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Abstract

The Underwater Vision Profiler (UVP) provides abundant in situ data of the marine particle size distribution (PSD) on global

scales and has been used for a diversity of applications, but the uncertainty associated with its measurements has not been

quantified. Here we use a global compilation of UVP (version 5) observations of the PSD to assess the sampling uncertainty

associated with the UVP’s sampling characteristics. We model UVP sampling uncertainty using Bayesian Poisson statistics

and provide formulae for the uncertainty associated with a given sampling volume and observed particle count. We also model

PSD observations using a power law with an exponential cutoff to better match the low concentration associated with rare large

particles as seen by the UVP. We use the two shape parameters from this statistical model to describe changes in the PSD

shape across latitude band, season, and depth. The UVP sampling uncertainty propagates into an uncertainty for modeled

carbon flux exceeding 50%. The statistical model is used to extend the size interval used in a PSD-derived carbon flux model,

revealing a high sensitivity of the PSD-derived flux model to the inclusion of small particles (80-128 microns). We close with

recommendations on how to revise the carbon flux model, and we provide avenues to address additional uncertainties associated

with UVP-derived carbon flux calculations.
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Abstract  20 

The Underwater Vision Profiler (UVP) provides abundant in situ data of the marine particle size 21 

distribution (PSD) on global scales and has been used for a diversity of applications, but the 22 

uncertainty associated with its measurements has not been quantified. Here we use a global 23 

compilation of UVP (version 5) observations of the PSD to assess the sampling uncertainty 24 

associated with the UVP’s sampling characteristics. We model UVP sampling uncertainty using 25 

Bayesian Poisson statistics and provide formulae for the uncertainty associated with a given 26 

sampling volume and observed particle count. We also model PSD observations using a power 27 

law with an exponential cutoff to better match the low concentration associated with rare large 28 

particles as seen by the UVP. We use the two shape parameters from this statistical model to 29 

describe changes in the PSD shape across latitude band, season, and depth. The UVP sampling 30 

uncertainty propagates into an uncertainty for modeled carbon flux exceeding 50%. The 31 

statistical model is used to extend the size interval used in a PSD-derived carbon flux model, 32 

revealing a high sensitivity of the PSD-derived flux model to the inclusion of small particles (80-33 

128 microns). We close with recommendations on how to revise the carbon flux model, and we 34 

provide avenues to address additional uncertainties associated with UVP-derived carbon flux 35 

calculations.  36 

Plain Language Summary 37 

The size of a particle in the ocean influences its ecological role. Carbon included in bigger 38 

sinking particles are thought to be removed from the surface ocean and possibly sequestrated 39 

from the atmosphere. The Underwater Vision Profiler (UVP) is a camera system that takes 40 

pictures of particles from the ocean’s surface to depth. The UVP images a small portion of the 41 

water column (~1L at the highest frequency), and does not often capture rare large particles 42 

thought to be important for carbon storage. We use statistical models to assess the uncertainty in 43 

particle concentrations associated with the UVP, and we calculate the uncertainty of sinking 44 

carbon calculated from UVP observations. We find a formula for UVP sampling uncertainty that 45 

depends on particle counts and sampling volume. The associated sinking carbon rate uncertainty 46 

is ~50%. We also model UVP observations using a statistical model that captures rare, large 47 

particles better than a commonly used power law. We use this updated PSD model to 1) describe 48 

changes in the PSD shape across depth, time, and place, and 2) test how sinking carbon 49 
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calculations change when a different size range is used. The sinking carbon relationship is very 50 

sensitive to small particles.  51 

1 Introduction 52 

In the ocean, an extraordinary range of particle sizes (from < 1 µm to 30m; including non-53 

living dust particles, detrital matter, bacteria, phytoplankton, zooplankton including salp chains, 54 

whales and many others) influence ecosystem structure and function, net primary production, 55 

particle sinking, and carbon flux (Sheldon et al., 1972, White et al., 2015, Alldredge and Gotschalk, 56 

1988, Siegel et al., 2014). Over the last decade, bio-optics has enabled the characterization of 57 

portions of the particle size distribution (PSD) (Boss et al., 2001, Slade and Boss, 2015, Dall’Olmo 58 

et al., 2009, Reynolds et al., 2010, Chase et al., 2020, Stemmann and Boss, 2012, Cael and White 59 

2020, Giering et al., 2020 and refs therein), especially through the advancement of in situ imaging 60 

technologies.  61 

In order to use PSD observations in the most meaningful way in analyses and models, the 62 

uncertainty associated with the observations must be clearly quantified. In situ observations of the 63 

PSD are a function of both the true size structure of the particle assemblage and of the measurement 64 

method. In this study we focus on PSD data collected from the Underwater Vision Profiler (UVP, 65 

Gorsky et al., 2000, Picheral et al., 2010), which ‘sees’ a narrow size range (60 microns – 20,000 66 

micron capabilities, Lombard et al., 2019) of living and non-living particles which are imaged 67 

within a small fraction of the water column (anywhere from 0.28L to 10.5L depending on the UVP 68 

version, Guidi et al., 2008). The surface area of pixels containing a particle is converted into an 69 

assumed equivalent spherical diameter using instrument specific calibrations (Picheral et al., 70 

2010), no matter how a particle is shaped or oriented (introducing error into the retrieved particle 71 

size e.g., Karp-Boss et al., 2007).  72 

Uncertainties in particle detection are propagated downstream into calculations of carbon 73 

flux and other applications, which rely on both accurate PSD observations as well as appropriate 74 

modeling to convert standing stocks of PSD observations into rates of sinking carbon across the 75 

full range of depths and particle types in the ocean. When PSDs are not used directly for 76 

calculations of flux or other quantities of interest, PSDs are commonly described with a power law 77 

to reflect the rapid decline in particle concentrations with increasing particle size (e.g., Jonasz and 78 

Fournier, 2011). However, the power-law exponent estimation is sensitive to the abundance of rare 79 
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large particles, and the behavior of power-law distributed quantities (e.g., carbon flux) is sensitive 80 

to the exact values of the power-law exponent. In any natural system, a power law is only 81 

applicable over a finite size range and this size range must be adequately accounted for. We model 82 

PSD observations with a truncated power law rather than a power law to better account for rare 83 

instances of large particles observed by in situ instruments. Moreover, a truncated power law 84 

distribution has an extra parameter about the particle size range for which power-law behavior 85 

holds, which offers more information about the shape of the particle size distribution than a scaling 86 

exponent alone. 87 

In this study we quantified the sampling uncertainty associated with UVP observations as 88 

well as the error associated with extrapolation to other size classes. As a test of how UVP 89 

sampling uncertainties propagate into derived properties, we calculated carbon flux using both 90 

observed and modeled UVP particle concentrations over various size intervals.  We discuss 91 

implications for the 2 retrieved parameters of the truncated power law distribution and we 92 

provide recommendations for future flux modeling of the PSD. 93 

2 Materials and Methods 94 

2.1 UVP Data 95 

Profiles of PSD observations used in this study come from Kiko et al., 2021, which 96 

synthesized observations from the UVP5 models only (Figure 1A).  This dataset underwent very 97 

little processing prior to our analysis. All data were already binned to 5m vertical bins, and the 98 

reported particle concentrations are within standardized and consistent size bins, starting at 128 99 

µm for this dataset. For each depth we multiplied the particle concentration (# L-1) by the 100 

sampling volume specific to each depth in order to retrieve N(d), or the total number of particles 101 

for a reported equivalent diameter size range. The PSD data reported here includes all living and 102 

non-living particles, and all data are inter-calibrated according to procedures described in Kiko et 103 

al., 2021.   104 

Since its invention, the UVP has undergone design improvements so that its size and 105 

sampling speed are compatible with a standard CTD rosette. The UVP5 (Picheral et al., 2010) 106 

has an image acquisition frequency varying between about 3 to 20 Hz depending on versions and 107 

particle load of the water column (higher loads require more processing time and therefore a 108 

lower acquisition frequency). During normal CTD deployments with speeds up to 1 m/s, this 109 
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allows imaging of up to 1L/image at the highest frequency of 20Hz and 20L/m on a vertical 110 

profile at 1m/s. The surface area of particles is converted from pixel counts (using instrument 111 

settings), and the equivalent spherical diameter (ESD) is calculated following 𝒂𝒂 ∗112 

𝒏𝒖𝒎𝒃𝒆𝒓_𝒐𝒇_𝒑𝒊𝒙𝒆𝒍𝒔	𝒃 where aa and b were determined through calibration casts in the bay of 113 

Villefranche. Hereafter any use of the UVP is implied to mean UVP5 in our study.  114 

 115 

 116 
Figure 1. A. Location of UVP5 observations (blue). B. Comparison of a power law (blue) with a 117 
power law with an exponential cutoff of various λ values (red lines). All lines share the same α. 118 

The power law is of the form 𝑁(𝑑) = 𝑑78	while the truncated power laws follow ~	𝑑78 ∗ 𝑒
;<
= . 119 

 120 

2.2 Extrapolation and sampling uncertainty calculations  121 

 122 

A UVP measurement of the PSD is an estimate of the true particle population in the water 123 

column. If a UVP samples 𝑁 particles within a range of sizes with average diameter 𝑑	in a 124 

volume 𝑉, intuitively the best estimate for the concentration of 𝑑-sized particles is 𝑁/𝑉, and the 125 

larger 𝑉 and/or 𝑁 the better an estimate this will be — but what is the uncertainty associated 126 

with this estimate, and how does it depend on 𝑁 and 𝑉? How do these uncertainties ultimately 127 

propagate into uncertainty in estimated flux? Because particle dis/aggregation is complex, this 128 

problem is intractable to quantify perfectly, but may be substantially simplified by assuming 129 

Poisson statistics, i.e. that if the true concentration is 𝐶, and a volume 𝑉 is being sampled, the 130 

likelihood of each particle being sampled is independently 𝐶	 × 	𝑉. 131 
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Assuming Poisson statistics, we take a Bayesian approach to finding the best estimate and 132 

uncertainty in the true concentration given the measured concentration. The Poisson distribution 133 

expresses the probability of a given number of events occurring in a fixed interval of time or 134 

space if these events occur independently with a known rate (Haight, 1967). Thus, if the 135 

probability of individual particles being sampled by the UVP is independent, and the 136 

concentration of particles of mean size 𝑑 is some concentration 𝐶, then the sampled 137 

concentration follows the Poisson distribution. In Bayesian inference, the conjugate prior for the 138 

rate parameter of the Poisson distribution is the gamma distribution (Fink, 1997). This means 139 

that given a same sample of 𝑁 measured particles of size 𝑑, and assuming a prior of Gamma(𝑘, 140 

𝜃) the posterior distribution is 𝐶 ~ Gamma(𝑘 + 𝑁, 𝜃). (In Bayesian statistics, the prior is an 141 

assumption that quantifies prior knowledge about a quantity before evidence is taken into 142 

account, and the posterior distribution quantifies that same quantity after taking evidence into 143 

account.) In our case we have little information with which to form a prior, so the best prior is 144 

the maximum entropy (i.e. least informative) Jeffreys prior – Gamma(1/2,0) (Lunn et al., 2012). 145 

Altogether this means that if we measure 𝑁 particles in a volume 𝑉, we get a posterior 146 

distribution for the concentration 𝐶 of 𝐶 ~ Gamma(𝑁 + G
H
, 1/𝑉). This distribution has a mean of 147 

J
K
, matching our intuition, and a standard deviation of √𝑁/𝑉. Sample volume and sampling 148 

uncertainty are thus inversely related, and for the same sample volume, the relative uncertainty is 149 

larger for lower measured concentrations.  150 

We can also use this distribution to estimate how sample uncertainty propagates into 151 

estimated fluxes or parameters of a truncated power law using its posterior predictive distribution 152 

— the distribution of possible unobserved values conditional on the observed values — which in 153 

this case is the negative binomial (NB) distribution (Gelman et al., 2014). If we measure 𝑁 154 

particles in a volume 𝑉, then the distribution of possible unobserved values that accounts for 155 

uncertainty in the true concentration given these measured values is NB(𝑁+1/2,1/(𝑉+1)).  156 

To estimate uncertainty in the fitted α and λ values from 𝑁(𝑑) = 	𝐶 ∗ 𝑑78 ∗ 𝑒

;< <MN
=
=MN (where 157 

λ0=1mm and 𝑑O = 1 mm), and in the modeled carbon fluxes, we thus draw 100 random samples 158 

from NB(𝑁+1/2,1/(𝑉+1)) for each particle size class at each sampled place and time. These 159 

calculations were run at all places for depths 50 and 300m to retrieve α and λ and the coefficient 160 



manuscript submitted to Global Biogeochemical Cycles 

of variation of each. We also calculate carbon flux (described in section 2.4) for each of the 100 161 

simulated PSDs. The coefficient of variation is reported as the standard deviation (σ) normalized 162 

by the mean, and relative error (𝑒𝑟𝑟𝑜𝑟RST) is given by the σ divided by the N(d), x 100%.  163 

 164 

Figure 2. Theoretical probability of particle concentration (N/V) based on observed particle 165 
number (N) or sampling volume (V). 166 

 167 

The uncertainty associated with sampling volume is visualized using probability densities for 168 

particle concentrations for either fixed or variable sampling volumes (Figure 2). When sampling 169 

volume is fixed (and assumed to be 5L), the width of the probability distribution increases 170 

substantially as particle count increases for an arbitrary size class (compare maroon line to black 171 

line, Figure 2, left plot). Essentially, if the observed particle count is 5, the true concentration in 172 

the water column is likely to be between 0.5 and 2 (green line). For fixed concentrations 173 

(assumed to be 5 particles per L, Figure 2, right plot) and variable sample volumes, the 174 

probability that the true concentration of particles is accurately measured by the UVP scales with 175 

sampling volume. Higher sampling volumes (8L, maroon line, Figure 2, right plot) result in 176 

narrow probability distributions that give higher fidelity to the observed particle concentration. 177 

Lower sampling volumes (black line, 1L, Figure 2, right plot) have a wider probability 178 
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distribution, where it is evident that the true particle concentration can be a factor of 2 (and 179 

greater) different than what was observed.  180 

2.3 Modeling the observed PSD  181 

Here we modeled observed PSD from the UVP (Figure 1) using a truncated power law, i.e. a 182 

power law with an exponential cutoff, which is simply a power law multiplied by an exponential 183 

function, or 184 

𝑵(𝒅) = 𝑪 ∗ 𝒅7𝜶 ∗ 𝒆
;𝒅
𝝀 .         [1]  185 

 186 

N(d) is the number of particles within a given size bin and normalized by the bin width, d is the 187 

equivalent spherical diameter, and α and λ are free parameters.  It is implied that both d and λ are 188 

normalized by d0 =  λ0 = 1mm, everywhere d and λ are operated on in this text. The leading 189 

constant 𝐶 is the concentration at d=1 mm divided by 𝑒
Z
=. The available sizes for 𝑑 range from 190 

1.0 x 10-3 to 26mm, but operationally, the minimum observed particle size from the UVP5 falls 191 

into the 128-161 microns size class. Conceptually, α is a typical power law scaling exponent and 192 

λ is the upper limit until which the particle size distribution is well-described by a power law. 193 

High values of α are associated with a steep PSD slope, or a particle assemblage dominated by 194 

many small particles relative to larger ones. Low values of λ are associated with a steep decline 195 

in N(d) earlier in the size spectrum (Figure 1b, solid red line compared to red dashed line).  196 

Prior to model fitting, UVP observations of particle concentration (# L-1) were multiplied 197 

by the sampling volume (L) specific to each depth, log10-transformed, and normalized by the bin 198 

width (mm) of each size class. We performed a weighted nonlinear optimization of the truncated 199 

power law parameters by minimizing the following cost function,  200 

 201 

𝒄𝒐𝒔𝒕 = 	−	∑ 𝑾𝒊 ∗ [𝒍𝒐𝒈𝟏𝟎d𝑵(𝒅)e − 𝒍𝒐𝒈𝟏𝟎(𝑷𝑺𝑫𝒐𝒃𝒔)	]𝒊j𝒏
𝒊j𝟏                [2] 202 

 203 

where 𝑊l  is the weight for each bin (i) is the sampling volume divided by the relative sampling 204 

error of each size bin, or  205 

 206 

𝑾𝒊 = 	
𝑽

𝒆𝒓𝒓𝒐𝒓𝒓𝒆𝒍
                      [3] 207 
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 208 

The model fitting was performed over the observed particle size interval for each specific 209 

instance depending on the depth and location of observations. We constrained α to be between 0 210 

and 6. The α range extends slightly beyond the range of observed power law scaling exponents 211 

for PSDs (Diehl and Haardt, 1980, Buonassissi and Dierssen 2010), in order to reduce boundary 212 

effects during fitting, and we constrained λ to be contained within the bounds of the smallest and 213 

largest observed particle size for a particular N(d). Because λ spans several orders of magnitude, 214 

any reported λ averages for the remainder of this text were calculated using log10 transformed λ 215 

values and those averages are then converted into non-log transformed values that are simpler 216 

conceptually. We performed this model fit for all 7808 independent locations at the mean of 217 

depth bins, or 7.5, 22.5, 47.5, 97.5, 147.5, 222.5, 297.5, 497.5, and 997.5db (hereafter expressed 218 

as 10, 25, 50, 100, 150, 225, 300, 500, and 1000m).  219 

The truncated power law model is a better fit to the data than a power law, with an 220 

improved adjusted R-squared (accounting for free parameter differences, 0.96 for a truncated 221 

power law versus 0.95 for a power law), relative percent error (24% for a truncated power law 222 

versus 27% for a power law), and relative bias (i.e., (𝑁(𝑑) −	𝑃𝑆𝐷qrs) 𝑃𝑆𝐷qrsN , 7% for a 223 

truncated power law versus 9% for a power law) across all depths. In this study we choose a 224 

truncated power law because of the higher overall performance, and because the truncated power 225 

law parameters offer more insights about the observed PSD shape than a power law alone. 226 

 227 

2.4  Carbon flux calculations  228 

The applications of measured in situ PSDs introduce additional uncertainty and error into 229 

the derived measurements of interest, including quantifications of carbon flux (Guidi et al., 2008; 230 

2016) and aggregate formation (Guidi et al., 2009). PSDs are ingested within a power law 231 

approximation to calculate carbon flux via  232 

𝑭 = ∫ 𝑵(𝒅) ∗ 𝑨𝒅𝒃	𝐝𝒅𝒅_𝒎𝒂𝒙
𝒅_𝒎𝒊𝒏 ,         [4]  233 

where 𝐹	is carbon flux (mg m-2 d-1), 𝑁(𝑑) is the concentration of particles (# L-1) with a mean 234 

equivalent spherical diameter (𝑑, mm), and 𝐴 (12.5) and 𝑏 (3.81) are free parameters that were 235 

first optimized in Guidi et al.  (2008) using all available UVP versions with a shared size interval 236 
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of 250 microns to 1.5mm, and with sampling volumes ranging from 0.28 to 10.5L. The function 237 

is integrated over the range of size classes available. While A and b are empirically derived, they 238 

conceptually arise from a general mechanistic model that incorporates sinking velocity (via 239 

Stokes’ law, a power law) and carbon content of a particle (modeled as a power law). The 240 

product of sinking velocity (𝑤(𝑑) = 𝛽𝑑H) and carbon content (𝑚(𝑑) = 𝛼𝑑�, both power laws) 241 

are modeled as a power law, providing the 𝑨𝒅𝒃 term in equation 4. We note that the power law 242 

formulation for carbon content assumes that all particles of a given size have the same carbon 243 

content and sinking speed, which is a flawed assumption given current understanding of particle 244 

characteristics. Given typical power law fits for N(d), equation 4 implies an infinite flux with 245 

increasing particle size, as well as a consistent size-to-flux relationship for equally sized cells, 246 

which will be violated for cells of different density and/or lability. We argue here that any PSD-247 

derived flux formula must be aligned with the known uncertainties of the PSD observations. 248 

Particularly, the value of d_max is important if a power law N(d) is selected because the counts 249 

of N(d_max) become negligible due to sampling. The value of d_max is also important when 250 

comparing across different UVP versions with different size ranges. 251 

 252 

We calculated flux using direct observations of UVP PSD via equation 4, as well as using the 253 

modeled PSD derived from equation 1, or  254 

 255 

𝑭𝒎 = ∑𝑪 ∗ 𝒅7𝜶 ∗ 𝒆
;𝒅
𝝀 	 ∗ 𝑨𝒅𝒃.        [5] 256 

 257 

Where 𝐹� denotes flux from the modeled number distribution. We tested different values of 𝑨 258 

and 𝒃	to reflect the different values used (Kiko et al., 2017, Kriest, 2002, Alldredge, 1998), 259 

where 𝑨 = 2.8 and 𝒃 = 2.24, noting that the latter b value might be a more realistic size-sinking 260 

scaling exponent than b = 3.81 (Cael et al., 2021), because the value of  b in the Guidi et al., 261 

(2008) work is not the size-sinking speed relationship, but rather the optimized value when 262 

compared to observations over a defined size range. We note that we are less interested in the 263 

specific values of 𝑨 and 𝒃, but rather how the fundamental characteristics of flux’s functional 264 

form affect its outcome given modeled sampling uncertainties, as in Cael and Bisson, (2018). For 265 

the remainder of this paper we use 𝑨 = 2.8 and 𝒃 = 2.24 because those values are meant to 266 
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represent flux more realistically across the range of sizes and particles thought to contribute to 267 

flux. 268 

One advantage of the modeled PSD in this study is that it can be used to extract the 269 

particle number outside the range of observed particle sizes. To quantify the sensitivity of the 270 

flux relationship to different sizes, we included bins two sizes smaller than the first size bin 271 

observed, as well as two bins larger than the last size bin observed, for each PSD model. 272 

Operationally this meant including 80 microns to anywhere from 1 mm to 26 mm for the size 273 

interval. The objective was not to extrapolate widely beyond what has been observed, but rather 274 

to include size classes within neighboring bins relative to what was actually seen by the UVP, in 275 

order to assess the sensitivity of flux derived from the UVP.  Carbon flux calculated using a 276 

wider interval for particle sizes was compared to flux calculated from the observed PSD size 277 

range. In this study we are not concerned about the performance of the flux model (as has been 278 

done in other studies, Guidi et al 2008, Fender et al., 2019). We instead ask, ‘how does using a 279 

more complete PSD affect flux calculations?’  280 

4 Results and Discussion 281 

4.1 Global α and λ values 282 

  283 
Figure 3. Heatmap of α (left) and λ (right, normalized to λ0 = 1mm) based on latitudinal bands 284 
and depth.   285 

Global values of retrieved α and λ reveal patterns across space and depth (Figure 3, 286 

Supplementary Figures 1,2).  The highest average α values (3.8) are in moderate depths (100-300 287 
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m) for places equatorward of 20 degrees. In general, α varies throughout the water column, with 288 

larger values between depths of 150 and 500m, and lower values at the surface and at 1000m 289 

depth. λ generally decreases with depth, where the global average λ decreases from 1.3 at 10m to 290 

0.8 at 1000m, and in all places the surface λ value exceeds λ at 1000m, if only slightly.   291 

 292 

Figure 4. Standard deviation in log10 (λ) plotted against the mean log10-transformed λ/ λ0 293 
(where λ0 = 1mm) based on depth (colors). Arrows denote the transition from shallow (top right) 294 
to deep (top left) samples. 295 

The standard deviation of λ is highest for the surface ocean and deepest observations at 296 

1000m (Figure 4). In between the surface and depth, λ standard deviation and λ mean (all log10 297 

transformed) have a qualitative clockwise trend (Figure 4) where the average λ changes only 298 

subtly at depths < 1000m while the standard deviation decreases from ~100.5 to ~ 100.4. The 299 

variability (given by the standard deviation) in λ decreases with depth up to 150m but thereafter 300 

increases to a smaller degree. These results do not necessarily mean there are no big particles (or 301 

‘dragon kings’, Bochdansky et al., 2016) in the deep, but rather the UVP5 is not observing them.  302 

The model parameters α and λ from the truncated power law fit to observed PSD reflect 303 

the relative dominance of small versus large particles, and also indicate the heavy (or not) tail-304 

ness of the size distribution. In essence, α mostly quantifies the mid-range behavior in the PSD 305 

and λ mostly quantifies the upper-range behavior. Although the model is statistical in nature, 306 
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quantifying the PSD slope and size interval where a power law is applicable gives more 307 

information about the shape of the PSD than slope alone. In other words, conventional power 308 

law fits to PSD assume that a power law is appropriate over the entire size distribution, and the 1 309 

parameter power law model may not be ideal for characterizing the PSD shape from the UVP.  310 

Lower values of α indicate a higher contribution of large particles relative to small ones, 311 

and lower λ values indicate that the power law breaks down at smaller particle sizes (and 312 

therefore we expect very few larger particles in the PSD compared to higher λ). It follows, then, 313 

that places with shifts in α or λ indicate shifts in the shape of the PSD that may be 314 

biogeochemically important. Without coincident observations of particle composition, it is not 315 

sensible to say whether or not changes in the PSD shape may specifically be due to e.g., 316 

aggregation/disaggregation, ingestion/egestion and vertical transport of zooplankton, bacterial 317 

remineralization processes, and so on.  However, the clear decrease in global average λ with 318 

depth implies that there are fewer large particles at deeper depths in the ocean on average (as 319 

observed by the UVP). We note that the particle module on Ecotaxa does not discriminate living 320 

from non-living particles, so it is possible that changes in λ will scale with changes in 321 

zooplankton abundance and size. 322 

Trends in α are less straightforward. In nearly every latitudinal band, α increases at 323 

moderate depths, indicating a higher prevalence of small particles, then decreases at deeper 324 

depths. The reported α and λ values here may be useful in future studies to guide improvements 325 

to the PSD-derived flux relationship. More work is needed to investigate how the shapes of the 326 

PSD (including statistics for the observed PSD’s tail as described here) influence carbon flux. 327 

For example, can variations in λ values across depth/season/place be used to predict 328 

aggregation/disaggregation, or the sinking of fecal pellets? How might variations in α and/or λ 329 

along isopycnals (or depth, to first order) inform improved parameterizations for the PSD-330 

derived carbon flux model?  331 

4.2. Extrapolation and sampling uncertainties 332 

We acknowledge that it is not sensible to calculate flux in the surface ocean using PSD 333 

observations that are unlikely to comprise sinking particles, when considering either the UVP or 334 

another PSD-resolving instrument. Here we consider particles 2µm and above, and we use the 335 

following scaling argument to estimate that any sinking by particles <2µm can be considered 336 
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negligible. For a particle to be considered as sinking, its vertical transport from sinking must be 337 

greater than its vertical transport from ambient turbulent fluid motions. Balancing the two 338 

processes, a particle’s minimum sinking speed 𝑤�l�	~	�𝜅 𝜏⁄   will be ~ 3 m day-1, assuming 𝜅 ~ 339 

10-4 m2 s-1 [Munk, 1966] and 𝜏 = 1 day is a characteristic measurement, diel, and small particle 340 

lifetime timescale. Then if particles’ sinking speeds scale approximately as 𝑤(𝑑)~	100	𝑑7O.�� m 341 

day-1 (Kriest et al 2002, Cael et al, 2021), 𝑤	~	𝑤�l� when 𝑑	~	2 µm. Note also 2µm is roughly 342 

the smallest particle size that can be estimated by other instruments in a sinking or flux context 343 

(Cael and White, 2020).  344 

There are particles that contribute to flux that are not captured by the UVP’s sampling 345 

volume and specifications. Under what conditions or assumptions are the observed particles 346 

sufficiently representative of the total particle population’s flux? Figure 5 shows how particles 347 

outside the UVP5-observed size range contribute to total flux, for a truncated power-law particle 348 

size distribution and a power-law size-flux relationship. If 𝑏 is the exponent dictating how 349 

sinking and mass (or carbon or other elemental content) together scale with particle size, and α is 350 

the exponent dictating how abundance scales with particle size within the power-law scaling 351 

range, the contribution to flux by particles of a given size will be determined by their difference, 352 

𝑏 − 𝛼. The contribution of large particles will also be determined by λ, the particle size where 353 

the power law is truncated. 354 

 355 
 356 
Figure 5. Theoretical flux extrapolation ratio as a function of the difference between b (sinking + 357 
mass, = 3.81 or 2.24) and alpha, and the upper bound particle size where a power law is 358 
appropriate.  359 

 360 
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Figure 5a shows the fraction of flux in the 90µm-10mm particle ESD range for which 361 

2.66-10mm particles are responsible, as a function of 𝑏 − 𝛼 and λ. We note that this is a 362 

conceptual figure that serves only to illustrate under what conditions particle fluxes can be 363 

dominated by particles of different sizes. Clearly both parameters play a role; when λ and 𝑏 − 𝛼 364 

are both small, meaning large particles are rare and particles’ sinking-and-mass size-dependence 365 

is weaker than particles size-abundance relationship, large particles contribute very little to total 366 

flux so almost none of the flux occurs in the 2.66-10mm size range. When either λ or 𝑏 − 𝛼 are 367 

large, however, particles in this range do contribute appreciably to overall flux. When both λ and 368 

𝑏 − 𝛼 are large, meaning the power-law distribution extends out to multi-millimeter particles and 369 

the sinking-and-mass size dependence of particles is strong relative to particles’ size-abundance 370 

relationship, most of the flux actually can occur in this 2.66-10mm size range. In contrast, Figure 371 

5b shows the same but for small particles, comparing 2-90µm particles against 2µm-2.66mm 372 

particles. In this case the dependence on λ is unsurprisingly very weak, but we do see that as long 373 

as approximately 𝑏 − 𝛼 <0, i.e. that particle abundance scales more strongly with size than 374 

particles’ sinking and mass, much or even most of the flux occurs in particles <90µm. Although 375 

the UVP does not measure particles smaller than 90 µm, these figures underscore that accurate 376 

UVP-based flux estimates require understanding the controls on and variability of particles’ 377 

sinking-size and mass-size relationships, the prevalence of large particles, and the slope of the 378 

particle size distribution. We include them to demonstrate that sampling uncertainty includes 379 

uncertainty due to particles outside the detection limit of the UVP or any PSD-resolving 380 

instrument.  381 

There is high variability in retrieved α, λ, and carbon flux arising from the sample volume 382 

uncertainty using the observed size range from UVP observations, as calculated from 100 383 

simulations with varying 𝑁(𝑑) (informed by the observed 𝑁(𝑑) and sampling volume) for all 384 

locations in this study at 50 and 300m (Figure 6, Supplementary Figure 3, see also section 2.2 for 385 

procedure). Across all three variates, the coefficient of variation is smallest for α at either depth 386 

than it is for λ and carbon flux. The median coefficient of variation for α is ~25% at both depths, 387 

while the median coefficient of variation for λ is nearly 60% for the 50m case, and 55% for the 388 

300m case. The coefficient of variation for carbon flux arising from the sampling volume 389 

uncertainty is highest for deep particles (~65-70%) compared to the 50m case (50-55%). The 390 

width of the coefficient of variation distributions varies for all three variates as well, with α 391 
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showing the tightest range, followed by λ and carbon flux. We emphasize that the coefficient of 392 

variations reported here are due only to measurement error and not due to natural variability, 393 

which we could not fully characterize due to lack of repeat data (see Supplementary Figure 4). 394 

As a test of how larger sampling volumes may influence the coefficient of variation in α, λ, and 395 

carbon flux, we also ran the bootstrapping procedure using simulated sampling volumes that are 396 

double the observed sampling volume. Doubling the sample volume reduces the coefficient of 397 

variation in carbon flux to a median of 56% compared to a median of 67% in the 300m case 398 

(Supplementary Figure 5). Note that we did not adjust the N(d) (doing so would preserve the 399 

particle concentration) so that we could isolate the relative effect of enhancing sampling volume 400 

in a statistical sense. 401 

 402 
Figure 6. Violin plots for coefficient of variation in α (left), λ (middle) and carbon flux based on 403 
either 50 m or 300m (resulting from the bootstrap procedure). The coefficient of variation 404 
reported in this figure is due only to the sampling volume uncertainty. 405 
 406 

4.3 Sensitivity of modeled carbon flux to particle size 407 

Carbon flux calculations using observed and modeled PSD (over a shared size range, i.e., 408 

the fixed lower limit of 128 µm for each profile and an upper limit dictated by the largest 409 

observed particle size) are well correlated as expected, agreeing within 10% for the majority of 410 

locations and depths (Figure 7A and Figure 7B). The flux relationship is highly sensitive to the 411 

inclusion of smaller particle sizes. In some cases, the ratio of flux calculated using two size bins 412 

smaller than observed to the ratio of flux calculated using only observed particle sizes is nearly 413 

6. The high degree of sensitivity to small particles directly scales with the α value of the modeled 414 
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PSD. For small α (indicating a dominance of larger particles relative to small), the inclusion of 415 

smaller size classes makes relatively little difference in the flux calculations (Figure 7C). 416 

However, for α larger than 2, the sensitivity of flux to smaller size classes is substantial, with 417 

relative differences exceeding a factor of 2. 418 

 419 
Figure 7. A. Flux comparisons between modeled N(d) flux (y axis) and N(d) flux from UVP 420 
observations (‘Kriest flux’) over the same particle size range. B. Histogram of percent difference 421 
(relative to ‘Kriest flux’) between all flux determinations in A. C. The ratio of modeled N(d) flux 422 
(including 2 size bins smaller than the observed size range) to observed N(d) flux as a function 423 
of depth (colors dots) and alpha value. Black line represents equivalent fluxes. D. The ratio of 424 
modeled N(d) flux (including 2 size bins larger than the observed size range) to observed N(d) 425 
flux as a function of depth (colored dots) and lambda value relative to largest observed particle 426 
size. Black line represents equivalent fluxes. 427 

On the flip side, the flux relationship with PSD is much less sensitive to the inclusion of 428 

larger size bins relative to what was observed (Figure 7D). Recall that the modeled PSD in this 429 
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scenario contains two size bins larger than what was observed. It is common for only a single 430 

particle (or none at all) to be observed at the largest observable size class, so modeled 431 

concentrations are accordingly low at the high end of the particle size spectrum. The few large 432 

particles in bigger bin sizes stands in contrast to smaller sized particles, which become more 433 

numerous as size decreases. We choose to compare the two flux scenarios across the ratio of λ 434 

relative to the largest observed particle size (the x-axis in Figure 7D). When this ratio is small, 435 

the modeled PSD breaks down from a power law into an exponential decay function at lower 436 

size classes. When this ratio is 1, the entire PSD can be modeled using a power law.  The relative 437 

difference of flux calculated using modeled PSD for larger size classes, to flux calculated using 438 

the observed PSD, is around 50% and there is no obvious relationship with the λ value. Although 439 

a change of flux by 50% is non-trivial, it is modest compared to changes in flux exceeding 5-440 

fold, as is the case when including smaller particle sizes.  441 

The sensitivity of PSD-derived flux to either small or large particles is robust to changes 442 

in the free parameter values of 𝑨 and 𝒃. When the Guidi et al., 2008 formulation was applied 443 

(Supplementary Figure 6), a similar sensitivity was observed, although the overall magnitude of 444 

flux was much enhanced compared to the Kriest et al., (2002) formulation. Ideally, any 445 

biogeochemical model will not be sensitive to the inclusion of either small (< 128 µm) or large 446 

size classes (> 1mm) because small particles are not thought to contribute the bulk of carbon flux 447 

(see Michaels and Silver, 1988; Bopp et al., 2005), and because large particles are rarely 448 

observed and highly uncertain (and so any model relying on large particles for flux would be 449 

highly uncertain as well). In this study we found that no matter which flux parameter values are 450 

used (i.e., the empirically derived Guidi et al., 2008 values or the more mechanistic Kriest et al., 451 

2002 values) the power law flux relationship is still highly sensitive to the inclusion of small 452 

particles. This sensitivity is a surprising result, and likely arises because the high abundance of 453 

small particles overcomes their relatively small diameter (in this case, 80 microns) to contribute 454 

a large amount of flux (up to 6 times the amount of carbon flux calculated using a minimum 455 

particle size of 128 microns). If we included even smaller size classes we expect the flux to 456 

increase further. The idea that small particles can contribute substantial flux stands contrary to 457 

what is expected from observations of sinking particles in a natural setting (Cael et al., 2021 and 458 

refs therein). However, some flux models also predict a larger contribution of small sinking flux 459 

(e.g., Bisson et al., 2020, Siegel et al., 2014) than is expected (Durkin et al., 2015, Cael and 460 
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White, 2020, Cael et al., 2021).  We note that the small particles are not thought to contribute 461 

substantially to flux when it is assumed that these small particles are formed in the surface, 462 

because they will be remineralized in their 100s of meters transit to depth. However, small 463 

particles may actually dominate flux in deeper waters through disaggregation processes (Kiko et 464 

al., 2017, Bianchi et al., 2018).  465 

In this study, we found that the flux relationship is moderately sensitive to the inclusion 466 

of larger particles. One reason for this is because the inclusion of larger bin sizes did not 467 

introduce many more particles within this size range, since modeled 𝑵(𝒅) is often low (if not 468 

zero) for large particles. In the real ocean, rare large (> 1 mm) particles can contribute a 469 

substantial amount of flux (Bochdansky et al., 2016), but these particles may be missed by the 470 

UVP due to sampling volume limitations. We recommend accounting for uncertainty in larger 471 

particles based on the sampling volume. 472 

4.4 Limitations of using the UVP to assess particle flux  473 

The primary uncertainties associated with carbon flux derived from UVP observations 474 

are 1) assuming the parameters 𝑨 and 𝒃 in equation 4 are globally valid at all depths, for all UVP 475 

models, and across all size classes 2) the UVP’s pixel-to-size uncertainty, 3) error associated 476 

with particle detection due to image contrast and porous aggregates (that may appear as many 477 

small particles separated by holes) 4) the sampling uncertainty of the PSD, 5) the size to sinking 478 

rate uncertainty, and 6) the size to carbon mass uncertainty. We note that the error associated 479 

with #3 is likely to be the smallest of all errors presented because the UVP is built to detect near 480 

transparent particles in water. In this study we focused on quantifying the sampling uncertainty 481 

of the PSD (#4 as described above), as well as how this uncertainty propagates into a commonly 482 

used carbon flux model. Ultimately, the sensitivity of the flux relationship to smaller particles 483 

was a surprising result of this study, and it invites a re-examination to the flux model in order to 484 

guide future work. 485 

While some attention has been paid to optimizing the parameters (𝑨, 𝒃) of the carbon flux 486 

model (Guidi et al., 2008, Fender et al., 2019), it seems a larger problem is in the foundation of 487 

the flux model itself. We calculated carbon fluxes incorporating the reported Guidi et al., 2008 488 

parameter standard deviations to learn how carbon flux is uncertain based on parameter value 489 

uncertainty. Uncertainty in 𝑨 resulted in a median 21% relative error in carbon flux while 490 
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uncertainty in 𝒃 resulted in median 19% relative error using the profiles in this study at all 491 

depths. Using the Guidi parameters instead of the Kriest parameters results in median differences 492 

approaching a factor of 2 (compared to factors of 6 when incorporating 80-128µm particles). 493 

Given the large uncertainty also associated with sampling volume, we recommend 494 

optimizing the flux model using the same UVP version, or by accounting for uncertainty directly 495 

in the model optimizations (e.g., Bisson et al., 2018). We note that the Guidi et al., 2008 study 496 

used a size interval of 250 microns to 1.5mm in order to incorporate older UVP versions (with 497 

sampling volumes ranging from 0.28 – 10.5L) and did not use UVP-5 data. However, although 498 

the Guidi et al., 2008 parameters were optimized over a different size interval than was used 499 

here, the specific values of 𝑨 and 𝒃 will not modify the sensitivity of flux to small size classes 500 

(compare Figure 7 with Supplementary Figure 6). Normally, 𝑨	and 𝒃 values are optimized 501 

within the boundaries of the size spectrum imaged by the UVP, and therefore any regionally 502 

optimized PSD-flux relationship is not necessarily problematic to use, even though the 503 

theoretical underpinnings of such a relationship are imperfect. 504 

It can be instructive to think of the flux model as a transfer function (𝑨𝒅𝒃) that is 505 

multiplied by 𝑵(𝒅). The transfer function is a monotonic power law that grows substantially at 506 

larger particle sizes. Therefore, if anything, the flux model is expected to be sensitive to rare 507 

instances of large particles, depending on 𝒃 versus α. If particles in the ocean grew indefinitely, 508 

infinite flux would be expected from this relationship. On the other hand, infinite flux is possible 509 

with smaller particle sizes if the concentration of particles grows more than particle size 510 

decreases, as was the case in this study. If the true PSD were not monotonic (i.e., increasingly 511 

higher concentrations of particles at lower particle sizes), a monotonic flux model (such as the 512 

power law used here) may be sufficient. What instead might be needed is a transfer function that 513 

quantifies the probability of a given particle size to sink. Small sized particles would accordingly 514 

have low probability, as would larger particles that are ultimately living zooplankton (or fish in 515 

the extreme case). Medium to medium-large sized particles would have moderate to high 516 

probability of becoming carbon flux, which might yield a more realistic carbon flux model. More 517 

work is needed to improve the PSD-derived carbon flux relationship, and especially the size to 518 

sinking carbon uncertainty, which is outside the scope of this paper. 519 

Finally, particles sized by the UVP include living and non-living particles, which adds 520 

uncertainty to flux calculations derived from PSD alone. If only non-living particles were 521 
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assembled for use by modelers and the rest of the community, the uncertainty associated with 522 

ambiguity of large particles (i.e., is it a zooplankter or aggregate?) would be reduced. Indeed, one 523 

study (Kiko et al., 2020) found reduced variability in PSD-derived carbon flux, during which 524 

living objects and artefacts with an equivalent spherical diameter larger than 1mm were removed 525 

from the UVP5 image dataset so that only detrital particles were used to calculate flux in this 526 

size range. 527 

4.5 Future applications of using a truncated power law to model PSD 528 

In this study we found enhanced performance of the modeled PSD when using a 529 

truncated power law rather than a power law. Truncated power laws offer more information 530 

about a PSD distribution compared to a power law because the behavior of the distribution is 531 

characterized through two main parameters (α, λ) rather than just one (α, in the case of a power 532 

law). There are several applications to using a truncated power law besides what has been 533 

explored here. First, with an improved model for PSD, one could extrapolate the PSD to quantify 534 

the carbon content of particles in the particulate fraction globally. Second, extrapolating the PSD 535 

using a truncated power law may enable improved respiration rates as derived from UVP 536 

observations, as current estimates are limited by the size resolved by the UVP (Kalvelage et al., 537 

2015, Thomsen et al., 2019). Third, the current UVP data hosted by Ecotaxa includes both living 538 

and non-living particles. Future work may explore whether or not the λ values will be useful to 539 

identify when the PSD spectrum transitions from particles to larger zooplankton (Forest et al., 540 

2012).  541 

 542 

5 Recommendations for future work 543 

Although we chose to focus on sampling uncertainties and how they influence carbon flux 544 

values, there are outstanding issues with the assumed size to sinking rate uncertainty, and size to 545 

carbon mass uncertainty. These uncertainties may be reduced in future work by using existing 546 

information from UVP images. Below, we mention a few possible avenues to address 547 

uncertainty associated with the UVP carbon flux model.  548 

1. Sampling uncertainty: Future UVP designs can reduce sampling uncertainty by 549 

increasing the sampling volume of the instrument. Current UVP designs can reduce 550 
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sampling uncertainty to some extent by performing multiple casts of repeat sampling. 551 

More work needs to be done in order to distinguish aggregates from living plankton for 552 

particles in the observable size range, preferentially down to 2 µm size.  553 

2. Size to sinking uncertainty: Although unconventional, a UVP fastened to a Lagrangian 554 

sediment and/or gel trap that is oriented with a side-viewing camera may allow sinking 555 

speed to be assessed via several images, where sediment trap flux, particle sinking speeds 556 

from a gel trap, and particle size information would be coupled and coincident. Similarly, 557 

in situ sinking speeds could be obtained using Particle Imaging Velocimetry (Cartwright 558 

et al. 2013), optimally during the upcast of a CTD/UVP profile. This logistically less 559 

demanding approach could yield PSD observations over the entire water column and 560 

coincident particle sinking speed observations at different water depths. Targeting 561 

blooms of different organisms with UVP observations may also help to improve size-562 

sinking relationships. Direct observations that better constrain the size-sinking scaling 563 

relationship globally, in different environments, and/or for different particle types is 564 

essential for improving uncertainties in UVP-derived fluxes. (Cael et al., 2021). 565 

3. Size to carbon content uncertainty: Dense particles may have a different reflectance than 566 

less dense particles (based on the fractal dimension) which might provide a way to semi-567 

quantitatively assess particle composition from the contrast of the images. If such an 568 

exercise is possible, the contrast of images may add information content to the flux 569 

relationship so particle size and concentration are not the only variables. Further 570 

classification of particle images into e.g. fecal pellets, marine snow and other types of 571 

detrital matter and the application of class specific size to carbon ratios might also reduce 572 

the errors in flux calculation (Durkin et al., 2021). Finally, due to remineralization, 573 

carbon content might also decrease over depth without large changes in size or 574 

appearance of the particles. Therefore, further work is needed to characterize the carbon 575 

to size relationship of detrital particles at different depths. 576 

Although we did not investigate the uncertainty associated with the conversion of UVP pixels to 577 

a particle size, more work is needed to characterize any error and uncertainty arising from 578 

particle shape differences and assumed spherical diameters. Improved edge detection of pixels is 579 
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needed, as well as a sensitivity analysis of how threshold values for edge detection affect particle 580 

size (as is also advised by Giering et al., 2020).  581 

6 Summary 582 

In this study we focused on UVP sampling uncertainties and how they propagate into 583 

derived estimates of carbon flux. The PSD observations from the UVP5 have a sampling 584 

uncertainty √𝑵/𝑽. The sampling uncertainty of PSD observations results in an uncertainty 585 

slightly greater than 50% for carbon flux. The extrapolated carbon flux from the UVP is based 586 

on a relationship that is highly sensitive (up to 6-fold different) to the inclusion of particles 587 

slightly smaller than what was observed. We advocate for a revised carbon flux relationship that 588 

is possibly non-monotonic and considers the probability of a given particle to become carbon 589 

flux. In the absence of an improved carbon flux relationship, carbon flux calculations should be 590 

made using parameters specific to a particular region and depth to prevent large errors. Future 591 

work may benefit by using UVP data in unconventional ways, such as coupling a UVP and 592 

sediment trap in the same water mass, and/or by performing image analysis on the particular 593 

pixels comprising a particle.  594 
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 782 
Supplementary Figure 1. Average values of alpha based on season, and at specific latitudinal 783 
bands with depth. Note that 0-20 means -20 to 0 and 0 – 20.  784 
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 785 
Supplementary Figure 2. Average values of λ (normalized to λ0 = 1mm) based on season, and at 786 
specific latitudinal bands with depth. Note that 0-20 means 20S to 0 and 0 – 20N. Note average 787 
values of lambda were performed on log10 (λ) and are converted back to non log10 transformed 788 
values. 789 
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 792 
 793 

 794 
Supplementary Figure 3. Violin plots for coefficient of variation in alpha (left), λ (middle) and 795 
carbon flux based on either 50m or 300m for three locations. The top row (dark blue violins) is 796 
the P16 line in the Pacific. The middle row (light blue) is the Mediterranean. The third row 797 
(white) is the Arctic. 798 
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 807 
 808 

 809 
 810 
 811 
Supplementary Figure 4. Seasonal transitions of alpha, lambda, and carbon flux (calculated with 812 
‘Kiko’ parameters, mg C m-2 d-1) at the 2 locations worldwide that have sufficient observations 813 
over a 5x5 degree grid annually (i.e., must have at least 100 observations annually and at least 8 814 
months of casts). Error bars represent the standard error for each month at different depths (25m 815 
in black, 150m in blue, and 1000m in green).  816 
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 823 

 824 
 825 
Supplementary Figure 5. Violin plots for coefficient of variation in α (left), λ (middle) and 826 
carbon flux based on 300m (resulting from the bootstrap procedure where sample volume was 827 
doubled as a test case). The coefficient of variation reported in this figure is due only to the 828 
sampling volume uncertainty and not natural spatiotemporal variations worldwide. 829 

 830 
Supplementary Figure 6. A. Flux comparisons between modeled N(d) flux (y axis) and N(d) flux 831 
from UVP observations (‘Guidi flux’) over the same particle size range. B. Histogram of percent 832 
difference (relative to ‘Guidi flux’) between all flux determinations in A. C. The ratio of 833 
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modeled N(d) flux (including 2 size bins smaller than the observed size range) to observed N(d) 834 
flux as a function of depth (colors dots) and alpha value. Black line represents equivalent fluxes. 835 
D. The ratio of modeled N(d) flux (including 2 size bins larger than the observed size range) to 836 
observed N(d) flux as a function of depth (colors dots) and lambda value relative to largest 837 
observed particle size. Black line represents equivalent fluxes. 838 
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