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Abstract

We present a method for predicting wave dissipation by sea ice that is based on the dimensional analysis of data with a scaling

defined by ice thickness. Applying the method to an extensive dataset from the measurements during the “Polynyas, Ice

Production, and seasonal Evolution in the Ross Sea” (PIPERS) cruise in 2017, we derive a new model of wave dissipation which

not only describes a nonlinear dependence on ice thickness but also reveals its relation with the dependence on frequency. This

nonlinear dependence on ice thickness can have more implications on predicting low-frequency waves. The root-mean-square

error of the prediction is significantly reduced using the new model, compared with other existing parametric models that are

also calibrated for the PIPERS dataset. The new model also explicitly describes a condition of similarity between large- and

small-scale observations, which is shown to exist when various laboratory datasets collapse onto the prediction.
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Key Points:5

• A new method improves the prediction of wave dissipation, by using the dimen-6

sional analysis of data and an ice-thickness based scaling.7

• A new wave dissipation model describes a nonlinear dependence on ice thickness8

and a condition of similarity between field and lab data.9

• The prediction error is significantly reduced when applied to field data. The dis-10

similarity between field and lab data is resolved.11

Corresponding author: Jie Yu, Jie.Yu@nrlssc.navy.mil
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Abstract12

We present a method for predicting wave dissipation by sea ice that is based on the di-13

mensional analysis of data with a scaling defined by ice thickness. Applying the method14

to an extensive dataset from the measurements during the “Polynyas, Ice Production,15

and seasonal Evolution in the Ross Sea” (PIPERS) cruise in 2017, we derive a new model16

of wave dissipation which not only describes a nonlinear dependence on ice thickness but17

also reveals its relation with the dependence on frequency. This nonlinear dependence18

on ice thickness can have more implications on predicting low-frequency waves. The root-19

mean-square error of the prediction is significantly reduced using the new model, com-20

pared with other existing parametric models that are also calibrated for the PIPERS dataset.21

The new model also explicitly describes a condition of similarity between large- and small-22

scale observations, which is shown to exist when various laboratory datasets collapse onto23

the prediction.24

Plain Language Summary The dissipation of wave energy by sea ice is physically com-25

plex due to waves interacting with various forms of ice, such as large sheet, floes, slushy26

ice-water mixture. Theories of wave-ice interaction are limited due to lack of appropri-27

ate mathematical representation of ice. In large-scale operational modeling, we gener-28

ally use empirical formulas to parameterize the collective effects of ice. Clearly, the ac-29

curacy of such empirical models determines the accuracy of operational forecast/prediction30

of wave energy distribution in ice-infested oceans. We develop a new method to improve31

the parameterization of wave dissipation in sea ice, using an engineering tool of dimen-32

sional analysis with an ice-thickness based scaling. The scaling causes data to collapse33

towards a general trend, revealing the relations among physical variables. Applying the34

method to a large field dataset, we derive a new model of wave dissipation which describes35

a nonlinear dependence on ice thickness, and its relation to the dependence on frequency.36

It significantly reduces the error of prediction when compared with other parametric mod-37

els that are also calibrated for the same dataset. When extrapolated, it agrees very well38

with various lab datasets, thus showing the condition of similarity between small-scale39

lab and field observations.40

1 Introduction41

As large-scale operational wave models have become relatively mature, e.g. WAVE-42

WATCH III® (WW3) (Tolman, 1991; WW3DG, 2019) on the global domain and SWAN43
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(‘Simulating Waves Nearshore’, Booij et al., 1999; SWAN team, 2019) on high-resolution44

coastal grids, a few frontier areas remain in which the models often struggle to perform45

well, and present new challenges (Rogers, 2020). One of them is the model dynamics for46

wave spectral distribution in ice-infested regions.47

In the literature, theoretical studies often treat the ice-agglomeration layer as a con-48

tinuum, invoking physical parameters which are practically not measurable, e.g., the ef-49

fective viscosity and elasticity of broken ice, pancakes and frazil ice in marginal ice zones.50

Calibration of those effective properties is not trivial, due to the complex ice conditions51

and physics in wave-ice interaction. This makes theories difficult to apply. On the other52

hand, there are various laboratory and field studies, aiming to quantify wave dissipation53

by ice in a way that may be generalized. (We will not attempt a general review of the54

literature, since it will be unwise, in view of the size of published theoretical and exper-55

imental works. We shall restrict ourself to the references that are directly relevant to the56

purpose of this study.) During the past decade, the wave-ice community has recognized57

an apparent discrepancy between dissipation rates estimated from large-scale field stud-58

ies versus small-scale laboratory studies. In the former, e.g., the Antarctic SIPEX-II data59

in Meylan et al. (2014) and Kohout et al. (2014), the Weddell Sea data in Doble et al.60

(2015), and the Arctic ‘Sea State’ data in Rogers et al. (2016) and Cheng et al. (2017),61

the wave-amplitude attenuation rates ki(1/m) are orders of magnitude smaller than those62

from lab studies such as Newyear & Martin (1997), Wang & Shen (2010), Zhao & Shen63

(2015), and Parra et al. (2020). Of course, they occupy different frequency ranges, but64

if any reasonable extrapolation is used, the apparent discrepancy is striking (Figure 1).65

Even within the similar scale, datasets from different studies are dissimilar, and the scat-66

tering of data is so large that a general trend cannot be derived with high confidence.67

The disconnect between data in different scales poses the questions: Are there different68

dissipation mechanisms in lab settings from the field? Are lab studies capable of inform-69

ing wave-ice interaction in real oceans? But, through the history of science, we have built70

tremendous amount of knowledge in many disciplines based on controlled lab studies,71

such as turbulence.72

Attempting to understand the differences and connections among various continuum-73

based theories on wave dispersion relationship (which describes the propagation and dis-74

sipation of linear waves) in ice-covered waters, Yu et al. (2019) applied dimensional anal-75

ysis (an engineering tool to seek relationship among physical variables) to the existing76
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theories. By introducing a normalization (scaling) based on ice thickness hice, a set of77

dimensionless quantities are identified which describe the relative importance of phys-78

ical effects, including a Reynolds number based on hice comparing the inertial to viscous79

force in the ice layer, and an elasticity parameter for the flexural-gravity waves in solid80

ice or ice layer. Through those dimensionless parameters, theories are compared. When81

the normalization is applied to field and lab data, scale collapse of different datasets oc-82

curs, supporting the relevance of hice. Furthermore, fitting theories to the normalized83

data leads to more consistent estimates of physical parameters, e.g. the effective ice vis-84

cosity and elasticity, compared to those obtained by fitting the dimensional data. The85

findings in Yu et al. (2019) demonstrate that appropriate scaling is important in stud-86

ies of waves in ice. Most recently, Rogers et al. (2021a) analyzed the dissipation rates87

estimated from an extensive set of wave measurements in the Ross Sea, concluding that88

a positive correlation exists between ki and hice. In their effort to improve the Navy’s89

forecast of wind-waves in ice-infested regions, Rogers et al. (2021b) exploited this cor-90

relation invoking the scaling in Yu et al. (2019), and reported the improved prediction91

of ki by appropriate inclusion of hice.92

The purpose of this study, evolved from Rogers et al. (2021b), is to develop a new93

method for parameterizing wave dissipation that is informed by the dimensional anal-94

ysis of data, and reveals not only the dependence on hice but also its relation with the95

dependence on frequency f . It also leads to an explicit expression of the condition of sim-96

ilarity, through which the apparent discrepancy between large-scale field and small-scale97

lab observations (as discussed above) can be resolved. The rest of the paper is as follows.98

Section 2 describes the dataset to be used, referring the details to Rogers et al. (2021a).99

In section 3, the new approach is discussed, and a new model is given and compared with100

other existing ones. Conclusions follow in section 4.101

2 PIPERS-17 dataset102

The dataset is from the wave measurements during the “Polynyas, Ice Production,103

and seasonal Evolution in the Ross Sea” (PIPERS) cruise in 2017 (Ackley et al., 2020).104

A total of 23,206 wave spectra were obtained during April-June. Details of the exper-105

iment and measurements can be found in Rogers et al. (2021a), as well as earlier pub-106

lications (Kohout & Williams, 2019; Kohout et al., 2020). Applying the method of model-107

data inversion (Rogers et al., 2016) to 9477 wave spectra measured on 6 to 30 June, and108
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using WW3 as the modeling platform, Rogers et al. (2021a) estimated the wave-amplitude109

attenuation rates ki. The profile ki(f) is calculated for each measured spectrum E(f),110

then co-located with a number of additional variables, including the ice thickness hice.111

However, hice is not used in the inversion to determine ki. The co-location with valid con-112

temporary estimates of hice reduces the data size to 8957 but does not alter the inver-113

sion outcomes. The data ki were then classified into 16 frequency-bins over the range114

of 0.042 to 0.47 Hz, with the bin width increasing with f .115

Ice thickness is available for the PIPERS dataset from two sources: in situ obser-116

vations during instrument deployment (Kohout & Williams, 2019; Kohout et al., 2020),117

and remotely sensed hice derived from the MIRAS radiometer onboard the European Space118

Agency’s SMOS satellite. The SMOS hice is capped at 50 cm, where the instrument sat-119

urates. The SMOS hice is a relatively new, first-generation product (Kaleschke et al., 2012;120

Huntemann et al., 2014), and in general not expected to have the same level of accuracy121

as other more mature satellite products. Since the product is intended for the “freeze-122

up period” (Huntemann et al., 2014), it is most suitable for sheet ice. For broken floes123

formed from new sheet ice (as is the case in PIPERS), it may be more appropriate to124

interpret hice as an “equivalent ice thickness”.125

The bin-averaged attenuation profiles ki(f) are shown in Figure 2a, and color-coded126

based on the associated hice (the co-located SMOS hice). A striking feature is that the127

profiles are clearly separated for cases with hice > 14 cm, and ki(f) is positively cor-128

related with hice. The trends of ki(f) are generally similar, despite being separated, though129

irregular variations are seen in those in thinner ice. It is also clear that the general trend130

of ki(f) of the PIPERS dataset is different from the binomial model ki = C2f
2+C4f

4
131

given by Meylan et al. (2014), which does not include the dependence on hice. (The bi-132

nomial fit is based on the SIPEX-II dataset, which has 268 data, much smaller than the133

PIPERS dataset.) The binomial calibrated in Rogers et al. (2018a,b) for the Arctic ‘Sea134

State’ dataset is seen to be comparable with the PIPERS data in thin ice and for f >135

0.1 Hz. For the ‘Sea State’ experiment, hice estimated from the frazilometer data (Wad-136

hams et al., 2018) are mostly around 5 to 10 cm. It is evident that a parametric model137

is needed to describe the dependence on hice and its increasing influence in thicker ice,138

as seen in the PIPERS dataset.139
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3 The new approach and model ki(f, hice)140

Following Yu et al. (2019), we define the dimensionless attenuation rate and an-141

gular frequency142

k̂i = kihice, ω̂ = ω
√
hice/g, (1)

where ω = 2πf , and g is the gravitational acceleration. Using the co-located hice for143

each data point, we plot the normalized PIPERS dataset in Figure 2b, where the scale144

collapse of data is immediately seen. For polynomial fits in the (k̂i, ω̂) plane, k̂i = c0ω̂
0+145

c1ω̂
1 + · · · + cnω̂

n, and the dependence on hice follows upon returning to the dimen-146

sional form. For instance, a monomial fit k̂i = cnω̂
n gives147

ki = cn (2π/
√
g)

n
h
n/2−1
ice fn. (2)

The collapsed data do suggest a monomial, and the best fit is k̂i = 0.108ω̂4.46 (Figure148

2b). On the open water (without ice), ω2 = gkow, where kow is the deep-water wavenum-149

ber. Field observations of waves in ice generally show little deviation of wavelength from150

its open-water value 2π/kow; e.g. Collins et al. (2018) indicated only a small change in151

wavenumber at f > 0.3 Hz. Thus, we assume here that the wavenumber is kow, and152

rewrite (2) into153

ki/kow = cn (kowhice)
n/2−1

. (3)

Whereas (2) is convenient for practical applications because of its direct use of f , the154

alternative form (3) is insightful and expresses a condition of similarity between model155

(lab) and prototype (field) since it involves the ratios among three lengths: the e-folding156

distance 1/ki of wave-amplitude decay, ice thickness hice and wavelength 2π/kow. As wave-157

length is determined by frequency f via acceleration g, (3) is not simply a condition for158

geometric similarity but related to dynamic similarity. Both formulae can be safely used159

in any system of units, as cn is dimensionless.160

This analysis not only finds the power n of f , but also reveals how the dependence161

on hice is related to that on f . Indeed, a purpose of dimensional analysis is to seek the162

relations among the physical variables that are significant to the phenomenon in ques-163

tion. In the dimensionless plane, the relations become more apparent due to reduced num-164

ber and complexity of variables, which is manifested by the scale collapse of data as seen165

in Figure 2b.166
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Consider fitting the dimensional data in Figure 2a using a monomial167

ki = Chmicef
n, (4)

assuming all data points are equally weighted. Following (2), n = 4.46 and m = 1.23.168

For a slight simplicity, we take n = 4.5, hence m = 1.25. Calibrating the coefficient169

by minimizing the magnitude of bias, we obtain170

ki = Ch1.25ice f
4.5, where C = 0.1274 (2π/

√
g)

4.5
, (5)

or alternatively,171

ki/kow = 0.1274 (kowhice)
5/4

. (6)

For g = 9.83 m/s
2

in polar regions, C = 2.91 (SI units) in (5). The difference between172

(5) and that using n = 4.46, m = 1.23 is barely visible.173

A number of parametric models exist in the literature; see the review discussion174

in Rogers et al. (2021a,b). Early studies emphasize the dependence on f alone, e.g., the175

binomial form mentioned above, which has been implemented in WW3 and SWAN. For176

the PIPERS dataset, Rogers et al. (2021a) found that the mean, averaged over the dis-177

sipation profiles in thinner ice near the ice edge (hice < 14 cm), can be well fitted by178

such a binomial, and equally well by a monomial with n from 3.5 to 4. The average, of179

course, removes the variability due to hice which in fact is very mild for hice < 14 cm180

(Figure 2a). For comparison, we calibrate the monomial (including all profiles) with m =181

0 and varying n from 3 to 4.5, and find that the fit with n = 4 is slightly better. We182

call this the case n = 4, m = 0. Meylan et al. (2018) suggested an order 3 power law183

with a linear dependence on hice by assuming a relation for the energy loss; see also Liu184

et al. (2020). This is the case n = 3, m = 1. Doble et al. (2015) also proposed a lin-185

ear dependence on hice based on the data for waves of period 8 s in changing ice thick-186

ness. We find that their formula, ki ∼ hicef
2.13, over-predicts ki, often by an order of187

magnitude, though there is a fair agreement at higher frequencies and in thicker ice. This188

case is not included here, but was discussed in Rogers et al. (2021b).189

The results of monomial fits are summarized in Table 1, and compared with the new190

model (5). The scatter index SI (the normalized standard deviation) is similar for n =191

3, m = 1 (SI = 0.068) and for n = 4, m = 0 (SI = 0.063), whereas SI = 0.038 for192

n = 4.5, m = 1.25, meaning that scatter is reduced by 40% using the new model. This193

is clearly seen from the scatter plots (Figure 3). While all fittings are performed in the194
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dimensional plane, the new model is significantly better because the powers n and m are195

informed by analyzing the normalized data, and related. In fact, if we had taken n =196

4 instead of n = 4.5 to approximate n = 4.46, we would have had m = n/2− 1 = 1, a197

linear dependence on hice as in Meylan et al. (2018). However, SI = 0.041 for n = 4,198

m = 1, which is much lower than that for Meylan et al.’s case n = 3, m = 1, though199

still higher than SI = 0.038 for n = 4.5,m = 1.25. This indicates the significance of200

having the appropriate relation between the dependence on hice and on f . We note that201

in their theoretical study of a two-layer fluid system, Sutherland et al. (2019) derived202

ki ∼ k2owhice by hypothesizing a closure for the effective ice viscosity ν (unlike other stud-203

ies which generally treat ν as a given property). Since ω2 = gkow, this in effect is a case204

of n = 4, m = 1.205

Although m = 1.25 is not so different from m = 1, it renders the dependence206

on hice nonlinear, predicting an increasingly amplified influence of ice as hice increases.207

It is seen in Figure 2a that ki(f) in thicker ice are more clearly separated than those in208

thiner ice. This nonlinear dependence can have more implications in predicting low-frequency209

waves, since they can penetrate into thick ice.210

The field and lab datasets in Figure 1 (except for the SIPEX-II dataset) were con-211

sidered in Yu et al. (2019) for normalization using (1). Those and the PIPERS dataset212

are plotted together in Figure 4. The new model (5) is rewritten into k̂i = 0.1274ω̂4.5
213

and included in Figure 4b. In view that these datasets are from independent studies, in214

different scales and from different polar regions, it is remarkable that they all collapse215

towards the new model in the dimensionless plane. A few points are worth noting: (i)216

While they are disconnected from the field datasets in the dimensional plane, the nor-217

malized lab datasets match well with the extrapolation of (5). Thus, a condition of sim-218

ilarity exist between the small-scale lab and large-scale field observations, as the alter-219

native form (6) states. The normalized datasets of Zhao & Shen (2015) overlap with the220

‘Sea State’ data of large ω̂, meaning that those waves in the ice-covered tank are sim-221

ilar to the high-frequency field waves in thicker ice. (ii) In dimensional form, Doble et222

al.’s data are not comparable with other field datasets, but upon normalization they show223

some similarity with the PIPERS profiles in thicker ice (red curve), and with some ‘Sea224

State’ data. Note that the majority of Doble et al.’s datasets was in ice with estimated225

hice > 30 cm. (iii) The PIPERS and lab data have better documentation of hice, and226

become least scattered upon normalization. This is not a coincidence, but evidence that227
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hice is a dominant scaling in analyzing ki. (iv) Although it has only a slightly higher SI228

than the new model n = 4.5,m = 1.25 when calibrated for the PIPERS dataset, the229

case n = 4,m = 1 is clearly more biased when other datasets are included, and sig-230

nificantly under-predicts the lab data; see the dotted line in Figure 4b.231

In theoretical studies, other physical properties, in addition to hice, are involved,232

e.g. the effective ice viscosity and elasticity. While empirical approaches based on data-233

fitting do not have the burden to deal with those complex physical properties, their ef-234

fects still exist, meaning that we do not expect all data to collapse onto one single curve235

in the plane (k̂i, ω̂). In other words, the coefficient, perhaps even the exponents, of a para-236

metric model may vary based on individual datasets, a manifestation that ki is affected237

by other properties of the ice field.238

4 Conclusions239

We have demonstrated that the method, based on the dimensional analysis of data,240

can significantly improve the parameterization of wave dissipation in sea ice. The nor-241

malization (1) collapses data towards a general trend, making it evident that hice is an242

important scale when searching for similarities among data. Analyzing the PIPERS data243

informs a new model of form ki ∼ hn/2−1
ice fn, or alternatively, ki/kow ∼ (kowhice)

n/2−1
244

which states a condition of similarity between data in different scales. With n = 4.5,245

it leads to a nonlinear dependence on hice, predicting an increasingly amplified effect of246

ice in thicker hice. This can have more implications in predicting low-frequency waves,247

since ice acts as a low-pass filter on waves. Relative to other calibrated monomials, we248

find that scatter is reduced by 40% using the new model (5), when applied to the PIPERS249

dataset. When extrapolated, (5) agrees very well with a number of lab datasets from dif-250

ferent studies. This shows that the apparent dissimilarity between field and lab datasets251

in the dimensional plane, can be resolved via appropriate scaling, as the condition of sim-252

ilarity (6) explicitly states.253

For further validation and improvement, we recommend: (i) re-analyze other ex-254

isting field datasets, e.g., Meylan et al. (2014) and Doble et al. (2015), using model-data255

inversion, so that methods of estimating ki are consistent; (ii) improve the estimates of256

hice by, e.g. accounting for ice concentration, and including other satellite observations257

such as SMAP (Soil Moisture Active Passive). For the Navy’s operational modeling, we258
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have recommended to implement the model ki = Ch
n/2−1
ice fn in WW3 and SWAN, with259

a default setting as (5).260
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Table 1. Best fits of monomial in the form of ki = Chm
icef

n (in SI units). RMSE = root-mean-

square error, CC = Pearson correlation coefficient, STDD = standard deviation, and scatter

index SI = STDD/mean, where mean = 5.009 is the magnitude of average 〈log10 ki,obs〉.

C m n RMSE CC STDD SI

0.094 0 4 0.312 0.924 0.315 0.063

0.059 1 3 0.337 0.967 0.340 0.068

0.59 1 4 0.205 0.974 0.207 0.041

2.91 1.25 4.5 0.186 0.973 0.188 0.038

Figure 1. Field and lab datasets (ki, f). In the legend: OW1-PF12, Arctic ‘Sea State’ dataset

with 11 classifications indicating visually observed hice (Yu et al., 2019); ×, two datasets (at

f = 1/8 Hz) in Doble et al. (2015; their figure 2). Curves: red, fit for the Antarctic SIPEX-II

dataset (not shown) in Meylan et al. (2014); black, fit for the ‘Sea State’ data in Rogers et al.

(2018a,b), with its extrapolation shown as the dashed curve. The smaller symbols (not in the

legend) above the field data are from lab studies with documented hice: magenta, two tests in

Newyear & Martin (1997); green, two tests in Wang & Shen (2010); red, three tests in Zhao &

Shen (2015); blue, Parra et al. (2020).
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(a) (b)

Figure 2. (a) PIPERS dataset ki(f), color-coded based on the associated hice. The data cor-

respond to that in figure 6a in Rogers et al. (2021a). Binomial model ki = C2f
2 + C4f

4: dashed,

C2, C4 = 1.06-3, 2.30e-2 in Meylan et al. (2014); dotted, C2, C4 = 3.21e-4, 3.26e-2 in Rogers et al.

(2018a,b). (b) Normalized PIPERS dataset. Dashed red: k̂i = 0.108ω̂4.46.

Figure 3. Scatter plots, comparing the monomial fit against the PIPERS data.
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Figure 4. (a) Dimensional plot of the PIPERS dataset (thick solid), and the field and lab

datasets (symbols) from Figure 1. (b) Normalized datasets; see Yu et al. (2019) for hice associ-

ated with the datasets from Figure 1. Dashed: k̂i = 0.1274ω̂4.5 (new model n = 4.5,m = 1.25).

Dotted: k̂i = 0.0366ω̂4 (case n = 4,m = 1).
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