are available from 2014. However, for some locations, the available data covers a shorter span.   

 

Relating to these measurements, two issues must be noted. First, it is generally recognized that 

measurements obtained from wave rider buoys tend to “linearize” the wave heights owing to their 

hydrodynamic characteristics, i.e. they exhibit a tendency to “flatten” the peaks and/or to be 

dragged through the peaks; see for example, Casas Pratt and Holthuijsen 2010; Kvingedal et al. 

2018. However, as noted by these researchers and by Tayfun and Fedele (2007), nonlinear effects 

appear to influence wave crest measurements; their effect on wave height measurements is 

minimal.  Second, the sampling interval has an impact on the accuracy with which the wave heights 

and crests are measured (Zheng et al. 2006; Tayfun 1983) and some recent efforts are based on 
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high sampling rates, of the order of 4 Hz or better (e.g. Kvingedal et al. 2018; Karmpadakis et al. 

2020). In the present study, the raw data were obtained at 3.84 Hz, however the spectra and time 

series were subsequently based on a 1.28 Hz resampling. We presume this is due to the logistics 

of maintaining a very large network as part of an ongoing program. To address any possible 

limitations that may arise, we have followed the recommendations of Tayfun (1983) and modified 

the time-series-based estimates of H1/n in the following manner: 

𝐻′1/𝑛−𝐻1/𝑛 

𝐻1/𝑛
= −

𝜋2

6
 (

Δ

𝑇̅
)

2
(1)  

where H’1/n is based on the measured data and H1/n is the true value. Δ is the sampling period and 

mean period, 𝑇̅, is estimated as Tm01 =m0/m1.  

 

From these data, we consider only the sea states with significant wave height Hs ≥ 3m, since we 

are interested in assessing how well the distributions predict sea states that are of practical interest 

to coastal or offshore applications. This limit aligns roughly with the lower range of wave heights 

specified for a Beaufort 6 sea state, where large waves start forming. A few locations (e.g.  

Felixstowe and Minehead) did not have any sea state that exceeded this criterion during the period 

considered and are hence not included in Table 1. At most of the other locations, during April–

October, less than 5% of the sea states recorded met this criterion. On the other hand, during 

December–February, Wave Hub experiences such sea states more than 50% of the time. In general, 

the largest Hs values were of the order of 10 m at Wavehub and 7-8 m at six locations (Chesil, 

Westbay, Bideford Bay, Porthleven, Looe Bay, and Perranporth) lying around the southwest of 

UK. Twelve other locations had largest Hs values in the range of 5-6.7 m.  The largest mean period 

was approximately 13.5 seconds, and the vast majority of the spectra showed one dominant peak. 
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Fig. 1. Locations of Datawell wave rider buoys around the UK (courtesy: Channel Coastal Observatory). 
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Table 1 Locations of Wave Buoys  

Location Depth 

(m) 

Period of data 

considered 

No. of sea states with 

Hs > 3 m (after QC) 

Shortest distance 

from shore (km) 

Bideford Bay 11 2014/ 01 - 2020/ 07 4117 3.24 

Blakeney Overfalls 23 2017/ 02 - 2020/ 12 34 10.91 

Boscombe 10.4 2014/ 01 - 2020/ 12 76 0.91 

Bracklesham Bay 10.4 2014/ 01 - 2020/ 12 325 2.34 

Chesil 12 2014/ 01 - 2020/ 11 2249 0.39 

Cleveleys 10 2014/ 01 - 2020/ 12 824 8.73 

Dawlish 11 2014/ 01 - 2020/ 12 110 2.35 

Folkestone 12.7 2014/ 01 - 2020/ 12 15 0.98 

Goodwin Sands 10 2014/ 01 - 2020/ 12 4 5.77 

Gwynt Y Môr 10 2016/ 04 - 2020/ 11 346 16.28 

Happisburgh 10 2017/ 03 - 2020/ 12 58 0.82 

Hayling Island 10 2014/ 01 - 2020/ 12 162 5.03 

Hornsea 12 2014/ 01 - 2020/ 11 428 5.84 

Looe Bay 10 2014/ 01 - 2020/ 11 1076 2.65 

Lowestoft 20 2017/ 06 - 2020/ 12 47 3.78 

Milford 10 2014/ 01 - 2020/ 12 29 1.48 

Morecambe Bay 10 2014/ 01 - 2020/ 12 78 5.95 

Newbiggin 18 2014/ 01 - 2020/ 11 1242 1.21 

Penzance 10 2014/ 01 - 2020/ 11 336 1.23 

Perranporth 14 2014/ 01 - 2020/ 11 8717 1.10 

Pevensey Bay 9.8 2014/ 01 - 2020/ 12 292 4.98 

Porthleven 15 2014/ 01 - 2020/ 11 2449 1.14 

Rhyl Flats 7.2 2016/ 05 - 2018/ 10 17 7.93 

Rustington 9.9 2014/ 01 - 2020/ 11 546 7.34 

Sandown Bay 10.7 2014/ 01 - 2020/ 12 59 1.24 

Scarborough 19 2014/ 01 - 2020/ 11 2201 4.33 

Seaford 11 2014/ 01 - 2020/ 11 261 1.26 

St Mary's Sound 53 2014/ 05 - 2020/ 11 2630 0.95 

Start Bay 10 2014/ 01 - 2020/ 11 373 1.59 

Tor Bay 11 2014/ 01 - 2020/ 12 94 2.33 

Wave Hub 50 2015/ 03 - 2018/ 05 8485 16.37 

West Bay 10 2014/ 01 - 2020/ 11 1421 1.22 

Weymouth 10.6 2014/ 01 - 2020/ 12 20 1.60 

Whitby 17 2014/ 01 - 2020/ 11 2031 1.52 
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2.1 Quality control 

CCO conducts quality control (QC) tests monthly and annually and publishes an annual dataset 

for each location in addition to the real-time 1.28Hz data. Sea states that fail the QC tests, which 

consist of “out of range” and “jump” checks for Hs, peak and mean wave periods, direction, spread, 

etc. are flagged. Additional details may be found in CCO’s QC manual (Mason and Dhoop, 2017). 

The annual data also includes flags for periods with missing data. We discarded all sea states that 

were flagged by CCO. However, even in the remainder, we found a number of suspicious 

measurements and hence applied additional checks on the data. For example, the 1.28 Hz data 

were found to contain some abnormally large wave heights which are artefacts of the buoy riding 

down the crest of large breaking waves, or of waves breaking over the buoy and inflicting a “shock” 

on the accelerometers (Dhoop and Mason, 2018). Following Casas-Prat and Holthuijsen (2010) 

and Karmpadakis et al. (2020), the flags listed below were adopted and applied to sea states that 

passed CCO’s QC tests. Among these, flags 2, 3 and 6 address the issue discussed above.  

Flag 1: Five or more consecutive data points of equal value in the wave time series 

Flag 2: Vertical acceleration between two consecutive data points in the wave time series greater 

than 0.5g 

Flag 3: Difference between the elevation of two consecutive data points in the time series greater 

than 2.83 Hs 

Flag 4: Any wave period longer than 25 seconds 

Flag 5: Energy in the spectrum below 0.04 Hz greater than 5% of the total energy 

Flag 6: Crest/trough heights greater than five times the standard deviation 

Flag 7: The ratio Hmax/D > 0.8 

Flag 8: The ratio Hmax/H1/3 > 2.5 

 

These flags are applied in the above order. The number of sea states removed by flags1, 2, and 6 

were the largest, while the contribution of flags 7 and 8 is very small. Overall, there are 41,120 sea 

states that passed; only 3.08 % of the data are removed by our additional QC checks. 

 

2.2 Classification of Sea States 

Four parameters relating to the selected sea states were examined:  viz. steepness, spectral width, 

Hs/D, and KpD. For all the sea states, the steepness values, defined as Hs/LP (LP = 2P), were 

low, in the range of 0.007 to 0.066, and not particularly significant. Relating to spectral width, 

however, Karmpadakis et al. (2020) have indicated that this parameter may influence the 
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distribution of wave heights in a sea-state. More precisely, they observe that the probability of 

larger wave heights decreases with increasing spectral width. They base this observation on an 

examination of three sea states corresponding to an Ursell number of 0.005 (considered to be 

representative of moderate sea states) from one location. We examined this feature using the 

current data set. We use the following definitions of Ursell number (Ur) and spectral bandwidth 

() :  

 𝑈𝑟 =
𝐻𝑠

𝑘1
2𝑑3

 𝑎𝑛𝑑 𝜈 = √
𝑚0𝑚2

𝑚1
2 − 1 (2) 

where k1 = wave number based on period Tm01. 

 

A total of 1215 sea states with 𝑈𝑟 = 0.005 were identified; these corresponded to two locations, 

viz. Wave Hub and St. Mary’s Sound. The spectral widths ranged from 0.33-0.62. The exceedance 

probabilities were calculated for a sample of five sea states (out of 848 available ones at Wave 

Hub and 367 at St. Mary’s Sound), for different spectral widths. These results, shown in Fig. 2, do 

not reveal any patterns and suggest that the spectral width does not meaningfully influence the 

distribution of higher wave heights. To expand the investigation to a larger dataset (i.e. all 1215 

sea states), we investigated the values of H1/100 and H1/300 obtained from the time series. They, too, 

show little dependence on the spectral width, as seen in Fig. 3. 

 

 

Fig. 2 Normalized wave height distribution (for Ur=0.005) at St. Mary's Sound (left) and Wave 

Hub (right). Colors indicate spectral bandwidth. 
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Turning to the other two parameters, Klopman and Stive (1989) interpret Hs/D as the ratio of total 

local energy density over depth and note, based on measurements, that this is a dominant parameter 

affecting the distribution of wave heights; it is also a measure of the breaking wave intensity (e.g. 

Battjes and Janssen 1979). The 41,120 sea states had Hs/D values ranging from 0.05 to 0.63. This 

would suggest the possibility of breaking being associated with the larger waves. A large portion  

 

Fig. 3 Variation of normalized wave heights with spectral width for Ur=0.005; H1/100 (left) and 

H1/300 (right). 

 

 (63%) have Hs/D values between 0.2 and 0.4, while only 24% have Hs/D values below 0.1. This 

of course is to be expected since we consider only the sea states with Hs ≥ 3m. We have excluded 

the lower wave heights, which may be large in number but perhaps of less practical interest, in 

order to prevent these relatively mild conditions from influencing the statistics relating to model 

performance. Lastly, the relative depth, KpD, is commonly used for the classification of deep, 

intermediate, and shallow water waves. The KpD range corresponding to the data used here is 0.26 

to 5.82. Very few sea states (0.07%) are in shallow water; most of the sea states (97.8%) are in 

intermediate water depth, and 2.1% are in deep water. A visual description of the data distribution 

may be obtained from Fig. 4 and based on the pattern, the sea states were divided into six groups 

(Table 2) for purposes of assessing the wave height distribution formulas given in Section 3. While 

examining wave periods, though, it will be shown later (Section 4.2) that only the spectral width 

has some influence on the relationships between characteristic wave periods; hence the 

comparisons were made without subdivision of the data. 
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Table 2 Grouping of sea states  

Groups Hs/D KpD 

A Hs/D ≤ 0.2 
KpD ≤ 2 

KpD > 2 

B 0.2 < Hs/D ≤ 0.4 

KpD ≤ 0.5 

0.5 < KpD ≤ 1 

KpD >1 

C Hs/D > 0.4 KpD < 1 

 

 

 

  

 

Fig. 4 Sea states that passed QC; colors indicating depth. Numbers indicate number of sea states 

in the different groups contained within dotted lines. 
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3. Short-term statistical distributions 

3.1 Wave heights 

Wave height distribution models examined in recent studies (e.g. Casas-Prat and Holthuijsen 2010, 

Karmpadakis et al. 2020) can be grouped in to two broad categories, namely deep-water and depth-

dependent models. Some depth-dependent models also incorporate the local bottom slope. The 

exceedance probabilities associated with the seven distribution models considered here are 

summarized below. Of these, the first five may be regarded as deep-water distributions, and the 

last two as depth-dependent distributions. 

 

a) Rayleigh distribution (Longuet-Higgins, 1952) 

Based on the assumptions of a Gaussian ocean surface and a narrow spectrum, Longuet-Higgins 

(1952) proposed the Rayleigh distribution for wave heights: 

 𝑄(𝐻) = exp (− (
𝐻

𝑎
 )

2

 ) (3) 

where H is the wave height and a = the parameter of the distribution. Maximum likelihood 

estimation shows that a = Hrms, the rms wave height. However, the true Hrms may not be known a 

priori; for instance, when the time series is not available but only the spectral information is (e.g. 

from a model output). At such times, an estimate of Hrms is obtained from the spectrum as Hrms = 

√8𝑚0  (following Rice (1944, 1945) and assuming a narrow band Guassian process). A 

distribution using a = √8𝑚0  as the parameter will be referred to as the ‘spectral Rayleigh’ 

distribution in this paper. 

 

b) Forristal (1978) distribution 

Using Gulf of Mexico hurricane wave records, Forristall (1978) observed that the Raleigh model 

overpredicts the probabilities of the highest waves. He therefore proposed a two-parameter 

Weibull distribution which provided a better fit to the observed data: 

 𝑄(𝐻) = exp (−
1

𝛽
 (

𝐻

√𝑚0

)

𝛼

 ) (4) 

where 𝛼 = 2.126 and 𝛽 = 8.42 were estimated by calibrating the model against the hurricane data.  
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c) Longuet-Higgins (1980) distribution 

Longuet-Higgins (1980) showed that the Rayleigh distribution did in fact fit the Gulf of Mexico 

hurricane data as well as the two-parameter Weibull distribution if the true Hrms is used as the 

parameter a instead of √8𝑚0 as used by Forristal. He also suggested that the difference between 

the values of Hrms based on water surface elevation record and √8𝑚0 may arise from the ‘noise in 

the spectrum outside dominant peak’ and proposed using Hrms = 𝛼√8𝑚0 to account for the effects 

of finite spectral bandwidth for  those cases where it was necessary to evaluate the parameter a of 

the distribution from the spectrum (rather than directly as Hrms). The scale factor  is given by 𝛼 =

√1 − 0.734𝜈2  and the probability of exceedance can be written as 

 𝑄(𝐻) = exp (−
1

1 − 0.734𝜈2
(

𝐻

√8𝑚0

)

2

) (5) 

In the narrow-banded limit  =  and the distribution is identical to Rayleigh distribution. 

 

d) Naess (1985) distribution 

Naess (1985) derived a distribution for the crest to trough wave height in a narrow-band stationary 

Gaussian wave train using an approach different from that of Longuet-Higgins (1952). He 

considered both the crest and trough depth to be random variables with a certain correlation  (as 

opposed to assuming 𝐻 = 2𝜂𝑐𝑟𝑒𝑠𝑡). However, the resulting expression resembles the Rayleigh 

distribution with a = 𝛼√8𝑚0 as its parameter; but in this case, 𝛼 = √1/2(1 − 𝜌), where 𝜌 is the 

correlation between crest heights and trough depths. The autocorrelation of the wave time record 

may be estimated from the spectrum as (𝜏) = 𝑚0
−1∫ 𝑆(𝑓) cos(2𝜋𝑓𝜏) 𝑑𝑓 . While Naess (1985) 

observed that the precise choice of 𝜏 is not crucial, Tayfun and Feddele (2007) suggested taking 𝜏 

as the abscissa of the first minimum of the normalized autocorrelation function; this treatment is 

followed in the present study, and the probability of exceedance is given by 

𝑄(𝐻) = exp (−
2

1 − 𝜌(𝜏)
(

𝐻

√8𝑚0

)

2

) (6) 

In the narrow-banded limit, 𝜌(𝜏) = −1 and the distribution becomes identical to the Rayleigh 

distribution.  
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e) Boccotti (1989) distribution 

Using the terminology of Casas-Prat and Holthuijsen (2010), the three distributions developed by 

Boccotti (1989), Vinje (1989), and Tayfun (1990) constitute three “Raleigh-like” models which 

are intended to better predict the behavior of the larger characteristic wave heights. Casas-Prat and 

Holthuijsen (2010) found these models to perform equally well. Although Karmpadakis et al. 

(2020) did not consider the Vinje (1989) and Tayfun (1990) models, they found the Boccotti model 

to be the most accurate in some categories.  Based on these results, we have selected the Boccotti 

model as representative of this class of models. It, too, incorporates the effects of finite spectral 

bandwidth, and its functional form is given by: 

 𝑄(𝐻) =
1 + 𝜌′′(𝜏)

√2𝜌′′(𝜏)(1 − 𝜌(𝜏))

exp (−
2

1 − 𝜌(𝜏)
 (

𝐻

√8𝑚0

)

2

) (7)
 

where 𝜌′′(𝜏) =
𝜕2𝜌

𝜕𝑡2  and 𝜏 is the abscissa of the first minimum of the autocorrelation function.  

 

f) van Vledder (1991) distribution 

For shallow water, wave height distributions will be affected by depth limitations and van Vledder 

(1991) proposed a method to use a distribution originally developed by Glukhovskiy (1966) and 

later modified by Klopman and Stive (1989). The functional form of the resulting exceedance 

probability is given by: 

𝑄(𝐻) = 𝑒𝑥𝑝 (−𝐴 (
𝐻

𝐻𝑚
)

𝐾

) (8) 

𝐾 =
2

1−
𝐻𝑚

𝐷

 and 𝐴 = Γ (
1

𝐾
+ 1)

𝐾

 

Since the distribution is for wave heights normalized by mean wave height (Hm), the mean wave 

height must be computed from the available spectral information which is usually Hs. Hrms can be 

easily computed from Hs (Hrms = Hs/√2) and for the distribution given by (6), the following relation 

exists between Hrms and Hm 

𝐻𝑟𝑚𝑠

𝐻𝑚
=

√Γ(
2

𝐾
+1)  

Γ(
1

𝐾
+1)

(9)   

van Vledder (1991) proposed an iterative scheme to compute Hm as shown below 

 𝐾𝑖 =
2

1 −
𝐻𝑚

𝑖

𝐷

(10)
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𝐻𝑚
𝑖+1 = 𝐻𝑟𝑚𝑠

Γ (
1

𝐾𝑖 + 1)

√Γ (
2

𝐾𝑖 + 1)

 

For the first iteration (𝑖 = 1), 𝐻𝑚
1  is calculated from Hrms according to the Rayleigh distribution 

and the iteration continues till the two succeeding values of the mean wave height is less than a 

specified accuracy (van Vledder, 1991). 

 

g) Klopman (1996) distribution 

Based on the works of Klopman and Stive (1989) discussed above and using the experimental data 

of Stive (1985, 1986), Klopman (1996) proposed the following modified Glukhovskiy distribution 

where the wave heights are normalized by Hrms: 

 

𝑄(𝐻) = exp (−𝐴 (
𝐻

𝐻𝑟𝑚𝑠
)

𝐾

) (11) 

where 𝐾 =
2

1−
𝛽𝐻𝑟𝑚𝑠

𝑑

  and  𝐴 = (Γ (
2

𝐾
+ 1))

𝐾

2
  

and  =  was defined using the experimental data. This avoids the computation of the mean 

wave height as in the van Vledder (1991) distribution. 

 

It may be noted that some other shallow water distributions are also available. These include the 

two-part Weibull model of Battjes and Groenendijk (2000), the distribution of Mendez et al. (2004) 

based on wave energy propagation from deep water to shallow water, and the LoWish II 

distribution (Wu et al. 2016). These models require additional information (such as the seabed 

slope) which was not readily available for our study locations and were hence excluded from the 

present investigations. 

 

3.2 Wave periods 

The distribution of wave periods is narrower than that of wave heights in wind seas (Goda, 2000) 

and intrinsically difficult to determine (Rodríguez et al. 2004). Most of the models proposed for 

the distribution of wave periods were derived as the marginal distribution of the joint probability 

distribution of wave heights and periods.  Rodríguez et al. (2004) investigated the performace of 
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two prominent period distribution models, viz. those developed by Cavanie et al. (1976) and 

Longuet-Higgins (1983), in mixed sea states. Although these two models incorporate spectral 

width information, Rodríguez et al. (2004) observed that their predictions vary considerably from 

(simulated) data in many sea states. Further, they showed that the effect of the intermodal distance, 

not incorporated in these models, is significant. Given the inability of these theoretical models in 

predicting the wave period distribution accurately, employing empirical relations between 

characteristic wave periods in practice might be justified. Goda (2000) and the US Army Corps of 

Engineers’ Coastal Engineering Manual (2006) relate the characteristic wave heights Tmax and T1/3 

to the mean wave period as follows: 

𝑇𝑚𝑎𝑥 ≈ 𝑇1/3 ≈ 𝐶𝑇̅ (12) 

where the coefficient 𝐶 varies between 1.1 and 1.3 and  𝑇̅  is the mean wave period. We explore 

the suitability of (12) in Section 4.2. 

 

4. Results and Discussion 

4.1 Performance of the wave height distributions 

For each sea state, the characteristic wave heights H1/3, H1/10, H1/100, H1/300 are estimated employing 

the distribution models discussed in Section 3 and the spectral information for that sea state. The 

characteristic wave heights are also computed directly from the water surface elevation time record 

for that sea state. The % error in the estimation of the characteristic wave heights for different 

models for each sea state is then computed as 

 % 𝐸𝑟𝑟𝑜𝑟 (𝐻1/𝑛 ) =
𝐻1/𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐻1/𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐻1/𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 (13) 

where H1/n observed is computed from the time series data and adjusted using (1). H1/n predicted is the 

value predicted by the model. In estimating these, numerical integration was employed when 

analytical expressions were not available for H1/n. The Root Mean Square (RMS) value of the 

percentage errors for each model in the six groups is then used to evaluate the model performance 

in the estimation of characteristic wave heights. These are given in Table 31.  

 

 
1 Table 3 was also prepared using the unadjusted values of H1/n (not shown). For the most part, the differences in RMS 

errors were of the order of 1%.  Zheng et al. (2006) provided plots of wave height distributions for data based on 

different sampling rates. For the right side of the distributions, the differences in the curves are minimal. Since the 

H1/n values used here could be expected to correspond to the right side, the nominal difference in the RMS errors is 

consistent with the findings of Zheng et al. (2006).  
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The Rayleigh model with a = Hrms from the time series as the parameter is primarily included for 

reference, since one often does not have access to the time series data. (This is particularly true if 

an extreme wave analysis is performed using wave models to estimate, say, the 100-year Hs value).  

It is evident from Table 3 that this distribution consistently outperforms all other models relying 

on spectral information while predicting H1/3 and H1/10 ; however, this superiority relative to other 

models is lost while predicting the larger characteristic wave heights H1/100 and H1/300.  

 

Among the distributions that rely on spectral information, the Rayleigh model with a = √8𝑚0 as 

the parameter is widely used in practice since a may be estimated from Hs. As may be seen in 

Table 3, this approach underperforms all the other models investigated, for all categories. In fact, 

the RMS of the percentage error in estimation of H1/n increases with 𝑛 and is as large as ~25% in 

some cases. 

 

We now examine the performance of the other distributions in increasing order of Hs/D. First, we 

consider sea states with Hs/D < 0.2 (Group A) which are further divided into two groups based on 

KpD. Most of the sea states in this category are from St. Mary’s Sound and Wave Hub which, at D 

= 53 m and 50 m, are the deepest locations in this study. However, the majority of the sea states 

in this category represent intermediate water depths based on the KpD values. For these sea states 

regardless of the relative depth, the Longuet Higgins (1980), Forristal (1978), and Boccotti (1989) 

distributions perform almost equally well in estimating H1/3 with the RMS errors ranging from 

6.5%-7.2%. Naess (1985) and the above-mentioned models perform similarly for H1/10, with RMS 

errors ranging from 7.0%-7.8%. This conforms to the findings of Karmpadakis et al. (2020) who 

report nominal differences in the performance of these models while describing the bulk of the 

wave height distribution (i.e. the middle part of the distributions, represented here by H1/3 and H1/10) 

in comparable conditions. In estimating the larger wave heights (i.e. H1/100 and H1/300), the Naess 

(1985) model performs the best with an RMS error of around 9.3% and 12.1% respectively, 

whereas other deep-water models (except Forristal (1978), for KpD>2) have error values in the 

range of 9.8%-10.2% for H1/100 and 12.8%-13.6% for H1/300. It is also evident from Table 3 that 

the depth-dependent models consistently underperform the deep-water models, especially in the 

estimation of higher wave heights, for these sea states (i.e. with low relative wave heights). Overall, 

it can be seen that for Hs/D < 0.2, Forristal (1978) model appears to be performing the best for H1/3; 

for higher characteristic wave heights, the Naess (1985) model errors are slightly lower than the 



19 

 

others. Further, the results in Table 3 also suggest that KpD does not affect the performance of the 

models.  

 

We next consider sea states that fall within 0.2 < Hs/D < 0.4 (Group B), which are divided into 

three groups based on KpD values. These sea states are mainly from locations with water depths in 

the 9.8m -19m range. In the estimation of H1/3 and H1/10, the relative performance of the deep-

water models is similar to that in the case of Hs/D < 0.2, especially for the two groups with KpD 

>0.5. The RMS errors for the deep-water models are around 5.0%-6.5% for H1/3 (excluding Naess 

(1985)) and 5.4%-6.7% for H1/10. However, relative to Group A, the performance of the depth-

dependent models is better, and is of the same order as that of the deep-water models; for example, 

for H1/10, the RMS errors for the van Vledder (1991) model are 5.6% and 5.8% for the two KpD 

categories; these fall in the aforementioned range for the deep-water models. Further, in the 

estimation of higher characteristic wave heights, H1/100 and H1/300, Table 3 shows that for sea states 

with KpD >0.5 the depth-dependent van Vledder (1991) model has the lowest RMS error, equal to 

~7.7% (based on an average of the two categories) and 9.6% respectively. The deep-water models, 

show comparable errors for H1/100 (7.9-8.7%) and larger errors for H1/300 (10.2-12.2%). Thus, the 

0.2 < Hs/D < 0.4 zone appears to be a transition zone where the effect of the water depth seems to 

impact the wave height distribution. For the smaller characteristic wave heights, the performance 

of the depth-dependent van Vledder model improved (relative to group A) and was of the same 

order as the deep-water models; however for the larger wave heights, the improvement is more 

pronounced, and the model outperforms the deep-water models. This may be attributed to the 

effects of the water depth influencing the larger characteristic wave heights first (as demonstrated 

by Karmpadakis et al. 2020). 

 

In the case of Group C (i.e. Hs/D > 0.4), most of the sea states are from the shallowest locations 

with water depths of 7.2 -12.7m range. Since there are only 935 such sea states, they are not further 

divided based on relative depth; all the sea states in this zone fall in the 0.31 < KpD < 1 range. 

Traditionally H/D > 0.8 has been used as the breaking criterion for individual waves, and generally 

for Rayleigh distributed waves Hmax = 2 Hs. Hence for these sea states with Hs/D > 0.4, depth 

induced breaking seems probable, especially at higher wave heights. In estimating H1/3 and H1/10 

all models (excluding the first two Raleigh models) perform equally well with RMS errors in the 

range of 4.9%-6.6%. However, in predicting H1/100 and H1/300 the van Vledder (1991) and Klopman 

(1996) distributions perform distinctly better than the deep water-models, with RMS errors of the 
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order of 7.0 to 8.9%, while the other model errors are much larger (except the Naess model for 

H1/100).  In fact, the distinction is more pronounced for H1/300, the van Vledder model has an RMS 

error of 8.1% which is about two-thirds of that of the best performing deep-water model (i.e. 13.0% 

for the Naess model). It would be reasonable to infer from the results in Table 3 that the van 

Vledder (1991) model would be a good choice for all the characteristic wave heights for Hs/D > 

0.4.  Karmpadakis et al. (2020) found generally superior performance by the depth-dependent 

models for comparable sea states at a specific location with water depth = 7.7 m. Since the Group 

C data correspond to water depths between 7.5 and 12.3 m, our results reinforce their findings. 

 

Overall, within the range of the data considered in this study, it appears that Forristal (1978) model 

has the lowest error in estimating H1/3 and H1/10 across all the three groups with few exceptions.  

The Naess (1985) model may serve as optimal choices for describing the distribution of higher 

wave heights for sea states with Hs/D < 0.2. In this region, the depth-dependent models are mostly 

less accurate than the others with errors exceeding ~9%. For the sea states that are in 0.2 < Hs/D < 

0.4, a transition appears to occur in the performance of the models (i.e. depth dependent models 

begin to show improved performance), and the van Vledder (1991) model is generally superior for 

the larger wave heights. The improvement continues for sea states with Hs/D > 0.4 and the van 

Vledder (1991) model may serve as an optimal choice.  

 

The above results are based on the availability of the spectral information for most of the 

calculations. If only Hs is available, then the results in Table 3 must be reassessed as it renders the 

Naess (1985), Boccotti (1989) and Longuet-Higgins (1980) models inapplicable. Hence a 

comparison of spectral Rayleigh (Longuet Higgins 1952), Forristal (1978), van Vledder (1991) 

and Klopman (1996) models is necessary. Table 3 shows that the van Vledder model remains the 

optimal choice for Hs/D > 0.4 and for higher wave heights in 0.2 < Hs/D < 0.4.  It may also be seen 

that the Forristal (1978) model is considerably superior to the other three models for all 

characteristic wave heights for Hs/D < 0.2. It also provides the least errors in estimation of H1/3 

and H1/10 for 0.2 < Hs/D < 0.4. It is interesting to note that this two-parameter Weibull model, 

although calibrated on the basis of Gulf of Mexico hurricane data, is as accurate, in several 

instances, as more complex (spectrum-dependent) models in predicting wave heights around the 

coast of UK. At other locations, too, Casas-Prat and Holthuijsen (2010) and Kvingedal et al. (2018), 

observed that this model agrees well with the data. Nevertheless, it must be recognized that 

maximum likelihood (ML) estimates for the scale (𝛽) and shape (𝛼) parameters, computed using 

https://link.springer.com/article/10.1007/s10236-018-1216-y#auth-B_rge-Kvingedal
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the measurements, exhibit significant variability. As shown in Fig. 5, the scale parameter ranges 

from 2.94 to 21.57 (only 36 points were larger than 15) with 𝜇 = 7.24 and  𝜎 =1.52 whereas the 

shape parameter ranges from 1.53 to 2.66 with 𝜇 = 2.02 and 𝜎 = 0.13. Forristal’s estimates of 8.42 

and 2.126 respectively for the scale and shape parameters are within one standard deviation of the 

mean of the current ML estimates. Nayak and Panchang (2016) have also observed a wide variation 

in the ML estimates for the Weibull distribution. The distribution of wave heights in two sea states 

that provided the minimum (β = 3.87, α= 1.53) and maximum (β= 20.02, α= 2.66) estimates for 

the parameters are shown in Fig. 6. The figure shows that in both cases, the Weibull distribution 

itself with the ML estimates fits the data reasonably well, however using Forristal’s original 

parameter values may not always yield the best results.  

 

Having discussed the relative performance of the wave height distribution models, one cannot 

escape the fact the the RMS percentage errors are usually quite large while estimating the higher 

characteristic wave heights. In fact, all the models, in all cases except for the depth-dependent 

models for groups B and C, have RMS errors greater than 10% in estimating H1/300. Based on the 

best fit slopes in Table 3, it can be seen that almost all the distribution models, except for the van 

Vledder model for Hs/D > 0.4, overpredict on average the estimation of H1/300. The same could be 

said about the spectral Rayleigh (1952), Boccotti (1989), and Forristal (1978) models in the 

estimation of H1/100. If an improved estimate is needed, the prediction can be adjusted using the 

best-fit line slope = 
observed

predicted
  provided in Table 3. For brevity, an illustration is provided in Fig. 7, 

which suggest that a factor of 0.958 would improve the Naess (1985) model results for the case 

shown.   



22 

 

 

Wave 

Height Distribution     
Sea States 

(A) Hs/D ≤ 0.2  (B) 0.2 < Hs/D ≤ 0.4 (C) Hs/D > 0.4 

KpD ≤ 2 KpD > 2 KpD ≤ 0.5 0.5< KpD ≤ 1 KpD > 1 KpD < 1 

E m E m E m E m E m E m 

H 1/3 

Rayleigh 1.85 1.013 1.8 1.013 2.08 1.015 1.89 1.014 1.95 1.016 1.52 1.007 

Spectral Rayleigh 9.45 0.941 9.12 0.953 9.74 0.93 8.28 0.942 7.75 0.953 8.64 0.935 

LH scaled Rayleigh 7.15 1.033 7.08 1.021 9.73 1.085 6.49 1.039 5.71 1.021 5.75 1.026 

Naess 8.19 1.055 8.28 1.052 8.96 1.08 7.75 1.062 7.44 1.054 6.6 1.047 

Forristal 6.52 0.998 6.97 1.011 5.63 0.986 5.03 1 5.51 1.011 4.88 0.993 

Boccotti 7.21 0.979 7.16 0.995 8.22 0.954 6.09 0.977 5.61 0.996 5.91 0.972 

Klopmann 8.84 0.949 8.74 0.959 7.59 0.955 6.43 0.967 6.33 0.974 5.58 0.975 

VanVledder 8.67 0.952 8.63 0.96 6.94 0.965 5.93 0.976 5.97 0.981 4.92 0.992 

H 1/10 

Rayleigh 2.93 0.993 2.69 0.995 3.37 0.995 2.82 0.993 2.52 0.996 3.74 0.978 

Spectral Rayleigh 11.35 0.923 10.75 0.935 11.74 0.911 10.38 0.923 9.55 0.934 11.44 0.909 

LH scaled Rayleigh 7.03 1.013 7.25 1.003 8.71 1.064 5.97 1.017 5.75 1.001 5.48 0.997 

Naess 7.58 1.034 7.75 1.033 7.8 1.059 6.7 1.04 6.59 1.034 5.56 1.017 

Forristal 6.96 0.992 7.25 1.006 6.05 0.98 5.44 0.992 5.75 1.005 5.58 0.978 

Boccotti 7.2 0.987 7.38 0.998 6.42 0.979 5.72 0.987 5.87 0.998 6.06 0.972 

Klopmann 9.75 0.942 9.71 0.949 6.83 0.969 6.13 0.978 6.2 0.982 5 0.996 

VanVledder 9.37 0.948 9.44 0.953 5.95 0.99 5.59 0.997 5.82 0.999 5.61 1.031 

H 1/100 

Rayleigh 8.34 0.96 7.84 0.964 9.26 0.949 8.27 0.954 7.31 0.963 10.36 0.93 

Spectral Rayleigh 16.29 0.892 15.19 0.907 18.02 0.869 15.81 0.887 13.98 0.903 17.83 0.864 

LH scaled Rayleigh 9.76 0.98 10.17 0.972 8.69 1.015 8.39 0.977 8.66 0.968 9.44 0.949 

Naess 9.32 1 9.33 1.001 8.38 1.01 7.8 0.999 7.77 1 8.48 0.967 

Forristal 9.84 0.975 9.52 0.991 9.99 0.95 8.57 0.969 7.9 0.987 9.62 0.944 

Boccotti 10.03 0.973 9.84 0.982 9.41 0.964 8.63 0.969 8.22 0.979 10.05 0.941 

Klopmann 13.37 0.924 13.26 0.929 9.39 0.962 8.45 0.976 8.11 0.982 6.98 1.004 

VanVledder 12.69 0.933 12.76 0.936 8.05 0.995 7.75 1.007 7.7 1.008 8.48 1.059 

H 1/300 

Rayleigh 13.14 0.92 12.06 0.933 14.65 0.901 12.96 0.916 11.14 0.935 16.23 0.881 

Spectral Rayleigh 21.6 0.855 19.49 0.878 24.36 0.826 20.98 0.851 17.93 0.878 24.35 0.819 

LH scaled Rayleigh 13.33 0.939 13.56 0.941 10.72 0.964 11.83 0.938 11.91 0.941 14.52 0.899 

Naess 12.26 0.958 11.96 0.969 11.11 0.959 10.62 0.959 10.17 0.971 12.97 0.917 

Forristal 13.31 0.939 12.18 0.964 14.6 0.907 12.17 0.935 10.42 0.964 14.42 0.9 

Boccotti 13.6 0.937 12.83 0.953 13.56 0.922 12.21 0.935 11.01 0.955 14.94 0.896 

Klopmann 17.88 0.889 17.06 0.902 13.11 0.926 11.41 0.949 10.43 0.965 8.86 0.97 

VanVledder 16.97 0.899 16.42 0.909 10.62 0.961 9.77 0.983 9.42 0.994 8.13 1.03 

Table 3 RMS of % errors (E) and best fit slope (m) of distributions in different KpD Hs/D regions. 
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Fig. 5 Frequency distribution of Weibull distribution parameters. Dashed line indicates mean, 

dash-dot line indicates one std. deviation from mean and solid line indicates Forristal’s parameters.  

 

 

Fig. 6 Normalized wave height distribution for minimum (left) and maximum (right) Weibull 

parameters (Forristal's parameters  = 8.42  = 2.126 ; mean parameters ,  = 7.24  = 2.02) 
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Fig. 7 Best fit line for Naess (1985) model estimates of H1/300 (meters) in Hs/D < 0.2 

 

4.2  Relationship between characteristic wave periods 

We now examine the relationships between characteristic wave periods.  For the 41,120 time series 

considered here, we first examine the relationship of Tmax with T1/3 and Tmean based on the time 

intervals between the zero-upcrossings. Fig. 8 shows that there is considerable variability in these 

relationships and the best fit lines (with zero intercept) have slopes of 1.38 for Tmax vs T1/3 and 1.97 

for Tmax vs Tmean as opposed to (12). Examining the relationship of T1/3 and Tmean (Fig. 9a) the best 

fit slope is 1.43 which is slightly outside the range of 1.1-1.3 in (12). However, before proceeding 

to further investigate the relationship between characteristic wave periods, it should be noted that 

in practice actual Tmean and T1/3 are unknowable in the absence of time series information (e.g. 

when only wave model output is available, as stated earlier). Hence it is necessary to investigate 

the relationship of the characteristic periods Tmax and T1/3 with mean wave period that can be 

estimated from the spectrum. 
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Fig. 8 Relationship of Tmax to T1/3 (left) and Tmean (right) in seconds 

 

The mean wave period can be estimated from the spectral moments, either as T0 = √𝑚0/𝑚2 or as 

Tm01 = m0/m1 (Holthuijsen, 2007). These quantities, estimated using the 41,120 spectra, are 

compared with T1/3 in Figs. 9 (b, c). It may be seen that the best fit slope while using Tm01 as the 

mean is reasonably close to that given by previous recommendations (i.e. eq. 12), whereas the 

deviation is greater in the case of T0 as is the scatter,  which confirms the expectation of Holthuijsen 

(2007) that estimates based on the higher sprectral moments could be noisier. In view of this, we 

will use Tm01 in this study as the characteristic mean based on the spectrum.  

 

 

Fig. 9 Relationship of T1/3 to estimates of the mean period (a) Tmean, (b)T0 and (c) Tm01 (in seconds). 
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The relationship between characteristic periods T1/3 and Tmax computed from the time series and 

Tm01 estimated from the spectrum are shown in Fig. 10. The best fit line for T1/3 vs Tm01 with zero 

intercept has a slope of 1.34, which is slightly outside the empirical range of 1.1-1.3 associated 

with (12). However, the best fit slope of 1.85 for Tmax is well outside this range.  Owing to this, we 

tried to see if any of the other parameters stated earlier (Hs/D, KpD, Ursell number, and the spectral 

width) had a bearing on the comparisons. No significant influence of Hs/D, KpD, and Ursell number 

was observed.  However, the spectral width () does appear to play a role. As seen in Fig. 10, 

larger periods are associated with higher spectral widths. Hence we attempted to find an improved 

empirical relation for T1/3 and Tmax as functions of Tm01 and . Applying linear regression to 80% 

of the data and then testing it on the remaining 20%, the following relationships were established: 

𝑇1/3 =  −1.12 + 1.21 𝑇𝑚01 + 4.42 𝜈 (14) 

𝑇𝑚𝑎𝑥 = −2.1 + 1.25 𝑇𝑚01 + 13.94 𝜈 (15) 

In the case of T1/3, the linear relation with Tm01 employing best fit slope gives a good estimate with 

an R2 score of 0.92 and the inclusion of the spectral width only slightly improves the R2 score to 

0.947 and 0.946 for the training and testing, respectively. However, in the case of Tmax, the best fit 

line shown in Fig. 10 does not explain the variability in Tmax well and the R2 score for the best fit 

line is 0.6758. Including an intercept showed no positive benefit. However, addition of the spectral 

width as another variable increases the R2 score to 0.771 for the training data set (and 0.772 for 

the test data set), which shows that incorporating spectral width improves the reliability of the 

empirical relationships between characteristic wave periods.  
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5. Conclusions 

 

We analyzed the performance of seven wave height distributions, using a large set of wave data 

from intermediate and shallow water depths. A total of 41,120 sea states with Hs ≥ 3 m around the 

UK coast were used. It is observed that the widely used Rayleigh distribution with a = √8𝑚0 as 

its parameter has the highest percentage error in estimating characteristic wave heights, H1/3, H1/10, 

H1/100, H1/300. While the Rayleigh distribution with parameter a = Hrms computed from the time 

series (which is usually not possible in practice), has significantly lower errors than other models 

in estimation of H1/3 and H1/10, this advantage is lost in the estimation of higher characteristic wave 

heights H1/100 and H1/300. For estimating the higher characteristic wave heights, the results in 

Section 4 indicate that deep-water models in general and the Naess model in particular perform 

well for Hs/D < 0.2, and depth-dependent models in general and the van Vledder model in 

particular perform well for Hs/D > 0.4. For sea states with 0.2 < Hs/D < 0.4, a transition is visible 

when progressing from the lower wave heights that seem to be well predicted by deep-water 

models to higher wave heights by the van Vledder model. These transitions affirm the findings of 

Fig. 10 Relation between T1/3 and Tm01 (left) and T1/3 and Tm01 (right), in seconds; color indicates 

spectral width 
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Karmpadakis et al. (2020). For estimating H1/3 and H1/10 (i.e. the lower characteristic wave heights), 

Table 3 shows that the Forristal (1978) model performs well.  

 

The higher accuracy of the spectrum-dependent Naess (1985) model in some cases bolsters the 

argument for the modeling agencies to provide the spectrum by way of output, in addition to the 

usual bulk parameters; this would enable model output users to then use such a distribution to 

estimate the desired H1/n. But in case only Hs is available, the original Weibull model of Forristal 

(1978) provides better estimates than the often-used Rayleigh distribution. While Casas Pratt et al. 

(2010) and Kvingedal et al. (2018) have also found it to be reliable, we find that it has low errors 

(of the order of 7% or less) only for H1/3 and H1/10. For larger characteristic wave heights, the errors 

are much larger. In fact, for all the models, all categories (except for the depth-dependent models 

for groups B and C) have RMS errors much greater than 10% for H1/300 estimates. To some extent, 

improvements may perhaps be attained by resorting to the best-fit slopes provided in Table 3. 

Further, in case of the Forristal model, analysis of the current data provides grounds for additional 

caution: there is wide variation in the parameter estimates for the two-parameter Weibull 

distribution and the mean values obtained here are somewhat lower than Forristal’s estimates.  

 

In terms of wave periods, the best-fit slopes frequently deviate from empirical relations (eq. 12). 

However, estimates of T1/3 and Tmax from the spectum based mean Tm01 can be enhanced by 

incorporating spectral width information. This may be accomplished through equations (14) and 

(15). 

 

Data Availability Statement 

Data are available at the Channel Coastal Observatory website (https://coastalmonitoring.org). 
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