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Abstract

A novel challenge faced by the water scientists and water managers today is the efficient management of the available water

resources for meeting crucial demands such as drinking water supply and irrigation at the same time ensuring sufficient water

is available for other critical activities such as hydro-power generation. Modeling of optimal operation polices is imminent for

better management of reservoir systems especially under competing multiple objectives such as irrigation, flood control, water

supply etc., with decreasing reliability of these systems under climate change. This study compares six different state-of-the-art

modeling techniques namely; Deterministic Dynamic Programming (DDP), Stochastic Dynamic Programming (SDP), Implicit

Stochastic Optimization (ISO), Fitted Q-Iteration (FQI), Sampling Stochastic Dynamic Programming (SSDP), and Model

Predictive Control (MPC), in modeling pareto-optimal operational policies considering two competing reservoir operational

objectives of irrigation and flood control for the Pong reservoir system in Beas River, India. Pareto-optimal (approximate)

set of operation policies were derived using the six methods mentioned above based on different convex combinations of the

two objectives and finally the performances of the resulting sets of pareto-optimal operational solutions were compared with

respect to resilience, reliability , vulnerability and sustainability indices. Modeling results suggests that the optimal-operational

solution designed via DDP attains the best performance followed by the MPC and FQI. The performance of Pong reservoir

operation assessed by comparing different performance indices suggest that there is high vulnerability (˜0.65) and low resilience

(˜0.10) in current operations and the development of pareto-optimal operation solutions using multiple state-of-the-art modeling

techniques might be crucial for making better reservoir operation decisions.
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Abstract 9 

A novel challenge faced by the water scientists and water managers today is the efficient 10 

management of the available water resources for meeting crucial demands such as drinking 11 

water supply and irrigation at the same time ensuring sufficient water is available for other 12 

critical activities such as hydro-power generation. Modeling of optimal operation polices is 13 

imminent for better management of reservoir systems especially under competing multiple 14 

objectives such as irrigation, flood control, water supply etc., with decreasing reliability of 15 

these systems under climate change. This study compares six different state-of-the-art 16 

modeling techniques namely; Deterministic Dynamic Programming (DDP), Stochastic 17 

Dynamic Programming (SDP), Implicit Stochastic Optimization (ISO), Fitted Q-Iteration 18 

(FQI), Sampling Stochastic Dynamic Programming (SSDP), and Model Predictive Control 19 

(MPC), in modeling pareto-optimal operational policies considering two competing reservoir 20 

operational objectives of irrigation and flood control for the Pong reservoir system in Beas 21 

River, India. Pareto-optimal (approximate) set of operation policies were derived using the 22 

six methods mentioned above based on different convex combinations of the two objectives 23 

and finally the performances of the resulting sets of pareto-optimal operational solutions were 24 

compared with respect to resilience, reliability, vulnerability and sustainability indices. 25 

Modeling results suggests that the optimal-operational solution designed via DDP attains the 26 

best performance followed by the MPC and FQI. The performance of Pong reservoir 27 

operation assessed by comparing different performance indices suggest that there is high 28 
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vulnerability (~0.65) and low resilience (~0.10) in current operations and the development of 29 

pareto-optimal operation solutions using multiple state-of-the-art modeling techniques might 30 

be crucial for making better reservoir operation decisions. 31 

Keywords: Optimal reservoir operations; Multi-objective optimization; Pareto-optimal 32 

operation; State-of-the-art reservoir modeling; Reservoir management; Reservoir 33 

performance 34 

1. Introduction 35 

Surface water reservoirs are amongst the most important component of a water resource 36 

system and they primarily function to regulate the natural flow of stream or river by storing 37 

surplus water when there is high inflow and release the stored water during the drier months 38 

to supplement the reduction in the river discharge (Loucks and Van Beek 2017; Jain 2019). 39 

Reservoir management is a complex process since it is often quite difficult to allocate the 40 

available water for different purposes such as water supply (can be for drinking or 41 

commercial), irrigation and hydro-power generation while at the same time ensuring various 42 

demands/requirements expected from the system are satisfied within their physical 43 

constraints (Adeyemo 2011; Wurbs 1991). These requirements include maintaining sufficient 44 

storage to reduce the risk of water shortages for crucial actives during dry periods (e.g. 45 

domestic water supply), flood control/regulation and maintaining adequate environmental 46 

flow to support dependent ecosystems along the stream, river, etc. (Votruba and Broža 1989). 47 

Reservoir operational polices are developed using different techniques to help the reservoir 48 

operator to make the release decisions (Hakimi-Asiabar et al. 2010; Reddy and Kumar 2006; 49 

Tayebiyan 2016). These policies are developed based on the inflow characteristics, 50 

antecedent conditions, demand, weightage for competing objectives (e.g. hydro-power 51 

generation and flood control) under multi-objective operational conditions, historic 52 
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knowledge of inflows and discharge decisions and discretion of the operator who make the 53 

release decisions (Dobson et al. 2019). Developing pareto-optimal operational solutions 54 

(pareto-optimality refers to a situation where it is not feasible to improve any objective 55 

without degrading at least one other objective) might be the most practical strategy to make 56 

reservoir operations under competing demands (Reddy and Kumar 2006; Castelletti et al. 57 

2014; Yang et al. 2009).  58 

 Decision making of reservoir operation is complex, since it may involve thousands of 59 

decisions variables based on the objectives of the operation and constraints of the system 60 

(Yeh 1985). Some physics-based hydrological models such as Streamflow Synthesis and 61 

Reservoir Regulation (SSARR) model and HEC-5 model are being widely used throughout 62 

the world for multi-objective reservoir system modeling (Ozkaya and Zerberg 2021; Ahn et 63 

al. 2018). However, these hydrological models have several limitations due to uncertainty in 64 

the input data, difficulty in the interpretation of results and finally due to the intrinsic 65 

limitations of the model (McMahon 2009; Dang et al. 2020). To overcome the shortcoming 66 

of physics based models, different techniques from management sciences and operations 67 

research along with optimization algorithms have been widely used to manage water 68 

reservoir systems (Yeh 1985; Heydari et al. 2015). One advantage of using these data-based 69 

methods over physically-based methods (e.g. HEC-5 model) is their ability to model with 70 

very few input variables (mostly only inflow time series is sufficient), which also 71 

significantly reduces uncertainties and biases caused by errors or assumptions in the input 72 

data and antecedent conditions (Uysal 2016; Turner et al. 2020). Although no particular 73 

general algorithm for modeling reservoir operation exists, the choice of the method depends 74 

upon various factors including the physical characteristics of the systems, objectives of 75 

operation, data availability and the specified constraints (Pulido-Velazquezet al. 2016; 76 

Kaczmarek and Kindler 1982; Dobson et al. 2019). In general, the data-driven reservoir 77 
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operation models can be classified as, simulation models, linear programming, dynamic 78 

programming and non-linear programming (Yeh, 1985). However, all these models have 79 

several limitations either due to curse of dimensionality, curse of modelling and curse of 80 

multiple objectives or due to a combination of these curses (Powell 2007; Giuliani et al. 81 

2016a; Dobson et al. 2019). To overcome these limitations, combinations of the above 82 

mentioned methods along with other optimization techniques (e.g., particle swarm 83 

optimization, gradient evolution algorithm, genetic algorithm, etc.) are generally used for 84 

reservoir operation modeling (Samadi-koucheksaraee et al. 2019; SS et al. 2020; Ghimire and 85 

Reddy 2013). In addition to this, ensemble of several machine-learning and hybrid algorithms 86 

have recently been used to model optimal reservoir operations (Yang et al. 2019; Zang et al. 87 

2019). Table 1 lists the recent studies undertaken using advanced techniques to model and 88 

optimize reservoir operation policies.  89 

Although several models and algorithms are widely available to model and optimize reservoir 90 

operation policies there are several limitations in developing optimal release solutions either 91 

due to the intrinsic shortcomings of the model, lack of sufficient data, of  bias or error in the 92 

input data, or inefficiency in the prediction of inflow and demand (McMahon 2009; Jain 93 

2019). In addition to this, the complexity of the problem (getting an optimal operation 94 

solution) increases multi-fold as the objectives of the reservoir operation increases (Keckler 95 

and Larson 1968; Curry and Dagli 2014). Dynamic programming (DP) methods such as 96 

stochastic dynamic programming and deterministic dynamic programming are used for a long 97 

time to develop optimal reservoir operation policies, the advantages and disadvantages of 98 

these models are understudied especially under real-world conditions (Ilaboya et al. 2011). 99 

Several methods such as implicit stochastic optimization, sampling stochastic dynamic 100 

programming, etc. with other techniques such as concave objective optimization have been 101 

developed to improve the computational of the DP methods (Loucks 1993; Kelman et al. 102 
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1990; Zhao et al. 2012; Zeng et al. 2019). In addition to this, several novel metaheuristic 103 

methods such as model predictive control (a control approach which controls a process by 104 

satisfying a set of constraints in real-time), fixed Q-iteration (a batch-mode reinforced 105 

learning which uses reinforced learning techniques and functional approximation of value 106 

function) and evolutionary multi-objective algorithms such as MOEA/D-AWA and 107 

MOEA/D-DE are being used for developing optimal reservoir operation policies under 108 

competing operation objectives (Castelletti et al. 2010; Lin et al. 2020; Sun et al. 2018). 109 

Though these novel methods (including both machine learning and metaheuristic techniques) 110 

have several advantages over the conventional dynamic programming models say in terms of 111 

better accuracy and ease of modeling, these methods have several limitations as well and 112 

some them includes the requirement of huge volume of data, more computational time to 113 

derive and optimize the solution and higher difficulty in improving the computational 114 

efficiency of the model (Ezugwu et al. 2021; Teng and Gong 2018).  However, application of 115 

these models to real-life reservoir operations are also very limited and hence more case 116 

studies are needed to check the validity and reliability of these models under real-world 117 

operations (Giuliani et al. 2016). 118 

In this study, six proven state-of-the-art reservoir operation modeling techniques namely 119 

Deterministic Dynamic Programming (DDP), Stochastic Dynamic Programming (SDP), 120 

Implicit Stochastic Optimization (ISO), Fitted Q-Iteration (FQI), Sampling Stochastic 121 

Dynamic Programming (SSDP) and Model Predictive Control (MPC) has been applied to 122 

model optimal reservoir operation policies for a real-life water reservoir system called Pong 123 

Reservoir located in Beas River India. Pong reservoir is an important water storage structure 124 

in the region enabling water security, sustaining agriculture and in protecting the low lying 125 

regions from flooding. Though few modeling studies has been undertaken to model the 126 

operation of Pong reservoir, deriving daily optimal reservoir operation policies have not been 127 
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performed yet and the six methods used in this study has not been previously applied for 128 

developing optimal reservoir operations for the Pong reservoir system. All the techniques 129 

were used to develop daily operation policies for the Pong Reservoir with two competing 130 

release objectives of irrigation and flood control.  The trade-offs between the competing 131 

objectives was determined and the performance of different optimal operation solutions 132 

developed using the state-of-the-art modeling techniques were compared in the Pareto-133 

optimal front. The application of different state-of-the-art models on a same case study would 134 

contribute in understanding the applicability of the different reservoir operation models for 135 

the optimal operation of any reservoir in question (Pong reservoir in this case) and help the 136 

reservoir operator in making better release decisions. Finally, the performance indices of the 137 

reservoir namely resilience, vulnerability, reliability and ultimately the sustainability were 138 

calculated to determine efficiency of the operation policies and the gaps for development. 139 

2. Study Area and Data 140 

Pong dam and reservoir (also called Maharana Pratap Sagar) is located in the Beas River, 141 

Himachal Pradesh, India, is among one of the major tributaries of the Indus River Basin 142 

located in Northern India, as shown in Figure 1. Pong is one of the largest earth fill dams in 143 

India with a catchment area of 12,561 km2 in which also includes a permanent snow 144 

catchment of 780 Km2 (Jain el al. 2007). The salient features of the Pong reservoir are 145 

provided in Table 2. Inflow to the Pong reservoir is contributed by both snow-melt and the 146 

Indian Monsoon rainfall (majorly during July –September) in the Beas catchment along with 147 

the discharge of the Pandoh dam in the upstream of Pong (Kumar et al. 2007). The water 148 

stored in the Pong primarily meets an irrigation demand of 7912 Mm3 per year to sustain 149 

agriculture in 1.6 Mha of command area, in addition to its use for hydropower generation 150 

(capacity 396 kW) (Soundharajan et al. 2016). Wheat, paddy and cotton are the major crop 151 

cultivated in the pong command area. Studies related to Pong suggest that the satisfactory 152 
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performance of Pong is susceptible to disturbances caused by variations or changes in the 153 

inflow resulting from climate change. Monthly average inflow and release of (Figure 2) Pong 154 

reservoir shows that both the inflow and release during the monsoon period is high which 155 

could be attributed to increased inflow from monsoon rainfall and high water requirement of 156 

water intense paddy irrigation in the rice cultivation season between June and October. 157 

Alternatively, from Figure 3. We can also infer that Pong is crucial for sustaining irrigation 158 

and other activities since the average demand for irrigation alone is much higher than the 159 

natural river discharge (except during monsoon) throughout the year. As a consequence of 160 

climate change, the increased inflow from snow melt and variation in the monsoon rainfall in 161 

the catchment has compounded the non-linearity of inflow into the Pong reservoir system 162 

thereby increasing the difficulty in planning the operation of Pong especially during the 163 

months from June to September.  164 

Daily time series (Figure 3) of reservoir inflow, release and reservoir storage/water level time 165 

series from January 2008 to December 2010 were used for modeling. The reservoir flows and 166 

levels illustrated in Figure 3, reveals the significantly higher inflows during the Monsoon 167 

season. In addition to this, information including surface and catchment area, storage capacity 168 

and geometric information provided in Table 2 was used to define the modeling constraints. 169 

3. Methodology 170 

3.1 Overview 171 

Daily reservoir operation policies were developed for two competing release objectives of 172 

irrigation and flood control for the Pong Reservoir system in Beas River India. The case 173 

study was implemented using the Multi-Objective Optimal Operations (M30) toolbox in 174 

Matlab which allows the implementation of different state-of-the-art techniques to design 175 

pareto-optimal operation policies for multi-purpose water reservoir systems. Source code of 176 
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the models (provided in a modular structure) with details of libraries and functional files used 177 

for simulation are provided with clear explanations in the GitHub repository 178 

(https://github.com/mxgiuliani00/M3O-Multi-Objective-Optimal-Operations). The reservoir 179 

operation problem was formulated as a non-linear, periodic, discrete-time, Stochastic Markov 180 

Decision process with three input variable vectors namely state 𝑥𝑡 (storage), control 𝑢𝑡 181 

(release decision) and stochastic disturbance 𝜀𝑡 (inflow). Each objective function 𝐽𝑚 which is 182 

considered to be a cost was formulated as a function of the above-mentioned variable vectors 183 

as:  𝐽𝑚 = lim
𝑛→∞

𝛾𝜀1….𝜀𝑛
(∑ 𝛾𝑡𝑔𝑡+1

𝑚 (𝑥𝑡, 𝑢𝑡 , 𝜀𝑡+1
𝑛−1
𝑡=0 ) (equation 1), where n is the time horizon 184 

generally assumed to be infinity, 𝑔𝑡+1
𝑚  is the 𝑚 h immediate cost function (with m=1….,M) 185 

with time varying between t and t+1 and 𝛾 is the discount factor. 186 

The development of reservoir operation policies were performed under the assumption that 187 

the reservoir system is stationary (i.e., ignored the seasonality) to restrict the real operation 188 

conflict between the flood control and irrigation supply release objectives. Additional details 189 

about the modelling procedure is available at Giuliani et al. (2016). 190 

3.2 Models Used 191 

A brief description of the six models used in this study are provided in the following sections. 192 

3.2.1 Dynamic programming 193 

Dynamic programming methods are most likely the widely used methods for designing 194 

optimal reservoir operations. A singular feature for such popularity of DP models can be 195 

attributed to its ability to handle non-linearity in both constraints as well as the objective 196 

functions (Puterman 2014). DP converts the optimal reservoir operation problem into a 197 

sequential decision making process and the decisions made in at a particular time step affects 198 

immediate costs in addition to all the subsequent costs (Loucks and Van Beek 2017). 199 

https://github.com/mxgiuliani00/M3O-Multi-Objective-Optimal-Operations
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3.2.1.1 Deterministic Dynamic Programming 200 

DDP consists of three major components: regression; deterministic dynamic program and 201 

simulation. DDP uses a deterministic inflow time series for dynamic program and a restricted 202 

set of storage values with an assumption of a hypothetical loss function which accounts for 203 

non-ideal reservoir operation (Harley and Chidley 1978). The solution of the dynamic 204 

program entails optimal storages 𝑥𝑡+1∗ and optimal releases 𝑢𝑡∗ for the whole time horizon 205 

considered (t1, 2….tn) (Karamouz and Houck 1987). The optimal releases are regressed against 206 

other operation constraints to define the general operation rules �̂�𝑡∗=a𝑢𝑡+b𝑥𝑡 + 𝑐 where, �̂�𝑡∗ 207 

is the optimal release decision and a, b, c are the coefficients of general operating rules 208 

(Karamouz and Houck 1987). 209 

3.2.1.2 Stoachastic Dynamic Programming 210 

Operation of reservoirs is itself a sequential stochastic decision. SDP model uses the best 211 

inflow forecasts (probabilistic) as a state variable instead of using observed (deterministic) 212 

inflow as in DDP, thus taking into account the uncertainty associated with forecasts while an 213 

operation policy is established (Trezos and Yeh 1987; Stedinger et al. 1984). The 214 

fundamental concepts (say state, stages and principle of optimality) of SDP and DDP are 215 

same, however, the state transformation function varies (Kjetil 1994). In DDP state 216 

transformation function is given by 𝑥𝑘−1 = 𝑡𝑘(𝑥𝑘, 𝑢𝑘), while in SDP the function relationship 217 

is defined as 𝑥𝑘−1 = 𝑡𝑘(𝑥𝑘, 𝑢𝑘, 𝜉𝑘) where 𝑥is storage, u is release, 𝑡𝑘 is the transformation 218 

function and 𝜉𝑘 is a stochastic variable. 219 

3.2.2 Sampling Stochastic Dynamic Programming 220 

 SSDP utilizes the complex spatial and temporal characteristics of the reservoir inflow by 221 

considering huge number of sample streamflow sequences with an assumption the 222 

streamflow variability is an empirical distribution (rather than probabilistic description as in 223 
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SDP) (Faber and Stedinger 2001; Kelman et al. 1990). SSDP overcomes the DP curses of 224 

modeling by allowing better characterization of streamflow which is oversimplified in DP 225 

(Côté and Arsenault 2019). The policy designs in SSDP are assessed by simulation over 226 

different inflow scenarios while simultaneously maintaining the streamflow hydrograph, 227 

hence both flow and spatial correlation are accurately maintained (Giuliani et al. 2016).   228 

3.2.3 Implicit Stochastic Optimization 229 

ISO builds on optimal operation policies derived with deterministic optimization and 230 

considers several different inflow scenarios under varying system functioning conditions 231 

(Celeste et al. 2009). ISO is structured in the following procedure. First, the sequence of 232 

optimal release decisions for an inflow time series sequence is determined through DDP, 233 

next, a set of variables are selected to condition the derived operation policy, and finally, a 234 

regression analysis is performed between release decisions obtained from DDP and the 235 

variables selected to define a function mapping (Giuliani et al. 2016). While different 236 

functions such as polynomial, fuzzy rules and neural networks can be used employ regression 237 

in the ISO procedure, in this case study we have used the Standard Operating Policy (derived 238 

from a piecewise linear approximation method) to map storage and reservoir release 239 

decisions. 240 

3.2.4 Fitted Q-Iteration 241 

Fitted Q-iteration is a value based, batch mode, offline reinforced learning method which 242 

integrates the principle of functional approximation of value function and reinforced learning 243 

algorithms (Castelletti et al. 2010; Liang et al. 2020). Since FQI considers the knowledge 244 

obtained from previously collected sample of operation decisions (either actual or simulated), 245 

the DP curses of modeling and dimensionality is outdone. Dimensionality curse of DP is 246 

mitigated in FQI by discretizing the state-control space coarsely and the modeling curse is 247 
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overcome by conditioning the learning by considering exogenous variables such as rainfall, 248 

snow inflow, etc. in addition to the state variables (Giuliani et al. 2016). In this case study the 249 

approximation of value function is performed using regression tree. 250 

3.2.5 Model Predictive Control 251 

MPC is one of the most advanced process control techniques which is used to solve 252 

numerous open-loop control problems defined over a receding and finite time horizon 253 

(Bertsekas 2005; Agachi et al. 2016). In MPC constraints are considered explicitly and the 254 

tuning for robustness is directly performed (Garcia et al. 1989). MPC works based on an 255 

optimization-simulation approach by anticipating the future states of the system and by 256 

optimizing control objectives along the prediction time horizon which is subjected to the 257 

system constraints (Van Overloop 2006; Garcia et al. 1989). MPC overcomes the cures of 258 

dimensionality in DP since finding the optimal decision over a finite horizon does not require 259 

the estimation of the value function and it subdue the modeling curse by allowing to make 260 

updated decision at each time step with its real time control approach (Giuliani et al. 2016).  261 

3.3 Simulation 262 

The reservoir operation simulation was performed by considering the reservoir dynamics as a 263 

function of water stored in the reservoir using the mass balance equation 𝑆𝑡+1 = 𝑆𝑡 + 𝑞𝑡+1 −264 

𝑟𝑡−1 in which 𝑆𝑡 is the water stored at time t and 𝑞𝑡+1 is the inflow that feeds the reservoir. 265 

The release 𝑟𝑡−1 depends on the daily release 𝑢𝑡 provided by the operation policy and 266 

constrained by some physical and normative constraints (Salient features presented in Table 2 267 

were used as constraints). 268 

Physical constraints and boundary conditions such as the maximum and minimum reservoir 269 

levels, reservoir storage capacity, dead storage, free board, etc., were used to define the zone 270 

of operation discretion (decision) space (Figure 4) for the Pong Reservoir. The determined 271 
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maximum and minimum feasible release based on the assessment was used as a constraint for 272 

modeling the reservoir operation policies. Based on the operation discretion space, the 273 

modeling is performed with the assumption that the dam operator is forced to halt the dam 274 

operation completely if the reservoir level is less than 387 m and open the dam completely if 275 

the reservoir level is more than 425 m. 276 

The general scheme of operation represented in Figure 5 was used for simulating the model. 277 

The two competing objectives of irrigation supply and flood control were defined as a two-278 

dimensional objective function vector J =|𝐽𝐹𝑙𝑜𝑜𝑑,  𝐽𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛| as in equation (1). 279 

The immediate costs for irrigation and flooding were formulated using the expressions: 280 

Flooding (𝑔𝑡
𝑓𝑙𝑜𝑜𝑑

): The daily water level excess above the flooding threshold (ℎ𝑓𝑙𝑜𝑜𝑑) of 425 281 

meters, i.e.,  𝑔𝑡
𝑓𝑙𝑜𝑜𝑑

= 𝑚𝑎𝑥 ((ℎ𝑡+1 − ℎ𝑓𝑙𝑜𝑜𝑑), 0) 282 

Irrigation (𝑔𝑡
𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛

): The observed daily water (level) deficit compared to the demand (𝑤) 283 

of 520 m3/s in the downstream, i.e.,  𝑔𝑡
𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛

= 𝑚𝑎𝑥((𝑤 −  𝑟𝑡−1), 0) 284 

Determination of additional conditioning variables such as the maximum and minimum daily 285 

releases, calculations of step costs of flooding and irrigation objectives, level to storage (vice 286 

versa) conversions, construction of release matrices and the retrieval of optimal release 287 

decisions were also performed to run the simulation. Detailed methodology for performing 288 

the above-mentioned tasks are available in the simulation package of the M30 toolbox 289 

(https://github.com/mxgiuliani00/M3O-Multi-Objective-Optimal-290 

Operations/tree/master/sim).  291 

3.4 Pareto-Optimal Solution 292 

https://github.com/mxgiuliani00/M3O-Multi-Objective-Optimal-Operations/tree/master/sim
https://github.com/mxgiuliani00/M3O-Multi-Objective-Optimal-Operations/tree/master/sim
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The Pareto optimal front of the reservoir operation polices were obtained by adopting the 293 

weighting method called parametric objective function generalization (Saaty and Gass 1955). 294 

The optimization is considered as a two-parameter problem in which the solution minimizes 295 

the objective function. The mathematical expression of the two-parameter problem is to find 296 

the solution 𝑦𝑖 (for i=1….n) that minimizes the linear form ∑ (𝑎𝑖 + 𝛾1𝑏𝑖 + 𝛾2𝑐𝑗)𝑦𝑖
𝑛
1  and 297 

satisfy the conditions 𝑦𝑖 ≥ 0 and ∑ 𝑎𝑖𝑗𝑦𝑖 =𝑛
𝑖=1 𝑎𝑠𝑜 where, 𝑎𝑖, 𝑎𝑖𝑗 , 𝑎𝑠𝑜 , 𝑏𝑖, 𝑐𝑖 are constants and 298 

𝛾1 and 𝛾2 are parameters. 299 

Since all the methods used in the study are originally single-objective, the pareto-optimal 300 

front was generated by optimizing single-objective repeatedly for every single pareto-optimal 301 

point developed by performing the weighting of the objectives (The adopted weighting 302 

combinations are provided in the Table 3). Using this method we only explore the convex 303 

tradeoff curves and the corresponding gaps in concave regions. 304 

The reservoir operation problem was solved each time for all the models using different 305 

combinations of the two objectives by using the weights mentioned in Table 3.   306 

3.5 Reservoir performance 307 

Key reservoir performance indices were analysed to assess the historic reservoir operation. 308 

Relevant performance measures namely- resilience (Hashimoto et al. 1982), reliability- time 309 

based and volume based (McMahon and Adeloye 2005; McMahon et al. 2006), vulnerability 310 

(Sandoval-Solis et al. 2011) and sustainability (Sandoval-Solis et al. 2011) were evaluated as 311 

follows: 312 

(i) Time-based Reliability (Rtime): Measure of total time period during which a reservoir is at 313 

the capacity to meet the full downstream demand without any shortages: 314 

Rtime =
Ns

N
 315 

Where Ns is the total number of intervals out of N that the demand was met. 316 



14 
 

(ii) Volume-based Reliability (Rvolume): Proportion of the total volume of water which was 317 

actually supplied divided by the total volume of water in demand in a time period: 318 

Rvolume = ∑ Dt
′/

N

t=1

∑ Dt

N

t=1

, Dt
′ ≤ Dt 319 

(iii) Resilience (∅): A quantitative measure to estimate the ability of a reservoir to recover from 320 

failure: 321 

∅ =
1

(
fd

fs
)

= (
fs

fd
) ; 0 < ∅ ≤ 1 322 

Where fd denotes the total duration of the failures, i.e. fd = N – Ns and fs denotes the continuous 323 

sequences of failure periods. 324 

 (iv) Vulnerability (η): Ratio of average shortfall to the average demand in a given duration: 325 

η =
∑ [Dt − Dt

′/Dt]fd
t=1

fd
 326 

 (v) Sustainability (γ): Integrates all the defined indices mentioned above:  327 

γ = (𝑅𝑡∅(1 − η))
1

3⁄
 328 

4. Results and Discussion 329 

4.1 Performance of designed Pareto optimal operation polices 330 

The six state-of-the-art methods were used to develop optimal reservoir operation policies for 331 

two competing objectives of irrigation discharge (m3/s) vs flood control (m). The 332 

performance of different sets of pareto-optimal reservoir operation polices implemented using 333 

different methods has been represented in Figure 6. Arrows in Figure 6. indicates the 334 

direction of preference of the optimal operation solutions (ideal solution will most likely be in 335 

the bottom left corner).  336 



15 
 

The simulation results indicates that DDP outperforms the other models in obtaining pareto-337 

optimal reservoir operation solutions. While the reservoir operation solutions developed 338 

using DDP showed the best performance, ISO was observed to have the least performance 339 

comparatively. The optimal operation solution obtained through DDP suggested an Irrigation 340 

release of 342.5 m3/s with a flood control storage of 2.25 m (below 425 m). The better 341 

performance of DDP can be attributed to the fact that DDP works on the assumption that 342 

future inflows are deterministic (known), while, the uncertainty associated with inflows in the 343 

other methods affect the overall performance (Bertsekas 2000; Giuliani et al. 2016).  344 

Following DDP, the reservoir operation solutions derived through MPC and FQI showed 345 

better performance and had similar concave curve. This could be attributed to the fact that, 346 

MPC with its edge as a real-time approach overcomes the curses of dimensionality and 347 

modeling in DP by searching the optimal decisions over a series of horizon, avoids the 348 

computation of value function and uses the additional information at each time step to make 349 

better informed decision of operations (Morari and Lee 1999; Mayne et al. 2011). Next, FQI 350 

as a batch-mode reinforcement learning method, uses the experience from historic 351 

observations and model simulations to adopt a coarse discretisation of state control space to 352 

condition the state variables in this study thus overcoming the dimensionality and modeling 353 

curses in DP results (Castelletti et al. 2012; Feldbrugge 2010). The optimal operation 354 

solutions obtained by MPC and FQI suggested a release of 365.34 m3/s and 418.9 m3/s for 355 

irrigation with a corresponding flood control of 2.4 m and 2.34 m, respectively. The optimal 356 

operation solutions derived through SDP and SSDP (developed based on SDP) showed 357 

inferior performance (following ISO) than the other models used in the study. The reason for 358 

the inhibited performance of SDP could be due to the limitation of DP curses of 359 

dimensionality, modeling and competing multi-objectives (Powell 2007; Dobson et al. 2019), 360 

however, in the current study this curse is overcome by DDP since the assumption of 361 
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deterministic knowledge of inflows looks to outweigh the limitations of the model in 362 

obtaining the optimal reservoir operation solutions. However, it is worth noting that DDP 363 

results cannot be always relied since there always some significant bias in the operation 364 

polices obtained thorough it (Hargreaves and Hobbs 2012).    365 

One interesting observation is that, all the six models showed slightly varying operation 366 

solutions (with an exception of DDP and SDP in the irrigation objective end and ISO and FQI 367 

in the flood control end) when optimizing single objectives (in case of both irrigation and 368 

flood control) with the difference in operation policies in the magnitude of about 100 m3/s 369 

between DDP and ISO for irrigation release and 0.3 m variations in flood control between 370 

DDP and MPC. However, in a similar study for a small reservoir system called Lake Como, 371 

Italy, Giuliani et al. (2016) observed that the difference in performance between the optimal 372 

reservoir operations developed using different models to be insignificant especially when 373 

optimizing single objectives. Additionally, from Figure 6. we can also clearly observe that 374 

there are distortions in the concave curve in the middle of the trade-off curve especially in the 375 

performance of SDP and SSDP. Obtaining concavity and good coverage of the whole trade-376 

off curve has been challenging although we have only considered reservoir operation under 377 

two competing objectives. The performance of any single model used for modeling Pareto-378 

optimal operation solutions for Pong seems to be limited and hence the optimal-operation 379 

solutions obtained from a combination of these methods needs to be considered before 380 

making real-life operation decisions.   381 

4.2 Computation costs  382 

The convergence time for deriving optimal reservoir operations of the six methods are 383 

presented in Table 4. The convergence time of the DP models were comparatively lower than 384 

that of the metaheuristic methods (ISO, MPC and FQI). As expected, due to the deterministic 385 
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knowledge of inflows the convergence time was least in DDP with 3.69 minutes. The highest 386 

convergence time was observed in ISO followed by FQI with 7.45 and 7.25 minutes 387 

approximately. SSDP model’s convergence time (4.37 minutes) has been observed to be 388 

better than SDP’s (6.80) which could be attributed to the fact that SSDP model structure is an 389 

improvement on the SDP model framework (Côté and Arsenault 2019). The presented 390 

computational costs (convergence time) can only provide insight on the rough computation 391 

costs required for the different models to obtain optimal reservoir operation solution. It is 392 

important to note that the computational cost will increase multi-fold as the complexity of the 393 

reservoir operation objectives increases, for example, including drinking water supply and 394 

hydropower generation into the modeling objective will increase the computation costs 395 

drastically. Additionally, the convergence time of only the optimal model for each method is 396 

presented here, since the convergence time varies for each method with varying model 397 

specific parameters and simulations.  398 

4.3 Reservoir Performance 399 

Table 5 summarises the performance of the Pong Reservoir in three intervals 1998-2000, 400 

2003-2005 and 2008-2010 (study period). Positive trend has been observed in time-based 401 

reliability value from 1998-2000 to the study period (increased from 0.22 to 0.38). Volume 402 

based reliability however, has decreased from 0.99 in 1998-2000 to 0.86 in 2008-2010. A 403 

slight decrease in vulnerability was observed from 1998-2000 to 2008-2010, however the 404 

value of the vulnerability index was high with ~0.65 throughout the three-time intervals. 405 

Resilience index of Pong is found to very low and decreasing from 0.11 to 0.09 from 1998-406 

2000 to 2008-2010. Sustainability index which is a combined measure of all other 407 

performance indices suggests that the overall reservoir performance has slightly increased 408 

with sustainability index values increasing from 0.21 in 1998-2000 to 0.23 in 2008-2010. The 409 
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results of the reservoir performance indices suggest that, though the overall performance 410 

(sustainability index) of Pong is increasing, the absolute value of the increase is still low. Key 411 

performance variables such as the resilience (decreasing and only in ~0.1 range) and 412 

vulnerability (high, in ~0.65 range) of Pong is degrading and the effective use of state-of-the-413 

art reservoir operation models might be crucial in improving the overall performance of 414 

Pong, especially with changing climate with uncertain inflows. 415 

5. Conclusion 416 

In this study, six different state-of-the-art techniques were used to model optimal operation 417 

policies for a multi-purpose water reservoir system. DP (both DDP and SDP) which is widely 418 

used for reservoir operation modeling although has several advantages such as the ease of 419 

modeling, robustness in the model structure (e.g. decision taken at a given time step in 420 

addition to affecting the next time step also affects the subsequent system state and costs), 421 

etc., it has several limitations for application in real-world conditions due to the challenges of 422 

dimensionality, modeling and multiple objective curses. Some limitations in DP are 423 

overcome by the other state-of-the-art techniques. For example, ISO develops a set of 424 

variables to condition the operation policies obtained to get superior results, although it uses 425 

the release decisions determined by DDP. SSDP uses multiple scenarios of reservoir inflows 426 

(streamflow) as empirical distribution variabilities unlike the explicit probabilistic description 427 

of system disturbances used in SDP. The pareto-optimal front of all the six proposed 428 

modeling techniques were determined for the Pong Reservoir system in India for two 429 

competing decision objectives of irrigation and flood control. The performance of the 430 

solutions in the pareto-optimal front suggests that the DDP, without any surprise, shows 431 

better performance since it assumes the deterministic knowledge of future inflows. When 432 

optimizing a single objective, all the six methods showed similar performance (Refer the 433 

extremes of the Pareto front in Figure 6) for both irrigation and flood control objectives, and 434 



19 
 

the convergence could not be obtained over the entire trade-off curve. Of the novel 435 

techniques used in the study, MPC and FQI showed best performance. This could be 436 

attributed to the unique characteristics and advantages of both these models. Though the 437 

performance of metaheuristic models such as the MPC and FQI is better than the DP models 438 

(except DDP) the computational costs however is much lower in DP models than in the 439 

metaheuristic models. The performance of the Pong reservoir operation was assessed by 440 

estimating the reservoir performance indices such as resilience, reliability (volume and time), 441 

vulnerability and sustainability. Performance indices suggest that the overall performance of 442 

the reservoir is showing a positive trend. However, the performance of some key indices such 443 

as the resilience and vulnerability of Pong is not positive. The study demonstrates that, the 444 

development of optimal operation policies using state-of-the-art modeling techniques and 445 

collectively using the operation solutions of different models for decision making might be 446 

crucial in the optimal management of reservoir systems similar to Pong, especially under 447 

increasing vulnerability and decreasing resilience of reservoir systems in effectively 448 

managing the demand under climate change risks. More comprehensive modeling studies 449 

comparing the performance of different reservoir operation models needs to be carried out 450 

under real-world operations especially at varying hydro-geo-climatic conditions to improve 451 

the planning and management of water resource systems.  452 
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 639 

Tables 640 

Table 1. An overview of recent optimal reservoir operation studies. 641 

Literature 

(Authors) 

Study area and 

climate type 

Objectives Models / Techniques 

used 

Results 

Li et al. (2017) Danjingkou 

Reservoir, China; 

Subtropical 

monsoon climate 

Determination of minimum 

ecological water demand; 

Multi-objective optimization 

model development based 

on the GP method; 

Generation of reservoir 

operation polices 

Goal programming 

based Improved Multi-

Objective Optimization 

Model (IMOOM-GP) 

Danjiangkou Reservoir’s 

regulation and storage 

capacity improved. 

The results suggested that 

in addition to flood control 

priority, operation priority 

of Danjiangkou Reservoir 

would change in the future 

to include other objectives 

including downstream 

water security and 

ecological water supply. 

Liu et al. (2017) Three Gorges 

Reservoir, China; 

Sub-tropical 

monsoon climate 

Develop a multi-objective 

operation model to estimate 

the spillway’s optimal 

operation of using POA; 

Abstract the optimal real-

time operation using SSVM 

Smooth support vector 

machine (SSVM) 

model; Progressive 

optimality algorithm 

(POA) 

Most reasonable results are 

developed by optimizing 

the number and order of 

spillways. 

SSVM model shows 

promise in generating short 

term or real-time reservoir 

operation polices. 

Flood risk can be reduced 

and hydropower 

generation can be 

improved during the flood 

season by using SSVM 

model. 

Khorshidi et al. 

(2019) 

Dorudzan 

Reservior; Iran; 

Hot semi-dessert 

climate 

Optimum operation policy 

(12-month) is developed 

under future potential dry 

periods; Optimize the 

storage loss and maximize 

the allocation of water to 

agricultural release of CVR 

as leader’s objective 

Conditional Value at 

Risk (CVR) based 

Leader-Follower game 

multi-objective 

optimization model 

(LFG) 

The LFG model 

demonstrates the ability to 

keep the associated risks in 

the developed operation 

polices within an 

acceptable range at the 

same time satisfy the 

demand supply. 

 

Srinivasan and 

Kumar (2018) 

Dharoi reservoir, 

India; Hot Semi-

arid climate 

Minimize the total shortage 

ratio and the maximum 

storage 

Structured piecewise 

linear-hedging rule 

with multi-objective 

Simulation 

Improvement in the 

computational efficiency 

and the Pareto-optimality 



26 
 

Optimization (So) 

framework; Non-

dominated sorting 

genetic algorithm 

based on evolutionary 

search 

is illustrated with Dharoi 

reservoir, operation. 

S-O framework along with 

the parameterized 

piecewise linear hedging 

rule developed may be 

extrapolated to any multi-

purpose reservoir system 

operations. 

Yaseen et al. 

(2019) 

Golestan and 

Voshmgir 

Reservoirs, Iran; 

Cold semi-arid 

climate with 

continental 

climate 

characteristics 

Improve the reservoir 

optimization by 

implementing PSO in 

parallel to the suboptimal 

operation solutions 

generated by BA 

Hybrid bat–swarm 

algorithm (SA-HB) 

based on particle 

swarm optimization 

(PSO) and bat 

algorithm (BA) 

SA-HB hybrid algorithm 

achieves minimum 

irrigation deficits by 

optimizing reservoir 

operations. 

Using SA-HB reduces the 

computational time 

required in the 

convergence procedure. 

Yang et al. 

(2019) 

Hongjiadu and 

Qingjiang 

Reservoirs, 

China; Humid 

Sub-tropical 

climate 

Optimize the scheduling 

scheme for multi-objective 

flood control and, ecological 

and water supply operation 

in Hongjiadu reservoir and 

Qingjiang cascade reservoirs 

respectively 

Improved multi-

objective particle 

swarm (IMOPS) 

optimization based on 

grey correlation 

analysis and technique 

for order preference by 

similarity to an ideal 

solution (GCA-

TOPSIS) 

GCA-TOPSIS efficiently 

evaluates and finds the 

most suitable policy under 

different decision making 

scenarios. 

GCA-TOPSIS provides 

strong evidence for the 

implementing balanced 

scheduling decisions under 

multi-objective operations 

in complex reservoir 

operations. 

Kong, et al. 

(2021) 

Three Gorges 

Reservoir, China; 

Sub-tropical 

monsoon climate 

Select the optimal solution 

from a set of Multi-

Objective reservoir 

operation policies in the 

Pareto-optimal front 

Clustering-based 

method for solution 

selection (CMSS) with 

MeiWang fluctuation 

similarity measure 

(MwFSM) 

MwFSM effectively 

distinguishes reservoir 

operation process. 

The CMSS selects 

solutions from a large 

Pareto set since it can 

extract additional 

information in the decision 

space. 

Yang, et al. 

(2019) 

Chao Phraya 

Reservoir, 

Thailand; 

Tropical climate 

Apply RNN to simulate 

reservoir operations under 

regulation of multiannual 

flow; explore the RNN 

models suitability for the 

operation of reservoir under 

extreme flood and drought 

events 

The recurrent neural 

networks (RNN) such 

as Nonlinear 

autoregressive models 

with exogenous input 

(NARE), Long short-

term memory (LSTM) 

and genetic algorithm 

based NAXE (GA-

NAXE) 

GA-NAXE produces the 

most accurate reservoir 

simulation among the 

RNNs and is highly stable 

than NARE. 

GA-NAXE model results 

are effective under extreme 

events (e.g. floods). 

Real time reservoir 

operations model 

developed by ensemble 

GA-NAXE and 

hydrological models 
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produced the best 

operational solutions. 

Zang et al. 

(2018) 

Gezhouba 

Reservoir, China; 

sub-tropical 

monsoon climate 

Simulate the operation 

policies for the reservoir at 

different time scales (e.g. 

daily and monthly) using 

historic reservoir operation 

data and AI techniques 

Long short-term 

memory (LSTM) 

technique, Support 

vector regression 

(SVR) and 

backpropagation neural 

network (BPNN) 

Results suggest that 

LSTM, SVR and BPNN 

are effective in making 

reservoir operation 

decisions. 

BPNN and SVR are more 

suitable to model operation 

policies of reservoir even 

with limited data while 

LSTM are more effective 

in modeling under low-

flow conditions. 

Asadieh and 

Afshar (2019) 

Dez reservoir, 

Iran; Hot and 

humid climate 

Optimize reservoir operation 

problem using CSS 

optimization algorithm and 

compare its performance 

with other optimization 

methods. 

Charged System 

Search (CSS) 

metaheuristic algorithm 

Robustness and supremacy 

of CSS algorithm to solve 

reservoir operation 

problems for longer time 

frame is established 

compared to alternative 

methods such as particle 

swarm optimization. 

Saadat and 

Asghari (2017) 

Zayandehrud 

Reservoir, Iran; 

Cold dessert 

climate 

Improve the traditional 

stochastic dynamic 

Programming model’s 

accuracy by improving the 

accuracy of steady state 

operating policies 

Reliability Improved 

Stochastic Dynamic 

Programming model 

(RISDP) 

Using RISDP operating 

policies for real-life 

reservoir system indicates 

improvement in objective 

function value by 15%. 

Samadi-

koucheksaraee 

et al. (2019) 

Khersan-1 and the 

Dez reservoirs, 

Iran; Hot and 

humid climate 

Compare the solutions 

determined with GE 

algorithm with genetic 

algorithm (GA), linear 

programming (LP) and non-

linear programming (NLP) 

Gradient Evolution 

(GE) algorithm 

Results demonstrate the 

superior ability of GE to 

model optimal reservoir 

operation policies. 

Ehteram et al. 

(2017) 

Bazoft reservoir, 

Iran; Hot humid 

continental 

climate 

Investigate the potential of 

shark algorithm in 

optimization of optimum 

reservoir operations; 

Compare the performance of 

shark algorithm with particle 

swarm optimization and 

genetic algorithm. 

Shark algorithm Shark algorithm indicates 

superiority by 

outperforming other 

optimization algorithms 

and achieves lower 

vulnerability index and 

higher reliability index. 

Sun et al. (2018) Huangjinxia 

reservoir, China; 

Sub-tropical 

climate 

Use MOEA/D-AWA for 

optimization of reservoir 

operation problem; 

Determine the performance 

by comparing with other 

algorithms based on hyper-

volume index 

Multi-objective 

evolutionary algorithm 

developed with 

decomposition and 

adaptive weight vector 

adjustment (MOEA/D-

AWA) 

The MOEA/D-AWA is 

reasonable and effective 

and can be applied for 

multi-objective reservoir 

operation modeling. 

Zhang et al. 

(2018) 

Ankang reservoir, 

China; 

Develop bi-objective model 

to optimize flood control 

objective 

The multi-objective 

evolutionary algorithm 

based on differential 

Results on flood 

observations 

(experimental) indicates 
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Subtropical 

climate 

evolution 

decomposition 

(MOEA/D-DE) 

that the MOEA/D-DE 

algorithm outperforms 

other comparable 

algorithms and increased 

the dam safety by reducing 

flood peak. 

 642 

Table 2: Salient features of Pong Reservoir (Note: All the levels are mentioned as reduced 643 

level) 644 

Characteristics Quantity 

Surface area (km2) 240, and 450 during floods 

Catchment Area (km2) 12,561 

Max. width (Km) 2 

Max. length (Km) 42 

Water volume (Mm3) 8,570 

Surface elevation (m) 436 

Max. depth (m) 97.8 

Dead storage level (m) 384 

Minimum reservoir level (m) 389 

Maximum reservoir level (m) 425 

Gross storage capacity (Mm3) 8,570 

Live storage (Mm3) 7,290 
 

Dead storage (Mm3) 1,280 

 645 

Table 3: Weight combination for aggregation of objectives 646 

Combination Flooding Irrigation 

1 1.0 0 

2 0.75 0.25 

3 0.5 0.5 

4 0.35 0.65 

5 0.2 0.8 

6 0.1 0.9 

7 0 1.0 

 647 

Table 4: Convergence time for obtaining optimal reservoir operation policies (Note: 648 

Convergence time might increase or decrease with varying computation capacity) 649 

Method 
Elapsed time 

(minutes) 

Deterministic Dynamic Programming 3.69 
Stochastic Dynamic Programming 6.80 
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Implicit Stochastic Optimization 7.45 
Fitted Q-Iteration 7.25 

Sampling Stochastic Dynamic Programming 4.37 
Model Predictive Control 6.68 

 650 

Table 5: Reservoir Performance 651 

Performance Index 1998-2000 2003-2005 2008-2010 

Time Based Reliability 0.22 0.29 0.38 

Volume Based reliability 0.99 0.92 0.86 

Resilience 0.11 0.10 0.09 

Vulnerability 0.66 0.65 0.64 

Sustainability index 0.21 0.22 0.23 

 652 

Figures 653 

 654 

Figure 1: Study area Plot 655 
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 656 

Figure 2: Monthly average of reservoir inflow and release (1998-2012) 657 

 658 

 659 

Figure 3: Model inputs: Time series of Inflow, release and reservoir level (2008-2011) 660 
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 661 

Figure 4: Zone of operation discretion for the Pong Reservoir confined by the minimum and 662 

maximum feasible release functions 663 

 664 

Figure 5: Representation of the scheme of Pong Reservoir system used for modelling 665 

(notations: h- reservoir level, s-water storage in reservoir, q-inflow in the upstream and w-666 

irrigation water demand) 667 
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 668 

Figure 6: Performance of the different sets of Pareto optimal reservoir operation solutions designed 669 

through implementing the state-of-the-art methods 670 


