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Abstract

The predicted Antarctic contribution to global-mean sea-level rise is one of the most uncertain among all major sources. Partly

this is because of instability mechanisms of the ice flow over deep basins. Errors in bedrock topography can substantially

impact the projected resilience of glaciers against such instabilities. Here we analyze the Pine Island Glacier topography to

derive a statistical model representation. Our model allows for inhomogeneous and spatially dependent uncertainties and avoids

unnecessary smoothing from spatial averaging or interpolation. A set of topography realizations is generated representing our

best estimate of the topographic uncertainty in ice sheet model simulations. The bedrock uncertainty alone creates a 5% to

25% uncertainty in the predicted sea level rise contribution at year 2100, depending on friction law and climate forcing. Pine

Island Glacier simulations on this new set are consistent with simulations on the BedMachine reference topography but diverge

from Bedmap2 simulations.
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Abstract18

The predicted Antarctic contribution to global-mean sea-level rise is one of the most19

uncertain among all major sources. Partly this is because of instability mechanisms of20

the ice flow over deep basins. Errors in bedrock topography can substantially impact21

the projected resilience of glaciers against such instabilities. Here we analyze the Pine22

Island Glacier topography to derive a statistical model representation. Our model al-23

lows for inhomogeneous and spatially dependent uncertainties and avoids unnecessary24

smoothing from spatial averaging or interpolation. A set of topography realizations is25

generated representing our best estimate of the topographic uncertainty in ice sheet26

model simulations. The bedrock uncertainty alone creates a 5% to 25% uncertainty27

in the predicted sea level rise contribution at year 2100, depending on friction law28

and climate forcing. Pine Island Glacier simulations on this new set are consistent29

with simulations on the BedMachine reference topography but diverge from Bedmap230

simulations.31

Plain Language Summary32

We investigate the impact of uncertainties in the elevation of the bedrock un-33

derneath the ice of a particularly vulnerable glacier in Antarctica. We propose a34

new approach to better estimate how much future projections depend on knowledge of35

bedrock elevation. The main focus of this study is to represent the current understand-36

ing of the bedrock elevation as closely as possible so that our simulations accurately37

reflect the extent of our knowledge of the future glacier behaviour. In summary, we find38

that the mass of ice lost in simulations for year 2100, which contributes to the global39

mean sea level, can be affected by up to 25%. This highlights the value of closely-40

spaced bedrock measurement and of careful consideration of related uncertainties in41

ice-sheet simulations.42

1 Introduction43

The Antarctic ice sheet is one of the major sources of global sea level rise and44

is currently losing mass at a rate of 0.5 to 0.6 mm global mean Sea Level Equivalent45

per year (mm SLE a−1), predominantly in the Amundsen Sea Embayment (ASE) area46

of the West Antarctic Ice Sheet (WAIS) (Shepherd et al., 2018; Bamber et al., 2018).47

The future response of the Antarctic ice sheet to a changing climate is one of the least48

well understood aspects of climate predictions (Oppenheimer et al., 2019).49

Changes in the Antarctic ice sheet mass balance are largely governed by changes50

in the Surface Mass Balance (SMB) and ocean forcing via dynamical processes such as51

changing buttressing from ice shelves. Ice shelves, the floating extensions of grounded52

ice streams, can be weakened by elevated ocean or atmospheric temperatures and53

subsequent melt or collapse. Buttressing ice shelves have a stabilising effect on the54

ice sheet with the potential to suppress or delay Marine Ice Sheet Instability (MISI)55

(Schoof, 2007; Joughin & Alley, 2011). MISI can occur at ice sheets on retrograde56

topographies below sea level. Here a retreat of the Grounding Line (GL), the transi-57

tion from grounded to floating ice, corresponds to a migration below thicker ice. For58

idealised conditions the mass flux across the GL increases rapidly with the ice thick-59

ness above it (Schoof, 2007). This additional mass loss can lead to an imbalance of60

the system causing a thinning of the ice upstream, which facilitates further GL retreat61

below even thicker ice. Large areas of the WAIS, including the ASE, lie on such retro-62

grade topography (Fretwell et al., 2013). Pine Island Glacier (PIG), one of two major63

glacial systems of the ASE, has a large drainage basin and shares an ice divide with64

the Ronne-Filchner ice shelf drainage basin, so that a sustained thinning of PIG could65

ultimately influence most of the WAIS.66
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In the satellite record the ASE shows significant rates of thinning (Rignot et67

al., 2008; Mouginot et al., 2014; Shepherd et al., 2018), which have been linked to68

warm Circumpolar Deep Water entering the continental shelf (Dutrieux et al., 2014;69

Naughten et al., 2018; Rignot et al., 2014). Additional oceanic heat transport to70

the continent causes enhanced ocean melt which can thin and weaken the buttressing71

ice shelves. This might have caused a GL retreat and triggered Marine Ice Sheet72

Instability in the ASE at present (Joughin et al., 2014; Favier et al., 2014; Alley et al.,73

2015). Bamber and Dawson (2020) find a recent reduction of rates of mass loss from74

PIG even though it has maintained a negative mass balance and elevated flow speeds.75

This behaviour could be related to lower ocean temperatures in 2012-2013 compared76

with the 2000s (Milillo et al., 2017). In summary, PIG currently loses mass, shows77

strong sensitivity to ocean conditions and is situated on a bedrock topography which78

makes it vulnerable to instability.79

Predictions of the dynamic ice sheet response are challenging because of poorly80

observed local ice properties and the bedrock underneath, including the bedrock ele-81

vation, which suffer from measurement and spatial interpolation errors. As described,82

MISI depends on the local topography; a regional sill along the GL can create a stable83

resting point for an otherwise unstable ice stream. This kind of topographic feature84

can be concealed even if the large-scale geometry is well represented, for example due85

to insufficient sampling density (Durand et al., 2011).86

Several studies highlight the importance of the bedrock topography. Zhao et al.87

(2018) show that it influences the model inversion for basal traction coefficients. The88

impact of these results on forward simulations is, however, not investigated. The dif-89

ferences between Bedmap2 and its predecessor Bedmap1 can exceed the uncertainty90

in Antarctic sea level rise contribution from surface accumulation, melt rate, basal91

friction and ice viscosity combined (Schlegel et al., 2018). Consistent findings are92

reported by Nias et al. (2016, 2018). In order to investigate the impact of the to-93

pography uncertainty, random noise is imposed repeatedly on a reference topography94

in Sun et al. (2014) and Gasson et al. (2015). In 3000-year ice sheet simulations of95

the mid-Pliocene the sea level contribution can vary by more than 5 m global SLE96

(from 12.6 m to 17.9 m SLE) (Gasson et al., 2015). Sun et al. (2014) show with a97

similar approach that the sensitivity of modern ice sheet simulations to topographic98

uncertainty is much stronger for a longer correlation length (50 km) than for shorter99

values (5 to 10 km). This is despite equal noise amplitude and power spectral density100

which means that uncorrelated errors in the bedrock topography (e.g. from radar101

measurement noise) are less of a concern for ice sheet simulations than spatially corre-102

lated errors (e.g. from interpolation over large distances). Sun et al. (2014) also note103

that a topographic ridge near the PIG GL has a strong impact on the GL retreat if104

lowered or raised by only tens of metres but do not assess whether these kinds of larger105

spatial-scale errors in the topography are likely. Furthermore, the noise amplitude is106

solely based on the Bedmap2 uncertainty estimate so that the measurement locations107

are not directly taken into account.108

We here move beyond randomised sensitivity studies to generate a statistical de-109

scription of the current observational knowledge of the bedrock topography, creating110

an ensemble of representative topographies that are all consistent with these observa-111

tions. We apply the ensemble to idealised but plausible forcing scenarios to quantify112

the uncertainty in sea level rise contribution predictions, arising from observational113

uncertainties in the PIG topography.114

We introduce the airborne radar measurements used here and analyse the geo-115

statistical properties in Section 2. Based on this we set up simulations of the ice116

sheet model BISICLES in Section 3. This includes the statistical generation of a set of117

bedrock topographies which are in agreement with observational constraints while aim-118

ing to fully represent their uncertainties. Section 3 further describes the initialisation119
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and parameter inversion of the ice sheet model BISICLES, followed by a description120

of three friction laws and two climate forcings for the PIG simulations. Results are121

presented in Section 4 with focus on the sea level rise contribution uncertainty. Finally122

we discuss how bedrock uncertainty translates into predictive uncertainty in Section 5.123

2 Data and Methods124

We summarize our knowledge of the real bedrock in a multivariate random vari-125

able which is approximated by a Gaussian Process (GP). This statistical model can126

sample spatial fields of bedrock topography with local uncertainties and spatial covari-127

ance structure to represent measurement and interpolation uncertainties. To define a128

GP model, training data and covariance function parameters are required (Rasmussen129

& Williams, 2006). Ungridded airborne radar measurements are analysed to estimate130

the statistical characteristics of the bedrock topography observations. This provides131

us with the required GP model covariance function parameters. We train the GP to132

match observed values, given the observational uncertainty, and draw random sam-133

ples to make the handling of topography uncertainty feasible for the ice sheet model134

BISICLES.135

The airborne Radar Echo Sounding (RES) dataset used here is a union of two dif-136

ferent collections, namely the one described in Holt, Blankenship, Morse, et al. (2006),137

and Operation Ice Bridge IRMCR2 Level-2 data from October 2009 to December 2017138

(Paden et al., 2010). This combined collection consists of about 2.3 million ungridded139

radar measurements from the grounded PIG catchment area, as defined in Mouginot140

et al. (2017) based on Rignot et al. (2013). About 1.5% of these measurements are141

removed here by manual inspection due to inconsistencies (Text S1 and Figure S1 in142

the Supplement). For training the statistical model the RES dataset is sub-sampled143

for computational reasons. This is done by imposing a 2 km × 2 km grid onto the144

region and randomly selecting one measurement from each box from the combined145

measurement collection (giving about 25 000 measurements in total). This ensures a146

good spatial coverage while avoiding smoothing effects from averaging. The covariance147

function is derived from semivariograms on fully random subsets of 100 000 measure-148

ments without restriction on the proximity of sample points. Exponential functions149

are fitted to the semi-variance on scales of 25 km to 50 km to derive the uncorrelated150

uncertainty (σ2
n), correlation length scale (`) and far-field semivariance, or sill, (σ2

c ) to151

describe the spatial correlation characteristics. The uncorrelated uncertainty is an es-152

timate of the uncertainty of two measurements at the same location and represents the153

measurement uncertainty, including uncertainties from sub-resolution variability, while154

a larger correlation length of the topography simplifies any interpolation and reduces155

the corresponding uncertainty. The far-field semivariance describes the amplitude of156

variations in the topography field. These exponential fits accurately capture the semi-157

variance (Figure S2 in the Supplement) which motivates our use of an exponential158

covariance function cE for the GP, defined as:159

COV (xi, xj) = cE(r, σ2
c , `, σ

2
n) = σ2

c exp
(
− r

2`

)
+ σ2

n · δij ,160

where COV (xi.xj) is the covariance in the bedrock topography at the locations xi and161

xj , r is the physical distance between the locations xi and xj and δij is the Kronecker162

delta which is one if i = j and zero otherwise. The randomized sub-sampling for163

deriving the covariance parameters and the training data is repeated to capture the164

impact on the final simulations. See Text S2 in the Supplement for more information.165

We generate random two-dimensional sample fields which adhere to the full spa-166

tial covariance matrix and the local observational uncertainties, as illustrated in Fig-167

ure 1a. The topographic uncertainty increases with distance to the closest measure-168
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Figure 1. a: One standard deviation of trained GP which increases with distance from mea-

surements (flight lines) and b: Initial PIG ice velocity direction (arrows) and speed (colours), for

the main trunk (left half of panel a) of PIG flow including the approximate central flow line (red

and brown).
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ment (flight line) and is often above 50 m (one standard deviation), even in regions169

with close sampling.170

The computational demand of sampling from a GP scales with the number of171

evaluated grid cells n by O(n3), which imposes a limit on this number. We use the172

Python GPy module to draw 12 samples on a 4 km×4 km grid in the PIG catch-173

ment area. The statistically generated bedrock topographies within the grounded PIG174

catchment area are solely based on RES measurements and statistical modelling. How-175

ever, we use Bedmap2 topography and ice thickness outside of the grounded catchment176

area, brought to the same resolution by averaging. This includes all locations of the177

Bedmap2 ice shelf mask.178

The ice surface elevation is considered well known and the ice thickness is adjusted179

for all statistically generated topographies to match the Bedmap2 surface elevation.180

The resulting 12 topographies are accompanied by the Bedmap2 (Fretwell et al., 2013)181

and BedMachine (Morlighem, 2019; Morlighem et al., 2020) reference topographies182

with the same resolution.183

3 Simulations184

We use all combinations of the 14 topographies described above with three fric-185

tion laws and two climate forcings, resulting in a total of 84 simulations. The simula-186

tions are performed by the ice sheet model BISICLES (Cornford et al., 2013, 2015),187

which is a finite-volume model with vertically integrated stress approximations. BISI-188

CLES combines the L1L2 approximation (Schoof & Hindmarsh, 2010) with an adaptive189

mesh refinement which allows for fine spatial resolutions near the GL and in fast flow-190

ing ice streams, and lower resolutions where the flow is slower and more homogeneous.191

The finest resolution used here is 500 m. The BISICLES inverse model framework192

(Cornford et al., 2015, Appendix B1) is used with a compilation of satellite based ice193

surface velocities from Rignot et al. (2017, 2011) to find basal traction coefficient and194

effective viscosity fields for each individual topography (Text S3 in the Supplement).195

The basal traction coefficient, effective viscosity and topography fields do not evolve196

over time. Figure 1b illustrates the initial velocity field of the main PIG trunk.197

The Weertman friction law is :198

τb = Cm · |ub|m−1 · ub199

with τb being the basal stress tangential to the base of the ice, Cm is the spatially200

varying basal traction coefficient for a given friction law exponent m and ub is the201

basal ice velocity. We use m = 1 for linear friction, m = 1/3 for nonlinear friction and202

m = 1/8 for strongly nonlinear friction (called plastic friction in the following, see also203

Joughin et al. (2019)). Ice flow outside of the PIG catchment area is suppressed for204

numerical stability.205

3.1 Climate forcing206

We use two different climate forcings with changing ocean melt and SMB. These207

two forcings are intended to encompass the range of likely climate scenarios:208

1. The low forcing uses an RCP2.6 SMB and constant-in-time ocean melt rates.209

2. The high forcing uses an RCP8.5 SMB and linearly increasing ocean melt,210

starting at the low forcing rates and adding 200 % by the end of the 100-year211

model simulations212

As SMB we use yearly output directly from NorESM1-M, a CMIP5 atmosphere-213

ocean coupled global climate model (Bentsen et al., 2013). Of the three models se-214
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lected in Barthel et al. (2020) for the ice sheet model intercomparison project ISMIP6215

(Seroussi et al., 2020), NorESM1-M has the highest rank in the CMIP5 cross-model216

performance analysis by Agosta et al. (2015). The simulations show below median at-217

mospheric warming and relatively strong 21st century ocean warming compared with218

the multi-model ensemble (Barthel et al., 2020). The ocean melt at the beginning219

of the simulations is based on temperature and salinity profiles corresponding to the220

Warm0 setup in Favier et al. (2019) which is based on oceanographic measurements221

from Dutrieux et al. (2014). We use an ocean melt parameterisation with a quadratic222

dependence on the local ocean temperature above freezing, as defined in Favier et al.223

(2019) as Mquad. The squared dependency represents a positive feedback between sub-224

shelf melting and the circulation in the cavity and this parameterisation reproduces225

results from coupled ocean-ice sheet model simulations relatively well (Favier et al.,226

2019).227

Predictions of future ocean melt forcing are highly uncertain, but cannot be228

ignored for century-scale model simulations. The two forcings used here are designed229

to represent reasonable low and high melt scenarios without being bound to specific230

climate projections. Naughten et al. (2018) analyse and select CMIP5 model output231

as forcing for the regional ocean model FESOM. The ocean model predicts a year 2100232

ASE ocean melt increase of about 200% (multi-model mean) to 300% (ACCESS-1.0)233

for RCP8.5. However, the warming should be seen largely as reversal of a known model234

bias which makes it very likely that the increase in melt is overestimated (Naughten et235

al., 2018). This overestimation might be up to about 150% in melt increase (Wernecke,236

2020, Section 5.2.3). We select an increase of 200% in 100 years as a best guess upper-237

end melt representation. It cannot be ruled out that current ocean conditions are a238

positive anomaly caused by internal variability. Climate projections of ice shelf ocean239

melt rates for the ASE often show positive trends (Naughten et al., 2018; Alevropoulos-240

Borrill et al., 2020; Jourdain et al., 2020), but some projections show temporarily241

negative ocean temperature anomalies compared to the early 2000s (Jourdain et al.,242

2020; Alevropoulos-Borrill et al., 2020). We apply a constant ocean melt forcing,243

consistent with recent past rates, as reasonable lower-end forcing.244

4 Results245

4.1 Simulations246

In the first years we see high-amplitude small spatial-scale rates of ice thick-247

ness change which diminish over time. This is an adjustment of the model to a self-248

consistent state. In retrospect we should have implemented a spin-up period in the249

simulations with a constant forcing before the forced projections start. Instead our250

simulations start with forcing, including SMB corresponding to year 2000 AD. After251

15 years of simulation, corresponding to 2015 AD, the initial model adjustment be-252

comes negligible (Text S4 and figures S3 and S4 in the Supplement), hence we choose253

to make all following calculations relative to the state in 2015. In this way the impact254

of initial adjustments on the results is minimized.255

The ice geometry and flow speed along the downstream sector of the central256

PIG flow line (B to D in Figure 1b) is illustrated for plastic friction in Figure 2. The257

statistically generated topographies (right) show more variability than Bedmap2 and258

BedMachine (left). For low forcing the glacier thins slightly without much change of259

the GL position. At the same time the ice speed reduces, in particular in the fast-260

flowing ice shelf. A partial slowdown of the PIG is also predicted for the flow line261

model simulations in Gladstone et al. (2012) and is found in the optimized (central)262

simulations from Nias et al. (2016) for all combinations of bedrock and friction law263

(not shown).264
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Figure 2. Profiles along PIG flow line from location B to D in Figure 1, relative to the Bed-

Machine GL with BedMachine (top left) and Bedmap2 (bottom left) and two statistically gener-

ated topographies (right). Shown are the bedrock underneath the ice (black), surface and basal

ice boundaries (grey) and the ice speed (red) after 15 years of simulation (used as baseline; solid

lines) and at the end of the 100-year simulations with high (dotted) and low (dashed) forcing, all

using the plastic friction law. The orange line highlights a location where Bedmap2 lies above all

statistically generated topographies and BedMachine.

For the high forcing scenario we see very different pictures for BedMachine and265

Bedmap2 geometries: For BedMachine the ice near its GL accelerates over the 85 year266

projection period from less than 4000 m a−1 to more than 5000 m a−1. The speed-up267

extends more than 150 km upstream (red lines in Figure 2). For Bedmap2 the high268

forcing scenario does not show noteworthy acceleration or thinning.269

The flow line characteristics of two topographies generated here are shown on270

the right of Figure 2. Simulations with statistically generated topographies share the271

same features of those using BedMachine: little changes to the ice geometry with some272

slowdown of the ice for low forcing, and pronounced thinning with significant retreat273

of their GLs and accelerating ice for high forcing.274

4.2 Sea level rise contribution275

The ensemble behaviour can be categorized into two states, a steadily evolving276

state with approximately constant rates of mass loss (about 0.1 mm SLE a−1) and an277

unstable state with mass losses up to six times higher (Figure 3, top). The timing of an278

ensemble member to become unstable depends strongly on the topography and forcing:279

most high melt simulation become unstable between 2055 and 2075. This timing seems280

not to depend on the friction law (Figure 3, top right). Low melt ensemble members281

remain in the steadily evolving state without exception.282

The main effect of the friction law is an increase in the rate of mass loss in the283

unstable state with higher rates for more non-linear friction laws (Figure 3, middle).284

For low forcing the relationship is reversed, more linear friction leads to larger sea level285
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Figure 3. Net sea level contribution (left) and yearly rate (right). Individual simulations

(top), grouped by friction law and forcing (middle) and grouped only by forcing including

Bedmap2 (bottom). Shades correspond to ± one standard deviation.
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Table 1. Mean 2100 sea level contribution estimates (relative to 2015) with one standard

deviation of the statistically generated bedrock ensemble (both in mm SLE)

Friction law: Linear Nonlinear Plastic

High Forcing: 11.3 ±2.08 15.5 ±3.86 19.4 ±5.15
Low Forcing: 6.7 ±0.31 5.6 ±0.62 4.7 ±0.87

contributions. This can be traced back to the slowdown of the ice as shown in Figure286

2. Highly nonlinear friction laws facilitate decelerating ice to slow down even more287

and accelerating ice to speed up more than linear counterparts. This also explains288

why the predictive uncertainty due to the bedrock uncertainty strongly increases with289

non-linearity of the friction law and with stronger forcing. The standard deviation290

(STD) of the net sea level contribution over the 85 years increases with non-linearity291

(Table 1) which is consistent with the literature (Nias et al., 2016). The STD values292

range from 0.31 mm SLE for low forcing and linear friction to 5.15 mm SLE for high293

forcing and plastic friction which corresponds to about 5% to 25% of total sea level294

contribution (Figure 3 middle and Table 1).295

All simulations shown here agree regarding the total sea level contribution for the296

low forcing scenario. However, with high forcing Bedmap2 runs are not consistent with297

the behaviour of simulations based on topographies generated here or BedMachine. For298

Bedmap2 simulations sea level rise contributions remain in the more stable, steadily299

evolving state regardless of forcing and friction law (Figure 3 bottom).300

5 Discussion301

The nonlinear response of PIG to strong forcing materializing in two distinct302

states is consistent with literature (Sun et al., 2014; Durand et al., 2011; Nias et al.,303

2018) and is in general agreement with the MISI hypothesis. None of these studies is304

designed to fully represent the current observational uncertainty in bedrock topogra-305

phy. Marine ice-cliff instability is not represented here but cannot be ruled out on these306

timescales. More research is needed to robustly represent marine ice-cliff instability in307

a well constrained way to predict how strong its impact would be on our simulations308

(Edwards et al., 2019).309

Bedmap2 PIG simulations show less sensitivity to strong climate forcing than the310

statistically generated topographies and BedMachine but it is unclear what aspect of311

the topographies cause this response in the simulations: BedMachine uses a mass con-312

servation approach where topographies are relaxed to avoid large mass flux divergence313

from inconsistent ice geometry-velocity combinations. Nias et al. (2018) supports our314

results in finding that a topography generated by a similar process to BedMachine315

exhibits a step change in mass loss which does not appear in Bedmap2 simulations.316

However, the topographies generated here, in common with Bedmap2, do not enforce317

a mass-conservation condition, share a topographic high near the Bedmap2 GL and318

use the same surface geometry. The fact that BedMachine does not share these char-319

acteristics, nor the same initial grounding line location, makes it even more remarkable320

that simulations using BedMachine and topographies generated here show consistent321

sea level rise contributions for both forcings. Our topographies show considerably322

more spatial variability in the topography than the relatively smooth Bedmap2 and323

BedMachine.324

There are sporadic locations, including one about 20 km upstream of the Bed-325

Machine GL, where Bedmap2 topography is higher than all statistically generated326

topography and BedMachine (location highlighted in Figure 2, Figure S5 and Figure327
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S6 in the Supplement). Especially since this location is a local topographic low (Fig-328

ure 2) it is not clear whether it can explain the unique behaviour of Bedmap2 (see329

also Text S5 in the Supplement). It is therefore unclear whether this behaviour is330

unique to PIG but we have been able to show that ice sheet simulations can generally331

be very sensitive to the bedrock topography. Whatever the exact reason, the striking332

underestimation of PIG mass loss for Bedmap2 simulations and high forcing relative to333

the other topographies (Figure 3, bottom), calls for caution in interpreting modelling334

projections of grounding line retreat obtained with this topography.335

A limitation of our simulations is the resolution of statistically generated to-336

pographies of 4 km × 4 km (which is interpolated up to 500 m resolution within the337

adaptive grid refinement of BISICLES). The reason is the relatively high computa-338

tional demand of a Cholesky decomposition which is used to generate random samples339

from a large covariance matrix. Evaluations of the mean field (’best estimate’) would340

have been possible on fine resolutions, but would not have covered all of the uncertain-341

ties. The statistically generated topographies contain much more variability than both342

reference topographies and finer resolutions would, if anything, amplify this property.343

Nevertheless, simulations using Bedmap2 topography at 1 km resolution behave very344

similarly to those with degraded 4 km resolution (not shown).345

To represent bedrock uncertainty in future simulations it would be desirable to346

have a set of topographies similar to the ones generated here but for more general347

setups, ideally continent-wide. This would allow different modelling groups to rep-348

resent topographic uncertainty in predictions while retaining comparability. Similar349

approaches could be used to assess the value of additional measurements, e.g. for350

planning future campaigns.351

In conclusion, we have been able to couple the representation of the topographic352

uncertainty in ice sheet simulations closely to observational constraints and demon-353

strate how this uncertainty interacts with other model parameters. The predictive354

uncertainty increases with non-linearity of the friction law and with higher melt forc-355

ing. One standard deviation can contribute between 5% and about 25% (equivalent to356

5 mm SLE) of the 85-year signal, solely due to uncertainties in topography measure-357

ments and interpolation. These predictive uncertainties have been known to exist but358

until now remained largely omitted and unquantified. The low forcing scenario, which359

is more likely to be realized in very low greenhouse gas emission scenarios, would limit360

the PIG contribution to global mean sea level in this century. In addition we find the361

use of Bedmap2 to be likely to lead to an underestimation of the dynamic response of362

PIG to high forcing scenarios compared to the use of topographies designed explicitly363

to span the range of uncertainty which all suggest higher rates of mass loss.364

6 Open Research365

The simulations and bedrock topographies generated here are in public archive366

at Wernecke et al. (2021a),Wernecke et al. (2021b) and Wernecke et al. (2021c) (linear,367

nonlinear and plastic friction, respectively). Radio echo sounding data is available from368

Paden et al. (2010) and Holt, Blankenship, Corr, et al. (2006). The Python code for369

the statistical modelling of the representative topographies can be found at Wernecke370

(2021).371
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Text S1.

1. RES data inconsistencies

By careful inspection we asses the consistency of the radio echo sounding data. In

particular we inspect the ice thickness estimates and search for (1) sudden and sustained

changes along flight lines (e.g. as highlighted at the bottom of Figure S1) and (2) sections

of flight line ice thickness estimates which cross several other flight lines and have sustained

different values (e.g. as highlighted in the center of Figure S1). These two criteria are

often found in conjunction. Note that Figure S1 is not the final dataset used here, but

illustrates the process of identifying inconsistencies.

Text S2.

2. Statistical properties of the bedrock topography

The information in this section is taken from Wernecke (2020), with minor adjustments,

and repeated here for the readers’ convenience.

2.1. Gaussian Process modelling

In the following we will describe our approach to generating new bedrock topographies

in more detail. The main novelty is that we use a stochastic model to represent the

bedrock topography at each location as a random variable and represent uncertainties

in these random variables (the spread) by sampling spatial fields of bedrock topography

which inhabit the local uncertainties and spatial covariance structure.
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The bedrock can be understood as continuous random variable B, approximated as a

Gaussian Process,

B = G(~̄b(~z, ~θ), c(~θ)), (1)

where G(·, ·) denotes a Gaussian Process. The bedrock topography at each location in

the horizontal model domain is therefore considered a random variable with Gaussian

distribution centered at ~̄b(~z, ~θ), depending on the observations ~z with covariance between

locations defined by the covariance function c(~θ). The covariance function parameters ~θ

define among other things the length scale of decorrelation, or in other words, how in-

formative the topography at one location is for the topography at surrounding locations.

We do not use a reference topography as prior nor do we subtract any mean function in

order to ensure independence from all published datasets. This will allow us to investi-

gate the consistency between the topographies statistically generated here and reference

topographies (Bedmap2 and Bedmachine) in the following analysis.

We assume the existence of an optimal set of covariance function parameters ~θ∗ and

constrain estimates of ~θ∗ with observations. To asses these covariance function parameters

we will in this section describe the analysis in more detail than possible in the main text.

Using conditional likelihoods we can express Equation 1 as:

B = G(~̄b(~z, ~θ∗), c(~θ∗)) |~θ∗ · π(~θ∗|~z) · π(~z) (2)

Due to computational constraints we have to use subsets of the whole set of observations

(~z), with ~z1 of O(10 000) measurements for ~̄b(~z, ~θ∗) and ~z2 of O(100 000) for π(~θ∗|~z). The

reason for the different sample sizes is that the computational expense associated with
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the size of ~z1 is of O(n3) the expense associated with the size of ~z2 is of O(n2) (see below).

Equation 2 becomes:

B = G(~̄b(~z1, ~θ∗), c(~θ∗)) |~θ∗ · π(~θ∗|~z2) · π(~z2) (3)

We constrain π(~θ∗|~z2) using semivariograms. In semivariograms the distances between

all possible pairs of ~z2 are binned, in our case in 250 m intervals and the covariance between

all pairs within each interval is calculated. It therefore illustrates how the correlation

in topography elevation diminishes with distance and can be used to infer the nugget

(variance at a distance of zero), range (characteristic correlation length scale) and sill

(far field variance) by a least squared error fit. We use an exponential function for the

semivariogram fit and the covariance function of the GP model which allows us to use the

fitted parameters as our best estimate of θ∗. A limitation of using semivariograms to find

the covariance function is the possible dependency of π(~θ∗|~z2) on the size of the domain

examined for the semivariograms. This additional uncertainty is taken into account by

using six different domains, from [0 km, 25 km] to [0 km, 50 km] (see Figure S2). That

is from the approximate width of contributory glaciers of PIG (25 km) to approximately

the largest data gap between flight-lines in the catchment area (50 km). The spatial

characteristics on scales larger than this will be well constrained by the observations

themselves. Note that the range parameter can lie outside of this domain, as this is

merely the domain used for fitting. The total number of pairs n samples can build is

n(n − 1)/2, which explains why the computational cost of semivariograms scales with

O(n2).
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The distribution of π(~z2) is represented by repeated random sub-sampling of ~z2 from

~z. Six different sets of ~z2 are then used for π(~θ∗|~z2) together with six different fitting

domains, increasing the upper bound in 5 km steps from 25 to 50 km to represent the

distribution of π(~θ∗|~z2). The six resulting semivariograms are shown in Figure S2 and

the corresponding estimates of θ∗ are shown in Table S1. The relatively small spread

of estimates of θ∗ (Table S1) illustrates that the combined impact of sub-sampling and

fitting interval size on θ∗ is small, supporting the robustness of this approach. All those

estimates are used successively for the GP model G(~̄b(~z1, ~θ∗), c(~θ∗)) |~θ∗ (technically these

are six separate GP models which are handled in the same way at all times). In order

to ensure good spatial coverage by ~z1 we impose a regular grid with 2 km resolution on

the region and randomly select one measurement from each non-empty grid cell. This

semi-random selection is repeated for each estimate of θ∗.

To address the correspondence of parameters from the semivariogram fit and the covari-

ance function it can be illustrative to discuss particularly the role of σ2
c . It is derived as

the sill of the exponential fit to the semivariance, representing the semivariance at large

distances where spatial correlations are negligible and enters the covariance function as

scaling parameter of the exponentially decaying covariance. For very small distances r,

COV (xi, xi) ≈ σ2
c . The covariance of the topography at xi with xi is simply the variance

at this location. The semivariance (y) for a given distance (r) between the locations xi and

xj is defined as: y(xi, xj) = 0.5 ·V AR(f(xi)−f(xj)), where f() represents the mapping of

locations to topography values. For locations far from each other (r � `) the topography
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is considered uncorrelated so that the semivariance simplifies to:

y(xi, xj) = 0.5 · V AR(f(xi)) + 0.5 · V AR(f(xj)).

We have seen before that for our covariance function, the variance at xi approaches σ2
c ,

so that y(xi, xj) = σ2
c if xi and xj are far from each other. Therefore the parameter σc

in the covariance function can be approximated by the sill of the semivariance. In other

words, the semivariance is reduced where the covariance is still large, but the maximum

semivariance (σ2
c ) informs the total variance which is defined by the covariance at very

small r.

Considering a set of training point locations ~x1 with corresponding topography values

~z1, the random distribution of a GP model at a new, finite set of locations ~x∗ is found

(see e.g. Rasmussen and Williams (2006)) by:

G(~̄b(~z1, ~θ∗), c(~θ∗)) = N(~̄b(~z1, ~θ∗),Σ∗) (4)

~̄b(~z1, ~θ∗) = K( ~x∗, ~x1)K( ~x1, ~x1)
−1~z1 (5)

Σ∗ = K( ~x∗, ~x∗)−K( ~x∗, ~x1)K( ~x1, ~x1)
−1K( ~x1, ~x∗)) (6)

where N(~µ,Σ) represents a multivariate normal distribution with mean vector ~µ and

covariance matrix Σ. The values of K(~x, ~x)ij = c(~xi, ~xj) are derived from evaluations of

the GP covariance function c(·, ·) of the ith and jth member of ~x (see covariance equation

in the main text). The diagonal of Σ∗ is the total variance at locations ~x∗, as shown, in

terms of its square root, in Figure 1(a) and shading in Figure S5.
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2.2. GP samples

For the application in this work it is essential that the samples from the Gaussian Process

(GP) are continuous so that no unreasonable jumps in the topography are created. The

only way to ensure continuous samples, representing the full PIG topography covariance

structure is to avoid any subdivision of the PIG basin in the topography generation

process. As will be shown in the following, this influences the numerical demands and

achievable topography resolution of this approach.

We use the GPy Python toolbox (specifically: posterior samples f()) to generate those

samples. It is however informative to follow Rasmussen and Williams (2006, Section A.2)

to give a short introduction on how samples can be generated without a specific toolbox.

A scalar random number generator and an implementation of a Cholesky decomposition

algorithm will be assumed, both widely available in mathematical software. First we use

the Cholesky decomposition to find the lower triangular matrix L for the positive-definite

symmetric covariance matrix ΣG which satisfies LLT = ΣG. ΣG is the GP covariance ma-

trix with element i,j: ΣG,i,j = COV (xi, xj). We then generate n∗ independent standard-

normally distributed random numbers stacked to the vector ~p where n∗ is the number of

evaluation points ~x∗. A sample of the distribution G is then found by ~o∗ = ~µG + L~p,

where ~µG is the mean field of the GP. By construction the covariance matrix of ~o∗ is

E[~o∗ ~o∗
T ] = LE[~p~pT ]LT = LLT = ΣG. Cholesky decompositions scale with order n3, cre-

ating comparable restrictions for the number of training data for GPs without additional

approximations and evaluation locations of GP samples. On modern workstations this

limit is of the order of a few 10 000 evaluation locations.
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Text S3.

3. Model Inversion

The information in this section is taken from Wernecke (2020), with minor adjustments,

and repeated here for the readers’ convenience.

Each topography is used separately to find basal traction coefficient and effective vis-

cosity fields for PIG using the BISICLES inverse model framework with surface velocities

from (Rignot et al., 2017, 2011) which have been re-gridded from 450 m to 1 km resolution

using bilinear interpolation. The velocity data have been compiled from a large range of

satellite missions, spanning in total the period from 1996 to 2016. It should however be

noted that the data acquisition is not homogeneous throughout time. For example, only

two of eight satellite missions used provide any data before 2006 and the start of the

Landsat-8 and Sentinel-1 missions in 2013/2014 creates elevated data density towards the

end of the 20-year period.

All datasets used for model inversion and initialisation are collected relatively close

to the the year 2000 and even though a robust definition of a start year is challenging,

the timestamp of the SMB forcing allows us to date the start of the simulations to year

2000 AD.

We use a linear Weertman friction law for inversions as in our experience it increases

numerical stability in the optimisations compared with nonlinear Weertman friction laws.

The effective viscosity is not influenced by the friction law but the inverted fields of basal

traction coefficients have to be transformed to nonlinear equivalents as described below.

The Weertman friction law is:
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τb = Cm · |ub|m−1 · ub

with m = 1 for linear friction, m = 1/3 for nonlinear friction and m = 1/8 for strongly

nonlinear friction. In the following we will refer to the m = 1/8 friction law as plastic

friction law (see also Joughin, Smith, and Schoof (2019)). Here τb is the basal stress

tangential to the base of the ice, Cm is the spatially varying basal traction coefficient for

a given friction law exponent m and ub is the basal ice velocity. With the optimal initial

basal shear stress τb being independent of the friction law it follows that

C1 · |ub0|0 · ub0 = C1/3 · |ub0|(−2/3) · ub0

and hence C1/3 = C1|ub0|(2/3), where ub0 is the basal velocity at the beginning of the model

period (as used for the inversion). An equivalent transformation is performed for plastic

friction with m = 1/8.

Ice flow outside of the catchment area is expected to have minimal influence on the PIG

flow. Therefore we drastically increase the basal traction coefficient for all friction laws

to 106 Ns m−3 for grounded areas outside of the catchment area to effectively prevent ice

from flowing. This is done for numerical stability at the quadratic domain boundaries

and for numerical speed since suppressed ice flow allows the adaptive mesh to use lower

resolutions.

Text S4.
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4. Initial model behaviour

The information in this section is taken from Wernecke (2020), with minor adjustments,

and repeated here for the readers’ convenience.

Here we address the initial model behaviour and define a reference year for later projec-

tions. Figure S3 shows the yearly change in ice thickness (ds/dt, based on finite differences

of the yearly data) for one of the randomly generated ensemble members (set Br) with

low forcing and plastic friction as an example. In the first years we see high-amplitude

small-spatial-scale rates of ice thickness change which diminish with time to larger scale

rates with smaller amplitude (as can be seen for year 15 of the simulation in Figure S3).

These initial very high rates of ice thickness change can be attributed to an adjustment

of the model to a self-consistent state. It indicates that, before adjusting, the flow regime

and geometry are initially inconsistent with the model physics. The challenge here is to

define the time when the persistent response dominates over the initial adjustments.

In retrospect we should have implemented a spin-up period in the simulations with

a constant forcing (ocean melt and SMB) for the model to find a self-consistent state

before the forced projections start. Instead the imposed SMB in all of our simulations

use estimates for year 2000 in the beginning of the simulations which is why we define

the beginning of the simulations as year 2000. In the same way, the basal melt starts

to increase from the first year in the high forcing runs. In the following we will instead

define a reference year which is used as baseline for calculations, e.g. of sea level rise

contributions, in order to minimize the impact of initial adjustments on the results.
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Defining a reference year by inspecting each of the 84 ensemble members (12+2 topogra-

phies times two forcings and three friction laws) in the style of Figure S3 is impractical.

Therefore we calculate the spatial mean of the absolute ds/dt values and plot the de-

velopment for each ensemble member using a Br, Bedmap2 or BedMachine topography

in Figure S4. Following a maximum ice thickness change in the first year, all ensemble

members level out to a stable rate after a few decades or less. Bedmap2 and BedMachine

start from slightly lower values in the beginning but take a similar period of time to reach

a stable rate. It is not clear whether this slightly reduced period of adjustment indi-

cates a more consistent initial state or reflects the smoother nature of those topographies.

Based on Figure S4 we choose the 15th year of simulation as reference and consider this

a conservative (on the larger end) value.

Text S5.

5. Possible explanations for the outlier behaviour of Bedmap2 simulations

In this section we discuss possible explanations for the outlier behaviour of Bedmap2

simulations, which remain in a steadily evolving state even for strong increasing ocean

melt and RCP8.5 SMB. As stated in the main text, we cannot conclusively identify the

cause of this behaviour but can show that there is no particular topographic height or

feature in the basal friction field that offers a likely explanation.

5.1. Comparison of the topographic maps

Figure S5 shows all topographies used here, and the GP mean field, which was not used

for the simulations. It can be seen that the GP mean and Bedmachine agree well along

this flowline. Bedmap2 largely follows the same shape but is some 50 m higher. In two
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dimensions (Figure S6) a similar picture emerges. The average of the statistically gener-

ated fields is largely below Bedmap2 but this offset is relatively homogeneous within the

main trunk of PIG (along the line in Figure S6, left). There are only sporadic locations

where Bedmap2 is above (red) or below (blue) all individual members of the statistically

generated ensemble (Figure S6, right). There are a few grid cells where Bedmap2 is higher

than all statistically generated topographies (red cells highlighted by orange frame in Fig-

ure S6, right) which resembles what could be interpreted as topographic elevation crossing

the PIG trunk. However these consist of only approximately three grid cells which are

not always adjacent. In fact, this corresponds not to a topographic high but a local de-

pression which is also highlighted by an orange line in Figure S5 about 20 km upstream

of the GL. A less deep depression in Bedmap2 compared to the other topographies is not

as straightforward to associate dynamically with flow stabilization than a topographic

high. Nevertheless, Nias, Cornford, and Payne (2018) argue that a small regional depres-

sion (20-30 m in amplitude, 4 km in diameter) can cause an dynamic thinning impulse

which propagates upstream and is sustained even when another stabilising GL location is

reached.

Figure 2 in the main text shows a topographic high near the GLs of the statistically

generated topographies and Bedmap2. Considering the different behaviour of simulations

on those topographies, this rise is not a defining factor for the response. This seems to be

because the topographic high is hardly in contact with the ice in the first place. This could

(but does not have to be) a sign that the reason for Bedmap2 to have this topographic

high is the misclassification of RES reflection from the bottom of a floating ice shelf as
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topographic reflections from grounded ice. In that case the base of the falsely assumed-

grounded ice would coincide with the hydrostatic equilibrium and hence unground very

easily. The statistically generated topographies have the same topographic high because

they use the Bedmap2 geometry where no clear contact with the ground can be established.

We use the Bedmap2 ice shelf mask to distinguish between grounded and ungrounded

locations in the topography generation process, which is derived directly from satellite

observations.

5.2. Basal friction coefficient

All topographies have their own inversion for basal friction coefficients which are held

constant for the simulations. In the supplemented media (.gif) files we show animations of

the grounding line retreating within the 100-year long simulations for Bedmap2, Bedma-

chine and two statistically generated topographies along with the basal friction coefficients

(in all cases with strongly nonlinear friction law and strong forcing). This highlights the

existence of linear features across the PIG trunk in all cases and shows how the retreat

of the corresponding grounding lines is influenced by these features. The initial situation

for the statistically generated topographies and Bedmap2 is such that the closest linear

feature of high friction is not close to the grounding line. For the statistically generated

topograpies the retreat is much faster and widespread, not through a specific gap in a

high-friction feature, while for Bedmap2 there is limited retreat. The initial Bedmachine

GL is much closer to a linear high friction feature compared to the other topographies

used, the grounding line subsequently retreats, starting at the southern side of the ice

stream and settling temporarily at a second, upstream high-friction feature later in the

March 11, 2022, 6:32pm



X - 14 :

simulation. Again, we cannot identify a particular feature in the friction coefficient that

would be a likely explanation for the difference in simulation behaviour.

We further note that the Bedmap2 topography lies largely above the others within

the first approximately 150 km upstream from the GL (Figure S5) and that, for the same

surface elevation of the ice, an elevated topography is further from hydrostatic equilibrium

and could hence be less prone to retreat. The about 50 m difference in ice thickness

corresponds to an additional couple of metres of ice which need to be removed before

ungrounding, which is small compared to the locally more than 250 m of melt per year.

This indicates that the, on average, higher Bedmap2 topography and its corresponding

thinner ice thickness alone is not a likely explanation for the outlier behaviour of Bedmap2

simulations either.
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Figure S1. Ungridded RES ice thickness estimates (from zero - dark blue to 2300 m - red)

before (left) and after (right) removal of some inconsistent data. Locations inconsistent data are

highligterd by red rectangles. Data from Holt et al. (2006) and Paden et al. (2010)

Table S1. Estimates of ~θ∗

θ∗25 θ∗30 θ∗35 θ∗40 θ∗45 θ∗50
Fitting interval [km] 25 30 35 40 45 50
Nugget σ2

n [m2] 563 647 652 477 583 661
Range ` [km] 19 18 18 17 19 20
Sill α2 [×103m2] 82 82 79 79 83 86
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Figure S2. Semivariograms of bedrock topography for Pine Island Glacier from ungridded

airborne RES observations described in the main text with exponential least-squared-error fits

(lines). Different fitting intervals are used (as quoted in each panel) to investigate the impact of

the fitting interval on the parameter values, which are shown in Table S1.
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Figure S3. Ice thickness change across PIG model domain in the beginning of the simulations

after initializing with velocity data from 1996 to 2016 (years of simulation shown in the lower

right corners). Based on a statistically generated topography (Br #5) with low forcing and

plastic friction. Note the smaller colour range in the lower right panel.
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Figure S4. Spatial mean of absolute ice thickness change across PIG model domain for the

beginning of the simulations. The initial drop can be associated with BISICLES adjusting to a

self-consistent state.
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Figure S5. Bedrock topographies on 4 km resolution for Bedmap2, BedMachine, 12 topogra-

phies statistically generated here (Br; for illustration interpolated with a quadratic spline) and

the GP model trained on 30 km domain for which shading illustrates ±σ. The cross-section

roughly follows the center of PIG, as shown in Figure 1 in the main text from point A (left)

to point D (right). Grounding line location (x=0) is based on BedMachine geometry which

coincides for this section with the extent of the GP models. Under the ice shelf (as defined

by Bedmap2) the topographies statistically generated here use the Bedmap2 topography. The

orange line highlights a location mentioned in the text.
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Figure S6. Left: Difference of Bedmap2 and the mean of all statistically generated topogra-

phies used here. Right: Difference between Bedmap2 and the closest member of the statistically

generated ensemble where Bedmap2 is outside of the envelope of those topographies. At locations

where Bedmap2 lies within the range of the statistically generated topographies, the Bedmap2

topography itself is shown (grey shading in background). For comparison, the central flow line

of PIG as in Figure 1 in the main text. The orange frame highlights a region mentioned in the

text.
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6. Additional Supporting Information (Files uploaded separately)

Movie S 0.1. Basal stress parameter τb in Pa. Where ice is ungrounded the basal friction is set

to zero, otherwise the parameter from the initial model inversion is shown. The animation shows

the retreat of the grounded ice by an expansion of zero valued τb over 100 years (also highlighted

by black line) with Weertman friction law and exponent of m = 1/8 and Bedmap2 topography.

Movie S 0.2. as Movie S0.1 but for BedMachine topography.

Movie S 0.3. as Movie S0.1 but for statistically generated topography ’Br001’.

Movie S 0.4. as Movie S0.1 but for statistically generated topography ’Br002’.
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