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Abstract

River bathymetry is an important parameter for hydrodynamic modeling; however, it is associated with large bias because

direct large-scale measurements are impractical. Recent studies adjusted river bathymetry data based on assessment of the

difference between modeled and observed water surface elevation (WSE); however, river discharge model uncertainties can lead

to unintended errors in the correction. In this study, we propose a simple but robust correction method using the WSE bias,

based on stage–discharge rating curves rather than time series data. The rating curve represents only the characteristics of the

river section, and is not sensitive to instantaneous errors. Our results showed that the “corrected river bathymetry” converged

among discharge experiments driven by noise-corrupted runoff forcing. Given the difficulty of eliminating discharge errors, a

method for correcting river bathymetry that is free from discharge errors is important for improving hydrodynamic modeling.
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Key Points 

• Empirical river bathymetry approximation equations introduce bias into local water surface 

elevation simulations.  

• Water surface elevation bias (difference between the rating curves for simulations and 

observations) reflects only river bathymetry bias. 

• River bathymetry corrections based on the rating curve are robust, regardless of runoff 

uncertainties and discharge errors.  

 

Abstract 

River bathymetry is an important parameter for hydrodynamic modeling; however, it is associated 

with large bias because direct large-scale measurements are impractical. Recent studies adjusted 

river bathymetry data based on assessment of the difference between modeled and observed water 

surface elevation (WSE); however, model uncertainties in river discharge can lead to unintended 

errors in correcting river bathymetry. In this study, we propose a simple but robust correction 

method using the WSE bias, based on stage–discharge rating curves rather than time series data. 

The rating curve represents the characteristics of the river section, and is not sensitive to the 

instantaneous simulated discharge errors. Our results showed that the “corrected river bathymetry” 

converged among discharge experiments driven by noise-corrupted or multi-model runoff forcing. 

Evaluation with the corrected river bathymetry against virtual truth demonstrated that the new 

method reduced 0.85-1.12 m of the absolute bias than result from the conventional method. The 

deviation in the results is only 20-30% of that by the conventional method. Given the difficulty of 
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eliminating discharge errors and bias in runoff, a method for correcting river bathymetry that is 

free from discharge and runoff errors is important for improving hydrodynamic modeling.  

 
Plain Language Summary 

Errors in modeled river discharge and river bathymetry affect the accuracy of water surface 

elevation (WSE) simulations. Comparison of simulated and observed WSEs can help quantify 

such errors. However, conventional methods for assessing bias in WSE time series data cannot 

discriminate the error sources. In this study, we propose a simple method for evaluating WSE bias 

based on stage–discharge rating curves. The rating-curve based WSE bias is insensitive to runoff 

and discharge, and can be applied to correct river bathymetry. Our results showed that river 

bathymetry corrections were similar regardless of the amount of runoff error, i.e., the corrections 

were independent of river discharge modeling errors. Accurately modeling discharge is 

challenging due to climate forcing, model complexity, inhomogeneity of model parameters, and 

the difficulty of representing human interventions. Therefore, a robust method for correcting river 

bathymetry in hydrodynamic models, which is independent of river discharge bias, is required. 

 

Key words: Bias correction, rating curve, river bathymetry, water surface elevation  
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1 Introduction  

Water surface elevation (WSE) is used for the evaluation of river flow regimes, flood risk, and 

riparian ecosystems, and is also applied in biodiversity studies (Sauer et al., 2021). Although space 

observation satellites (e.g., ENVISAT, JASON, ICESat, and SARAL) have significantly improved 

WSE data coverage and accessibility (Musa et al., 2015), obtaining spatially and temporally 

continuous WSE data at large scales is feasible only through hydrodynamic modeling. In 

hydrodynamic modeling, river bathymetry is a key factor for accurate simulation (Brêda et al., 

2019; Yoon et al., 2012), especially for WSE. Therefore, achieving higher-accuracy river 

bathymetry is the goal of this study.  

Direct measurement of underwater topography is impractical at large scales (Schaperow et 

al., 2019; Yoon et al., 2012; Zhang et al., 2011). The latest global river models, such as CaMa-

Flood (Yamazaki et al., 2011) and LISFLOOD-FP (Neal et al., 2012), approximate river 

bathymetry based on a power-law relationship with climatological discharge. Power law-based 

bathymetry can capture large-scale patterns of river discharge and inundation (Di Baldassarre et 

al., 2009; Hirabayashi et al., 2013; Zhou, Prigent, et al., 2021), but some local calibration is 

required, including comparison with cross-section data and assessment of uncertainty in 

bathymetry parameters (Yamazaki et al., 2012).  

The correction of bathymetry parameters in large-scale hydrodynamic models is a widely 

studied problem in hydrology. Bathymetry is typically corrected based on riverbed elevation bias 

(Revel et al., 2020); this process relies on observed WSEs (synthetic values or in situ and satellite-

based observations) and high-quality model simulations of water depth. However, in many studies, 

simulated river discharge contained errors (Moramarco et al., 2019; Oubanas et al., 2018), 

resulting in errors in subsequent water depth simulations and river bathymetry correction. Brêda 

et al. (2019) and Jiang et al. (2019) calibrated discharge simulation models before applying them 

to bathymetry correction. Oubanas et al. (2018), Pujol et al. (2020) and Yoon et al. (2012) used 

data assimilation to simultaneously correct various biases, even in complex models with high 

computation costs. However, although simulated river discharge bias has been decreased through 

these methods, this bias (and associated uncertainties) cannot be eliminated. The robustness of 

bathymetry correction therefore remains in question. Thus, a robust bathymetry correction method 

that is not affected by errors in river discharge is needed.  

The stage–discharge rating curve represents the relationship between water stage and river 
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discharge at a specific river cross-section (Di Baldassarre & Montanari, 2009; King et al., 2018); 

it is primarily determined by river characteristics including bathymetry, rather than the 

instantaneous river discharge (WMO, 1994). Comparison of the rating curves of model simulations 

and observations can be applied to avoid instantaneous discharge error and extract important 

information for correcting river bathymetry.  

Therefore, in this study, we developed a method that utilizes the rating curve to correct 

river bathymetry for a global hydrodynamic model. Compared to conventional correction 

approaches, this method is independent of river discharge errors. The methods and data, including 

the descriptions of the new method, the experimental design and the study area, will be presented 

in the second section. Results are presented in the third section, and three subsections correspond 

to three different experiments. The discussions and conclusions are followed as the last two 

sections.  

 

2 Methods and data 

2.1 Hydrodynamic models 

In this study, we used the Catchment-based Macro-scale Floodplain (CaMa-Flood) model for 

hydrodynamics simulations (i.e., river discharge and WSE), and for river bathymetry correction. 

CaMa-Flood obtains information on river hydrodynamics via shallow water equations and sub-

grid topography parameterization. Its accuracy is highly dependent on the quality of the 

topography parameters, such as floodplain elevation, river channel depth, and river channel width. 

Floodplain elevation and channel width are measured by satellites (refer to MERIT DEM, GWD-

LR, and MERIT Hydro, Yamazaki et al., 2017, 2015, 2019), whereas channel depth (a default 

model setting) is approximated by an empirical power-law function of river discharge:  

 𝐵 = 𝑚𝑎𝑥	(𝐵!"#, 𝑐$ ∗ 𝑄%&'(!) ,   (1) 

where 𝐵 is the channel depth (m), and Qave is the annual average discharge (m3 s–1). The other 

constants in Eq. (1) are based on “best practices”: Bmin = 1.0, cB = 0.1, and pB = 0.5. CaMa-Flood 

and its parameter settings have been described in detail elsewhere (Yamazaki et al., 2011).  

 

2.2 Bias calculation  

2.3.1 Time Series Method (TS-Method) and Time Series Bias (TSB)  
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Power law approximations of channel depth contain local errors for certain river reaches. 

Therefore, river bathymetry correction based on estimated WSE bias should be applied, under the 

assumption that bathymetry and WSE bias are equal (i.e., changes in WSE follow those in riverbed 

elevation). The conventional method estimates WSE bias directly by averaging the differences 

between WSE simulations and observations in the time series: we term this bias TSB (Fig. 1a, 1b). 

 𝑇𝑆𝐵 = )
*
∑ 𝑇𝑆𝐵++∈* = )

*
∑ (𝑊𝑆𝐸-"!,+ −𝑊𝑆𝐸/0-,+)+∈* ,  (2) 

where WSEsim,t is the WSE simulated by the model at time t and WSEobs,t is the WSE observed at 

time t. Only time steps with available observations (𝑡 ∈ 𝑇) are counted. T is the total number of 

samples, and TSB is the mean of TSBt. The estimated TSB will be used to correct the river 

bathymetry, and the bias correction using TSB is named TS-Method. 

 

2.3.2 Rating Curve Method (RC-Method) and Rating Curve Bias (RCB) 

However, TSB does not have a single source of bias because WSE simulations are affected by 

factors including the bathymetry and simulated river discharge. To overcome this limitation, we 

propose the new metric RCB, which is calculated using rating curves that describe the relationship 

between WSE and the discharge time series (Fig. 1c). We assumed WSE can be approximated by 

a power-law function of river discharge (Eq. 3 and 4). A pair of functions are prepared for 

observations and simulations, by calibrating parameters (b and h).  

 𝑓/0- = 𝑄/0-
0" + ℎ1 , (3) 

 𝑓-"! = 𝑄-"!
0# + ℎ) , (4) 

where f is the water surface elevation that corresponds to Q. f can be fobs for observations (Eq. 3) 

or fsim for simulations (Eq. 4). Q can be river discharge for observations (Qobs) or simulations (Qsim). 

The parameters b0, b1, h0 and h1 are constants and calculated using the least-squares method. Thus, 

RCB is the difference between two fitted rating curves for simulations and observations (Fig. 1c). 

 𝑅𝐶𝐵 = )
*
∑ 𝑅𝐶𝐵++∈* = )

*
∑ (𝑓-"!(𝑄/0-,+) − 𝑓/0-(𝑄/0-,+))+∈* .     (5) 

RCB reflects the WSE bias only when the discharge is identical in both curves; therefore, RCB is 

independent of river discharge errors, including biases and uncertainties. Due to errors in the 

simulated discharge, the estimated RCB is expected to differ from TSB; their difference is 

attributed to discharge errors. The bias correction based on the RCB is named RC-Method.  
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Figure 1 Schematic diagrams of the two bias correction methods. (a) Flow chart of estimating 

TSB and RCB. (b) Diagrams of the TS-Method with a sample time series of WSE observed (black 

dots) and model-simulated (red line) WSE. TSB is calculated between WSEsim and WSEobs when 

observations are available.  (c) Diagrams of the RC-Method. Black and red fitting curves are rating 

curves for simulations (fsim) and observations (fobs), respectively. RCB is calculated as the 

difference between fsim and fobs when observations are available.   

 

2.3 River bathymetry correction 

Next, WSE data estimated using the TS-Method or RC-Method are applied to correct river 

bathymetry parameters. The WSE bias will be attributed to the river bathymetry bias. Thus, the 

estimated bias at a station (i.e., where both water altimetry and river discharge are measured) was 

used directly to correct river bathymetry at that point (e.g., ΔYN1 and ΔYN2 in Fig. 2a). Corrections 

in river segments between the stations were done by linear interpolation according to the segment 

length (e.g., ΔZi and ΔZi–1; Fig. 2b). These corrections were applied by modifying the initial river 

bathymetry (red line in Fig. 2c) to the corrected river bathymetry (dark blue line in Fig. 2c). We 

assumed a bias correction of zero at the river mouth as no downstream data were available and 
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interpolation started at higher-order rivers (lower mainstream), followed by tributaries. 

Extrapolation was not applied to upstream regions without stations.  

 

 
Figure 2 Schematic diagrams of the river bathymetry correction with linear interpolation. 

(a) The initial status and comparison with observations. (b) Calculation of bias in river segments 

between gauges with linear interpolation. (c) Correction of the river bathymetry with calculated 

biases.  

 

2.4 Experimental design 

River discharge errors are the result of many factors including climate forcing, rainfall runoff 

generation, and river routing. Assessment of error sources was beyond the scope of the present 

study, which aimed to confirm the applicability and robustness of the proposed method.  

Accordingly, we prepared a few sets of river discharge data showing spatial and temporal variation 

to represent certain types of river discharge error. Thus, CaMa-Flood was driven by various runoff 

inputs, leading to variation in river discharge. Specifically, we designed the following three 

experiments: 

(1) Experiment with noise-corrupted runoff inputs. We used runoff data from the E2O 
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WRR2 project, which were simulated using the ECMWF HTESSEL land surface model (Balsamo 

et al., 2009) as the baseline runoff data for this study. Then, we prepared four perturbed runoff 

inputs (–50%, –25%, +25%, or +50% compared to baseline runoff). The initial river bathymetry 

was calculated using an empirical equation (Eq. 1), as the default setting of the CaMa-Flood model. 

CaMa-Flood was then driven by the five runoff inputs using the same initial river bathymetry. TSB 

and RCB were calculated against observations and compared among the five parallel runs. River 

bathymetry was corrected using the TS-Method and RC-Method. The model simulations and 

estimated bias were updated based on the corrected river bathymetry to evaluate the correction 

efficiency.  

(2) Experiment with multiple model-based runoff inputs. More than using noise-corrupted 

runoff, we applied more reasonable runoff error ranges in multiple models used to simulate 

eartH2Observe project data (Schellekens et al., 2017). These runoff are driven by same forcing 

inputs (WATCH Forcing Data methodology applied to ERA- Interim data, WFDEI; Weedon et 

al., 2014) while using different hydrological/land surface models. In short, they are named as anu, 

cnrs, jrc, ecmwf, nerc, univk and univu, identified by the host institution of each product. The other 

processes remain the same as the previous experiment. The model-based runoff inputs are with 

smaller differences, albeit with more complex spatiotemporal patterns than the noise-corrupted 

runoff inputs.  

(3) Observing system simulation experiments (OSSEs). In the above experiments, we were 

unable to evaluate the accuracy of the corrected river bathymetry due to a lack of actual river 

bathymetry data. Therefore, we use OSSEs (Andreadis et al., 2007) to test if the correction of river 

bathymetry is accurate compared to a virtual river bathymetry. Specifically, we firstly ran CaMa-

Flood using the baseline runoff (i.e., ECMWF) and the virtual true river bathymetry (i.e., corrected 

river bathymetry in the first experiment with ECMWF input and RC-Method). The outputs of the 

river discharge and water surface elevation from CaMa-Flood are treated as the virtual 

observations. Afterwards, we re-conducted the second experiment, as that seven model simulated 

runoffs from the earth2observe project are used as runoffs with unknown biases and uncertainties. 

Then CaMa-Flood was run with the initial river bathymetry (default with empirical equation) and 

various runoff inputs for simulations of discharge and water surface elevation. While, the 

simulations were evaluated with the virtual observations, rather than the real-world observations 

(GRDC and HydroWeb), to obtain the two biases (i.e., TSB and RCB). The initial river bathymetry 
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was then corrected with the TSB and RCB. The correction performance was evaluated against the 

virtual true river bathymetry prepared in the previous step. Ideally, the corrected river bathymetry 

should overlap the virtual true bathymetry. 

 

2.5 Study area and other settings 

River discharge data were obtained from the Global Runoff Data Centre (GRDC; 

https://portal.grdc.bafg.de) and WSE data were extracted from HydroWeb (http://hydroweb.theia-

land.fr). We limited the study area to the Amazon region, for which large amounts of GRDC and 

HydroWeb satellite altimetry data are available. A virtual station is defined as the intersection 

between a satellite theoretical track and a river centerline. We only considered unit catchments 

(the basic unit of CaMa-Flood) containing both virtual station (altimetry measurements) and 

GRDC station (discharge observations). Although the two stations are not necessarily overlap at 

the exact same location, the change in river discharge within a unit-catchment is negligible. The 

location is therefore location of the virtual station (Fig. 3). We wanted to test the method using 

large rivers, so used 20 gauges with an average discharge of > 5,000 m3 s–1. The study period was 

2000–2010, when river discharge and HydroWeb data showed the most overlap.  

 
Figure 3 The location of the selected virtual stations in the Amazon River Basin. The Initial 

River channel depths was approximated using the empirical power law equation (Eq. 1). River 

segments with depths of < 2.5 m were filtered out. 
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 Besides the two TSB and RCB, we also used some other performance metrics to evaluate 

the simulations. These are (1) Bias in percentage, (2) Root Mean Square Error (RMSE), (3) Nash 

Sutcliffe Efficiency (NSE) and (4) ratio of RMSE to mean (rRMSE). The equations are given as 

following: 

𝐵𝑖𝑎𝑠	 = 	∑ (4$56$)%
$&#
∑ (6$)%
$&#

× 100%, (6) 

𝑅𝑀𝑆𝐸	 = 	A∑ (4$56$)'%
$&#

*
, (7) 

𝑁𝑆𝐸 = 1 − ∑ (4$56$)'%
$&#

∑ (6$56$888)'%
$&#

, (8) 

𝑟𝑅𝑀𝑆𝐸	 = 	A∑ (4$56$)'%
$&#

*
/𝑂+FFF. (9) 

Where 𝑆+ is the simulation and 𝑂+ is the observation at timestep 𝑡. The investigated variable can 

be either river discharge or WSE, however, the selection of comparison pair depends on whether 

it is for the time series or for the rating curve. 𝑇 is the total number of timesteps with both values 

in simulation and observation. 𝑂+FFF is the mean of the observations.  

 

3 Results 

3.1 Experiment with noise-corrupted runoff inputs 

3.1.1 Overview of simulations and observations  

Figure 4 compares the simulations (discharge, WSE) and observations (GRDC, HydroWeb) for an 

example of gauge 7 (Sao Paulo De Olivenca). Only cases with three runoff inputs (baseline, –50%, 

and +50%) are shown; the remaining two inputs were expected to fall within the range of –50% to 

+50%. Noise-corrupted runoff led to large deviations in discharge (Fig. 4a) and WSE (Fig. 4c) and 

the TSB of WSE varied by runoff input. WSE simulations with noise-corrupted runoff (–50%) had 

lower bias than HydroWeb (Fig. 4d), while discharge simulations driven by baseline runoff had 

lower bias than the GRDC data (Fig. 4b). In contrast, rating curves with different runoff inputs 

overlapped well (Fig. 4e). Variable runoff affected only the range of the fitting curves, indicating 

that they were independent of the runoff inputs. Thus, the estimated RCB did not differ by runoff 

input.  
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Figure 4 Comparison of model simulations and observations for (a, b) time series river discharge 

data, (c, d) WSE, and (e) rating curves for gauge 7 (San Paulo De Olivenca, Amazon River). Solid 

lines in (e) are the rating curves fitted to observations (color) and simulations (black).  

 

3.1.2 Bias calculation  

The WSE biases for the 20 selected gauges were estimated using the TS-Method and RC-

Method for five noise-corrupted runoff inputs (Fig. 5a). For most gauges, differences in RCB 

among the five runoff inputs were negligible compared to the TSB variation, indicating 

independence between RCB and runoff. Among all gauges, RCB showed the largest variation for 

gauge 12 (Fazenda Vista Alegre, Madeira River). This gauge is in a lower tributary (estimated 

riverbed elevation, 7.9 m; Fig. 3) where the backwater effect of the Amazon mainstem is strong. 

The simulations yielded a looped rating curve (Fig. S2e), such that it was not appropriate to apply 

a simple exponential fitting curve (Eq. 3). The riverbed is lower at gauges 0 and 5, and the 

hysteresis of the two gauges was likely due to the diffusive nature of the flood wave, rather than 

the backwater effect. River bathymetry bias estimates for specific gauges were linearly 

interpolated to the river segments. Figure 5b shows an example correction using baseline runoff 
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and the RC-Method. The corrections for all five runoff inputs are shown in Fig. S3 for both 

methods. Bias correction performed using the TS-Method revealed an increase in bias from lower 

to higher runoff levels (left column in Fig. S3). However, this was not observed when the RC-

Method was applied (right column in Fig. S3).  

 
Figure 5 (a) Comparison of the TSB- and RCB-based river bathymetry correction methods with 

noise-corrupted runoff. Five dots represent results based on five runoff inputs (left to right, –50%, 

–25%, baseline, +25%, and +50%). (b) A sample of correction for baseline runoff using the RC-

Method.  

 

River bathymetry data for a sample tributary with five different runoff inputs corrected 

using the TS-Method and RC-Method are shown in Fig. 6a and 6b, respectively. For the noise-

corrupted runoff, river bathymetry corrected using the TS-Method showed wide variation (blue 

lines, Fig. 6a), indicating high sensitivity to runoff inputs. In contrast, river bathymetry corrections 

using the RC-Method converged, especially for gauges 14–16 and their connecting river segments 

(Fig. 6b). These segments had higher riverbeds so were barely affected by backwater. A difference 

in river bathymetry correction was observed between gauges 12 and 13 due to the backwater effect. 

In conclusion, river bathymetry corrected using the RC-Method was insensitive to runoff inputs in 

river segments without the backwater effect, but not in those where there the backwater effect was 

present.   
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Figure 6 River bathymetry corrections using the (a) TS-Method and (b) RC-Method for different 

noise-corrupted runoff inputs.  

 

3.1.3 Model evaluation for corrected river bathymetry 

We reran CaMa-Flood using the corrected river bathymetry and corresponding runoff. Model 

performance was evaluated against the observed discharge and WSE. We compared the initial 

experiments with those including bias corrections obtained by the TS-Method and RC-Method. 

The model runs are compared in bias (Fig. 7). The RMSE and Nash-Sutcliffe efficiency (NSE) 

results are shown in Figs. S4 and S5.  

We observed large variations in river discharge depending on the runoff inputs (Fig. 7a1-

7a3, ~1.8%, s.d.=36%). The magnitude and direction of the bias was the same between the initial 

runs and after bias-correction, indicating that river discharge was not significantly affected by 

changes in river bathymetry. Although discharge was underestimated by around 50% when using 

the noise-corrupted runoff input (–50%), the river bathymetry bias compensated for this, such that 

the TSB of WSE was lowest among the five runoff inputs in the initial experiments (first boxplot 

in Fig. 7b1). This small TSB indicated that the model was relatively unbiased, which does not 

accord with the underestimated river discharge. The simulations corrected via the TS-Method (Fig. 

7b2) efficiently decreased the mean TSB and its deviation for all runoff inputs (1.26 m, s.d.=0.86 

m). However, the correction obtained using the RC-Method degraded model performance for the 

–50% runoff input compared to the TS-Method (first boxplot in Fig. 7b3). This result is reasonable 

because the corresponding runoff input as well as the discharge were underestimated. Based on 

the underestimated discharge and corrected river bathymetry, the estimated WSE should be lower 

than the true value, showing negative TSB. The TSB for baseline runoff decreased to the lowest 

level among all runoff inputs following correction using the RC-Method (middle boxplot in Fig. 

7b3), indicating an improvement over the TSB estimate.  
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Figure 7 Comparisons of model performance before and after applying the bias correction. 

Comparisons are conducted in terms of (a) discharge bias (%), (b) TSB, and (c) RCB for the 

initial experiments (column 1), and for simulations following river bathymetry correction using 

the TS-Method (column 2) and RC-Method (column 3). The five boxplots in each panel 

represent the five runoff inputs (left to right, –50%, –25%, baseline, +25%, +50%). Boxplots 

were plotted based on data from 20 virtual stations. The values under each panel are the mean of 

the median (orange line) for different boxplots and the standard deviation in the bracket.  

 

Unlike the initial TSB of WSE (Fig. 7b1), the RCB did not significantly differ among 

various runoff inputs (Fig. 7c1, 4.83 m, s.d.=0.03 m), demonstrating the independence of RCB 

from runoff levels. Correction using the TS-Method also reduced RCB (Fig. 7c2), although the 

improvements varied among runoff inputs (s.d.=1.78 m). The smallest change was observed for 

the lowest runoff level (–50%; first boxplot in Fig. 7c2) because the TSB was small due to 

compensation of underestimated runoff and too high river bathymetry (first boxplot in Fig. 7b1). 
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In contrast, overcorrection was seen for the highest runoff level (+50%; fifth boxplot in Fig. 7c2) 

as the positive bias became negative due to mistaken attribution of the overestimated runoff bias 

to river bathymetry. The updated RCB after bias-correction with RC-Method was reduced (1.25 

m), and variation among runoff inputs remained low (Fig. 7c3, s.d.=0.06 m). Thus, independence 

of the corrected results from runoff inputs was again demonstrated, and the application of biased 

runoff showed similar efficiency to river bathymetry correction. Analyses based on RMSE and 

NSE showed the same conclusion that the performance of bias correction on the river bathymetry 

using RC-Method is independent from the runoff inputs (Figs. S4 and S5).  

 

3.2 Experiment with multiple model-based runoff inputs 

In the first experiment, we have found that river bathymetry corrections based on RCB were not 

sensitive to runoff input, as shown by the convergence of corrected river bathymetry due to noise-

corrupted runoff inputs. The large noise-corrupted runoff errors clearly distinguished between 

cases and demonstrated the independence of RCB and runoff in multiple experiments. In the 

second experiment, we applied more reasonable runoff from eartH2Observe project, with error 

ranges among multiple land-models. 

The application for a sample reach is shown in Fig.8. Blue lines in Fig. 8a, representing the 

corrected river bathymetry by TS-Method, show a deviation driven by different runoff inputs. The 

variations are dominated by the runoff and show consistency from upstream to downstream. In 

contrast, the corrected river bathymetry converges for different runoff inputs, especially for the 

river segments above gauge 14 (Fig. 8b). Diverges are also seen downstream gauge 13 where 

backwater effects. The findings are quite similar to the experiments with the noise-corrupted 

runoff, although the diverges in the corrected river bathymetry are smaller with both TS-Method 

and RC-Method.  
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Figure 8. (a) and (b) illustrate the riverbank elevation, initial river bathymetry and the corrected 

river bathymetry with different runoff inputs using TS-Method and RC-Method, respectively. 

Seven different runoffs are from earth2observe project. 

  

 The biases in river discharge and WSE were also checked before and after bias correction 

(Fig. 9). Compared to the sequenced noise-corrupted runoff, the bias in river discharge and the 

TSB in WSE are smaller but less regular. The similar results for discharge bias indicate that the 

correction of river bathymetry still did not significantly alter river discharge (Fig. 9a1-9a3). TSB 

for the initial runs are varying (Fig. 9b1, 4.88 m, s.d.=1.58 m) while they are efficiently reduced 

after correction with TS-Method (Fig. 9b2, 2.45 m, s.d.=1.80 m). TS-Method also reduces RCB 

(Fig. 9c2, 3.04 m), however, the improved performance of river bathymetry is difficult to evaluate 

as runoff plays different roles (s.t.=1.86 m). Bias correction with RC-Method also significantly 

reduces the TSB (Fig. 9b3, 0.62 m), showing that the TSB is partly resulted from the bias in river 

bathymetry. Moreover, the magnitude of the bias can be quantified by comparing Fig. 9c1 and Fig. 

9c3, showing independence between results with runoff inputs.  
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Figure 9. Similar to Figure 7, but the results are for seven earth2observe runoff inputs. Seven 

boxplots for each panel are for seven runoff inputs. Comparisons for the RMSE and NSE are 

similar to Figure S4 and S5, thus they are not shown. Boxplots were plotted based on data from 

20 virtual stations. The values under each panel are the mean of the median (orange line) for 

different boxplot and the standard deviation in the bracket.  

 

3.3 Observing system simulation experiments (OSSEs) 

The orange dashed line in Fig. 10 represents the virtual true river bathymetry, with which we can 

additionally evaluate the result of bias correction. Although using the same seven runoff inputs as 

the second experiment, the corrected bias bathymetry are slightly different because virtual 

observations (i.e., simulations with virtual river bathymetry and runoff) were used instead of real 

observations. Nevertheless, the results with TS-Method are still diverging (Fig. 10a, mean bias 

1.46 m, s.d.=2.09 m) while that with RC-Method are converging (Fig. 10b, mean bias 1.90 m, 

s.d.=0.36 m). Both bias correction methods are efficiently correct the river bathymetry to the target 

virtual true river bathymetry, while results with RC-Method show almost overlapping of the 

corrected and the target river bathymetry, especially above gauge 14 (mean bias 0.56 m, s.d.=0.09 
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m). Larger deviations are detected for lower segments with both methods, while the deviation of 

the bias by RC-Method (s.d.=0.56 m) is still much lower than that of the TS-Method (s.d.=2.17 

m).   

 
 
Figure 10 Results of Observing System Simulation Experiments (OSSEs) experiment. (a) and (b) 

illustrate the riverbank elevation, initial river bathymetry and the corrected river bathymetry with 

seven different earth2observe runoff inputs using TS-Method and RC-Method, respectively. We 

assumed the “virtual true” target river bathymetry (orange lines). The efficiency of correction will 

be compared with the target river bathymetry.  

 

The absolute bias and the RMSE are better to represent the performance as the bias contains 

negative value. Specifically, RC-Method provides a correction of river bathymetry in the entire 

river section with absolute bias 0.96 m smaller than TS-Method, and the deviation is only 22% 

(=0.31/1.43) of the TS-Method. The RMSE for the entire river section is 0.72 m smaller in RC-

Method, and the deviation is 31% of that with TS-Method. The apparent converging river 

bathymetry is seen upstream gauge 14, with smaller absolute bias (0.56 m vs. 1.68 m) and RMSE 

(0.63 m vs. 1.72 m), and significantly small deviations ~0.10 m for RC-Method, but ~1.25m for 

TS-Method. Although the performance for river segments with backwater effect is worse than 

average, the RC-Method is providing a better bias correction than TS-Method either in the 

accuracy or the deviation among different runoff inputs.  
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Table1 Evaluation of the corrected river bathymetry against the virtual true river bathymetry. The 

values represent the mean for different runoff inputs and the standard deviation in the bracket. 

Unit: m.  

River segments  Methods Bias Absolute bias RMSE 

Entire river 
TS-Method 1.46 (2.09) 2.93 (1.43) 3.74 (1.41) 

RC-Method 1.90 (0.36) 1.97 (0.31) 3.02 (0.44) 

Upstream gauge 14 
TS-Method -0.32 (2.08) 1.68 (1.27) 1.72 (1.25) 

RC-Method 0.56 (0.09) 0.56 (0.09) 0.63 (0.08) 

Downstream gauge 14 
TS-Method 2.65 (2.17) 3.76 (1.60) 4.56 (1.65) 

RC-Method 2.79 (0.56) 2.91 (0.48) 3.86 (0.58) 

 

4 Discussion 

In this study, we proposed a bias correction method to correct river bathymetry with the Rating 

Curve Bias (RCB) and compared the performance with conventional correction method by using 

Time Series Bias (TSB). TS-Method works well when the river discharge is well reproduced. 

However, precise simulation of river discharge remains challenging due to various factors such as 

climate forcing, complex parameterization of rainfall–runoff processes, and heterogeneity in the 

calculation grid. Moreover, the anthropogenic effects of water consumption and dam regulation 

have significantly altered natural river systems and flow regimes, increasing the complexity and 

difficulty of hydrological modeling (Lehner et al., 2011; Zhou, Polcher, et al., 2021). Although we 

reproduced river discharge errors using different runoff inputs in this study, the RC-Method has 

no limited applicability under the conditions described above if the main purpose of the model is 

to correct river bathymetry parameters. With the first step of correcting river bathymetry, more 

water altimetry data can be used to enhance the calibration of hydrodynamic models, especially 

where recent river discharge observations are not available.  

The correction method proposed in this study relies on fitted rating curves. We assessed 

the fitting performance of CaMa-Flood simulations across the study area (Fig. 11) and observed 

larger rRMSE values at lower reaches and tributaries, indicating reduced accuracy; this was 

consistent with the differences observed in RC-Method estimates between gauges 12 and 13 (Fig. 

6). The fundamental reason that simple power-law regression (Eq. 3,4) was unable to derive the 

looped rating curve (Fig. S2e or Fig. 11b for the gauge 12) of river reaches where the backwater 

effect is strong. A possible solution is to use advanced fitting curves (e.g., application of a two-
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stage curve fitting method to elevations and recessions of the hydrograph and underlying curve) 

instead of the current fitting approach. However, we did not test advanced fitting curves in this 

study because, despite its limitations, the current fitting method still outperformed the TS-Method 

in correcting the river bathymetry in terms of the deviations (Fig. 10, s.d.=0.56 m for RC-Method 

and 2.17 m for TS-Method). Future studies should examine how other river channel parameters, 

such as the channel shape and Manning’s roughness coefficient, affect the rating curve. Studies 

assessing errors in floodplain topography would help clarify the performance of the rating curve 

during high-water periods.  

 
Figure 11. (a) The map of rRMSE (ratio of RMSE to the mean) for fitted rating curve based on 

CaMa-Flood simulations over the study area. It is evaluated between the simulated WSE and the 

WSE extracted from the rating curve. Only the unit catchments with average discharge larger than 

1000 m3 s-1 are shown. The numbers represent the location of the stations to be investigated in this 

study. (b) The fitting performance of the rating curve for the noise-corrupted runoff experiments 

at a sample gauge 12.  
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We used linear interpolation for correction of river bathymetry for river segments between 

gauges. Although linear interpolation is less accurate than advanced approaches such as global 

optimal solutions or Kalman filter assimilation, Brêda et al. (2019) stated that it does not 

excessively degrade performance, but more efficient, and has much lower computation and time 

costs. The OSSEs performed in this study demonstrated good performance of the linear 

interpolations (Fig. 10). However, the limited availability of paired discharge–WSE observation 

for rivers worldwide can be a key obstacle to the application of this method. With the rapid 

development of multiple radar altimetry satellite missions (e.g., ENVISAT, JASON, ICESat, 

SARAL, and upcoming SWOT), the measurement of water altimetry has almost covered all global 

rivers. Accompanying with the river discharge observations from open databases (e.g., GRDC), 

the method can be applied to entire North America and Europe, the Amazon River basin and some 

specific river basins in South Africa and Australia. However, the availability of river discharge 

measurements has sharply decreased in the recent two decades. Therefore, a large data-sharing 

effort is still needed, especially of gauge discharge observations in Asian and African rivers. On 

the other hand, with the corrected river bathymetry, we can have a deep investigation into the 

optimization and regionalization of the empirical power law equation for river channel depth 

calculation in the hydrodynamic models. New knowledge from analysis with available data will 

help better implementations of the hydrodynamic models to the data-scarce regions.  

 

5 Conclusion  

In this study, we proposed an approach for correcting river bathymetry based on prior 

approximations thereof, and estimated WSE bias in hydrodynamic simulations and observations 

using the RCB method. The resulting river bathymetry corrections were independent of river 

discharge errors, as shown by the convergence of corrected river bathymetry in experiments using 

different runoff inputs. In comparison, the results obtained with conventional TSB-based 

correction of WSE estimates varied according to runoff input, and therefore were not independent 

of river discharge errors. Although the new method did not perform well when the backwater effect 

was strong, its robust independence from river discharge ensures wide applicability given that 

accurate river discharge modeling remains difficult due to model input biases, the complexity of 

model parameterization, and the increasing impact of anthropogenic effects. Thus, rating curves 

will become increasingly valuable as discharge and river altimetry measurements become more 
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widely available due to current and future satellite missions. 
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