
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
8
45
5.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Ecohydrological Model for Grasslands Lacking Historical

Measurements II: Confluence Simulations Based on Dynamic

Channel Parameters

Mingyang Li1, Tingxi Liu1, Limin Duan1, Long Ma1, Qiusheng Wu2, Yixuan Wang1,
Guoqiang Wang3, Huimin Lei4, Vijay P Singh5, Sinan Wang6, and Junfang Liu3

1Inner Mongolia Agricultural University
2University of Tennessee at Knoxville
3Beijing Normal University
4Tsinghua University
5Texas A&M University
6Inner Mongolia Agricultural Univericity

November 24, 2022

Abstract

Technology has greatly promoted ecohydrological model development, but runoff generation and confluence simulations have

fallen behind in ecohydrological model development due to limited innovations. To fully understand ecohydrological processes

and accurately describe the coupling between ecological and hydrological processes, a distributed ecohydrological model was

constructed by integrating multisource information into MYEH. We mainly describe runoff generation and convergence modules.

Based on the improved HBV model and degree-3 hour factor method, runoff generation and snow routines were constructed for

semiarid grassland basins. In view of meandering and variable steppe river channels and steep hydrological relief characteristics,

a confluence module was constructed; the 1-km bend radius equivalent concept was innovatively proposed to unify river channel

bend degrees. The daily runoff simulation validation results obtained using two datasets were R2=0.947 and 0.932, NSE=0.945

and 0.905, and KGE=0.029 and 0.261. In the 3-hour flood simulations, the MYEH model could better restore small long-distance

water flows than the confluence method that did not consider actual river lengths or bend energy losses; the MYEH model more

accurately simulated the flood peak arrival time than the confluence method that did not consider overflow. The simulated

mainstream overflow frequency increased by 0.84/10 years, and significant interaction periods of 10 to 13 years occurred with

local precipitation, ecological status and global climate change. An approximately 2-year lag occurred in the global climate

change response. This study helps us further understand and reveal the ecohydrological processes of steppe rivers in semiarid

regions.
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Key Points: 14 

⚫ Using actual river length, bend radius equivalent and overflow data helps improve the 15 

steppe river confluence process 16 

⚫ The MYEH confluence module simulates the river diversion effect on the confluence 17 

before and after a flood 18 

⚫ Precipitation, ecological status and climate change significantly interact with OFN, and 19 

the overflow response to climate has a 2-year lag 20 

  21 
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Abstract 22 

Technology has greatly promoted ecohydrological model development, but runoff generation 23 

and confluence simulations have fallen behind in ecohydrological model development due to 24 

limited innovations. To fully understand ecohydrological processes and accurately describe the 25 

coupling between ecological and hydrological processes, a distributed ecohydrological model 26 

was constructed by integrating multisource information into MY ecohydrological (MYEH) 27 

model. We mainly describe runoff generation and convergence modules. Based on the 28 

improved HBV model and degree-3 hour factor method, runoff generation and snow routines 29 

were constructed for semiarid grassland basins. In view of meandering and variable steppe 30 

river channels and steep hydrological relief characteristics, a confluence module was 31 

constructed; the 1-km bend radius equivalent concept was innovatively proposed to unify river 32 

channel bend degrees. The daily runoff simulation validation results obtained using two 33 

datasets were R2=0.947 and 0.932, NSE=0.945 and 0.905, and KGE=0.029 and 0.261. In the 34 

3-hour flood simulations, the MYEH model could better restore small long-distance water 35 

flows than the confluence method that did not consider actual river lengths or bend energy 36 

losses; the MYEH model more accurately simulated the flood peak arrival time than the 37 

confluence method that did not consider overflow. The simulated mainstream overflow 38 

frequency increased by 0.84/10 years, and significant interaction periods of 10 to 13 years 39 

occurred with local precipitation, ecological status and global climate change. An 40 

approximately 2-year lag occurred in the global climate change response. This study helps us 41 

further understand and reveal the ecohydrological processes of steppe rivers in semiarid regions. 42 

 43 

1 Introduction 44 

An ecohydrological model is a generalized expression of ecohydrological phenomena 45 

and processes created using mathematical language and physical processes (Svoray et al., 46 

2015); these models help researchers describe the interactions between ecological and 47 

hydrological processes (Geng et al., 2020) and reveal the succession of ecological patterns and 48 

the synergy mechanisms involved in the hydrological cycle as it relates to ecological processes 49 

(Wu et al., 2021a). The results of many studies based on model designs and improvements have 50 

shown that ecohydrological models exhibit better simulation performances at their respective 51 

target scales and ecosystems (Sun et al., 2020; Yan et al., 2021). China's temperate grassland 52 

area covers a region spanning 1.68 × 106 km2, accounting for 11.2% of the total global 53 

grassland area, concentrated in the semihumid and semiarid areas of northeastern China (Wu 54 

et al., 2021b). Grassland ecosystems have suffered degradation due to climate change, 55 

excessive grazing, and irrational development (Goenster-Jordan et al., 2021; Yin et al., 2018). 56 

Suitable models have been established based on ecohydrology for ecosystems with abundant 57 

water in humid and subhumid areas (Zha et al., 2020), alpine mountains (Tong et al., 2021), 58 

wetlands (Lou et al., 2019), and deserts (Yin et al., 2021). However, ecohydrological models 59 

that are specifically applicable to arid and semiarid steppe regions have rarely been reported. 60 

Semiarid grassland ecosystems are relatively barren, although their corresponding vegetation 61 

communities are rich and diverse. The evolution of ecohydrological processes, coupling 62 

mechanisms, and mutual feedback effects have strong regional characteristics in these regions 63 
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that cannot be accurately described with existing models. Therefore, in the context of global 64 

ecological governance and protection, developing and debugging an ecohydrological model 65 

that is specifically applicable to arid and semiarid steppe regions is of great scientific 66 

significance (Ma et al., 2019). 67 

Under the action of gravity, water from precipitation or icemelt flows into river 68 

networks from ground-surface and underground sources; the water that flows out of the basin 69 

outlet section becomes runoff (Betson, 1964; Cadle et al., 1987; Chang & Yeh, 2018; Poiani & 70 

Johnson, 1993; Young & Liu, 2015; Zhang & Singh, 2014). The runoff formation process can 71 

be generalized into runoff-generating and confluence processes (Gentry & Lopez-Parodi, 1980; 72 

Muzik, 1992; Xiong & Guo, 2004). Runoff simulations involve rainfall loss simulations and 73 

can be divided into two parts: evaporation and infiltration (processes such as plant interception 74 

and hollow depressions filling with dammed-up water resulting in the loss of water into the 75 

atmosphere through evaporation or the eventual infiltration process into the soil; here, these 76 

processes are not listed separately) (Asdak et al., 1998; David et al., 2005; Jakeman & 77 

Hornberger, 1993; Maniquiz et al., 2012). Confluence analyses include the calculation of 78 

confluence within a given hydrological response unit and the calculation of river confluence 79 

(flood calculus) (Moore & Grayson, 1991; Osborn & Lane, 1969; Vassova, 2013; Wendi et al., 80 

2019). At present, a large number of studies have been carried out on evapotranspiration and 81 

infiltration in combination with the rapid development of remote sensing technologies and 82 

easily operated field experiments (den Besten et al., 2021; Dunne & Black, 1970; Li et al., 2020; 83 

Qiu et al., 2006; Yang et al., 2015). Due to the difficulty of obtaining spatially and temporally 84 

continuous confluence process observations, the many influencing factors, and the difficulty 85 

of solving partial differential equations of flood waves (David et al., 2019; Hassini & Guo, 86 

2017; Yamanaka & Ma, 2017), both the understanding of the convergence process and the 87 

related research are far from sufficient (Hood et al., 2007; Song et al., 2020; Tanaka et al., 2005; 88 

Zoccatelli et al., 2019); these inadequacies are even more obvious in semiarid steppe 89 

watersheds where rivers meander and are changeable and floods rise and fall steeply. 90 

Two major equations are used to calculate unsteady flow in open channels, the 91 

continuity equation and momentum equation; these equations are the basis of the Saint Venant 92 

equations (Carraro et al., 2018; Ding & Wang, 2005; Strelkoff, 1970; Wang et al., 2003). By 93 

simplifying the continuity equation to the water balance equation and the dynamic equation to 94 

the water tank storage relationship in the analyzed reach, the widely used Muskingum method 95 

can be deduced for the confluence calculation (Al-Humoud & Esen, 2006; Bozorg-Haddad et 96 

al., 2015; Choudhury et al., 2002; Gill, 1978; Tung, 1985). The key to the application of the 97 

Muskingum method is determining how to reasonably calculate the k and x parameters, that is, 98 

the average propagation time of the analyzed reach and the weight used to measure the effects 99 

of inflow and outflow on river storage (Al-Humoud & Esen, 2006; Bozorg-Haddad et al., 2019; 100 

David et al., 2015). However, traditionally utilized hydrological variables, such as the average 101 

propagation time, are no longer applicable to today's severely degraded steppe rivers. The 102 

current models have difficulties when (or are even incapable of) simulating the confluence 103 

processes of steppe rivers due to river characteristics such as instantaneous and rapidly 104 

changing discharge, sandy soils with low water-storage capacities, and the irregular and easy 105 

migration of river patterns (Birkhead & James, 2002; Bozorg-Haddad et al., 2019; Hamedi et 106 

al., 2016). 107 
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In view of the above existing problems and river characteristics, we constructed a 108 

runoff-generating and confluence module in the MY ecohydrological (MYEH) model (Figure 109 

1). We improved the Hydrologiska Byrans Vattenbalansavdelning (HBV) model, which is 110 

applicable as a runoff-generating model in arid and semiarid regions, used the degree-3 hour 111 

factor instead of the degree-day factor to calculate the snowmelt and accumulation processes, 112 

and innovatively proposed a river network confluence module based on dynamic river length, 113 

river bend, 3-hour scale unit flood peak duration, and river overflow during flood transit 114 

information. Specifically, our objective was to (1) dynamically simulate and depict river flows, 115 

river types and other parameter change processes in grasslands; (2) explore and verify the 116 

applicability of the MYEH model to different input data sources and determine and explain the 117 

physical meaning of each process parameter; (3) compare the advancement of the convergence 118 

module with the existing convergence calculation method and explore the resulting space for 119 

improvement opportunities; (4) and simulate and explore the responses of river overflows to 120 

regional meteorological and ecological conditions and global climate change to further 121 

understand and reveal the unique ecohydrological processes of typical steppe regions. 122 

 123 

Figure 1. Schematic diagram of natural processes such as the flow convergence, actual river 124 

lengths, and channel turns of grassland rivers. Note: The river network shown in the figure 125 

does not correspond to the real modelled river network resolution. 126 

 127 

2 Method 128 

2.1 Study area 129 

The study area is located in the Xilin River basin (XRB) in the Inner Mongolia 130 

Autonomous Region, China (43°30”–44°4″ N, 115°37″–117°30″ E) and is characterized by a 131 

continental climate in the middle temperate zone. The annual average temperature in the study 132 

area is 2.6 °C, the annual evapotranspiration (ET) is significant, and sunshine is intense. Overall, 133 

the terrain is high in the southeast and low in the north, with elevations ranging from 977 to 134 

1620 m (Figure 2a). In the southeastern part of the study area, there is a multilevel platform 135 

with a high elevation and a high number of gullies. Many fixed dunes are distributed in the 136 

middle of the tributary and the mainstream region. Several of these dunes are semifixed with 137 

notable wind erosion. More than 90% of the vegetation is natural foliage, including Leymus 138 

chinensis Tzvel., Stipa grandis P. Smirn., and Stipa krylovii Roshev. A certain amount of 139 

Achnatherum splendens Nevski vegetation can be found in the degraded wetlands and 140 

surrounding valleys. Many shrubs, such as Stipa baicalensis Roshev. and Caragana 141 

microphylla Lam., can be found in the higher arid steppe regions. The desert landscape in the 142 

central part of the study area is mainly composed of Ulmus pumila Linn., whereas Picea 143 

asperata Mast. and Betula platyphylla Suk. are distributed in the northeast region. 144 

According to incomplete statistics, historical measured data in the XRB are relatively 145 

scarce. Only one Chinese National Hydrological Station and one Chinese National 146 

Meteorological Station had been built in 1964; these stations are located in an urban area and 147 

thus have little significance in reflecting the meteorological conditions of the studied grasslands 148 

in the historical period. To more accurately monitor the hydrometeorological conditions in the 149 
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XRB, we set up 3 sets of automatic velocity and flow monitoring stations, 1 set of Bowen ratio 150 

weather stations, 6 sets of automeasuring rain stations and 7 manual flow monitoring stations 151 

in the research area. The specific location of each station can be seen in Figure 2b and Table 1 152 

lists the specific station information. 153 

 154 

Figure 2. Location, vegetation types (a), topography and stations (b) in the XRB. SBG: S. 155 

baicalensis Roshev. grassland; LCG: L. chinensis (Trin.) Tzvel. grassland; SKG: S. krylovii 156 

Roshev. grassland; SGG: S. grandis P.A. Smirn. grassland; ASG: A. splendens (Trin.) Nevski 157 

grassland; CMG: C. microphylla Lam grassland; AFG: Artemisia frigida Willd. grassland; 158 

PAG: P. asperata Mast. grassland; FSG: Filifolium sibiricum (L.) Kitam. grassland; and WCG: 159 

weed community grassland. 160 

 161 

Table 1. Information of measurement stations in the XRB. 162 

 163 

2.2 Model 164 

MYEH model is a bidirectional coupling eco-hydrological model for (but not limited 165 

to) steppe inland river basins in arid and semi-arid regions, which is driven by meteorological 166 

data and developed by Dr. Mingyang Li and Prof. Tingxi Liu. MY means “my”, which will be 167 

released as open source and gradually optimized and updated to get more support from 168 

researchers and better improve the model. The MYEH model mainly includes 169 

evapotranspiration, runoff, confluence, grazing disturbance, carbon and nitrogen cycle, etc. It 170 

absorbs the advantages of various existing ecological models, hydrological models, as well as 171 

the framework and algorithm of eco-hydrological models. 172 

The runoff generation and convergence processes are reflected in the MYEH model 173 

with two modules: the simulation module (Sim module), which was improved based on the 174 

hydrological model (HYMOD) and HBV models (BERGSTRÖM, 1975; Kollat et al., 2012; 175 

Moore, 2007; Seibert, 2000), and the self-developed flow confluence module (FLC module). 176 

The function of the Sim module is to calculate the flow yield of each grid cell in the basin in 177 

units of time using input data such as temperature, precipitation, actual evapotranspiration 178 

(calculated by the Eva module in the MYEH model) and grid area data. The FLC module 179 

calculates all grid-simulated runoff in the basin according to the river direction generated using 180 

basin elevation, river width, river length, roughness and other characteristic data based on the 181 

runoff yield and upstream inflow calculated by the Sim module. The Monte Carlo method is 182 

used to calibrate the model; this method can not only eliminate any deviation in the calibration 183 

process but can also obtain the optimal parameter set. Table 2 lists the parameters, units and 184 

rate-setting ranges used by the Sim and FLC modules. 185 

 186 

Figure 3. (a) Schematic diagram of the MYEH model simulation (Sim) module; (b) schematic 187 

diagram of the MYEH model flow confluence (FLC) module. The full names of the variables 188 

shown in Figure 3a can be seen in Table 2. DEM: digital elevation model; RS: remote sensing; 189 
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1-km RBRE: 1-km river bend radius equivalent; FTL: flow time length; FFTL: fixed flow time 190 

length; and RDacc: accumulated runoff depth. 191 

 192 

Table 2. Summary of parameters used in the Sim module and FLC module within the MYEH 193 

model. 194 

 195 

2.2.1 Sim module 196 

The Sim module mainly includes the snow routine, soil moisture units and flow 197 

generation units (Figure 3a). We refer to the degree-day method concept holistically in this 198 

module (BERGSTRÖM, 1975). To adapt to the confluence time scale, the 3-hour unit is used 199 

to replace the number of days, and the model is improved to a degree-3 hour factor method to 200 

improve the simulation accuracy of the diurnal flow generation process. These processes are 201 

explained and described below. 202 

 203 

2.2.1.1 Snow accumulation & melting routine 204 

The snow routine is a subprogram used to describe the accumulation and ablation of 205 

snow, as water is fed into the soil moisture zone through these processes. We treat the snowmelt 206 

water in the soil in the same way as we treat rainfall, whereas snowfall on lakes is not treated 207 

using snowfall procedures because the pressure effect this snow has on lake ice has the same 208 

effect as rainfall on an ice-free lake (BERGSTRÖM, 1975). 209 

The first step is to determine whether precipitation accumulates as snow or directly 210 

enters the soil moisture zone as liquid water. A physically correct snowmelt model should 211 

consider the entire energy balance of a snowpack, including consideration of sensible and latent 212 

heat fluxes, radiation, energy exchanges with the ground, the contribution of precipitation, and 213 

the thermal mass of snow itself (Kollat et al., 2012). In view of the uncertainty of the available 214 

data and the desire to avoid unreasonable complexity, we adopt the degree-3 hour factor 215 

method, representing an improvement from the degree-day factor method. 216 

Temperature is selected as a representative index affecting snow melt. We set a 217 

temperature threshold parameter (Ts) to judge the temperature boundary, whether precipitation 218 

falls in the form of rain or snow, and whether fallen snow accumulates or melts. Additionally, 219 

snowbanks are assumed to retain meltwater, which is expressed as a fraction of their total water 220 

storage in terms of the corresponding water holding capacity (CWH) of the snow parameter. 221 

Meltwater contained within a snowpack can also be refrozen according to the refreezing 222 

parameter (CFR), which is expressed as a fraction of the degree-3 hour factor (CFMAX). See 223 

Hamilton et al. (2000) for more details on the formula of the degree-daily snowfall module. 224 

 225 

2.2.1.2 Soil moisture accounting routine 226 

The soil water unit calculation performed in the Sim module uses the storage capacity 227 

distribution function of a given storage unit. In this module, the storage elements of the 228 

analyzed watershed are distributed according to the probability density function defined by the 229 
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maximum soil water storage and soil water storage distribution. The maximum soil water 230 

storage (Cmax) represents the maximum soil water storage capacity, while the shape parameter 231 

(BETA) describes the degree of spatial variability in the soil water storage (Wagener et al., 232 

2004). 233 

In contrast from the process involved in HYMOD, in this study, the soil water storage 234 

evaporation rate is calculated using the entity views attachment (EVA) module in the MYEH 235 

model. After the evaporation fraction is removed, surplus rainfall and snowmelt are used to fill 236 

the soil water reserves, and excess rainfall is sent to the flow-producing unit. In addition, we 237 

define the soil water storage limit (LP) when potential evaporation occurs. For soil water 238 

storage measurements between 0 and LP, the ratio of actual evaporation to potential 239 

evaporation changes linearly. For soil water storage measurements greater than or equal to LP, 240 

the actual evaporation is equal to the potential evaporation. 241 

 242 

2.2.1.3 Runoff generating routine 243 

Similar to the process applied in the HBV model, the flow generating unit of the Sim 244 

module involves the conversion of excess rainfall from the soil moisture storage module to the 245 

runoff module. The excess rainfall and snowmelt remaining after evaporation, as well as the 246 

filled soil water stores, are channeled into an upper response reservoir (UZ). Runoff is divided 247 

into three outlets from this upper response reservoir: near-surface flow, confluence and seepage 248 

to the base flow. The flows at these three outlets are defined by the near-surface flow regression 249 

coefficient (K0), middle flow regression coefficient (K1) and seepage rate (PERC). The 250 

threshold parameter (L) defines the runoff height at which near-surface flow occurs in the upper 251 

response reservoir. The runoff flowing into the lower response reservoir (LZ) is released 252 

according to the base flow regression coefficient (K2). A triangular distribution (MaxBas) is 253 

used to convert the runoff released from the reservoir from the top to the bottom, and finally, 254 

the runoff producing depth generated by the grid per unit time is obtained. 255 

 256 

2.2.2 FLC module 257 

The main work of the FLC module involves summarizing and calculating the runoff 258 

producing depth and upstream inflow of each grid cell in the studied basin in units of time 259 

according to the flow direction of the river; this work can be mainly divided into three units: 260 

inputs, process variable calculations and operation outputs (Figure 3b). 261 

 262 

2.2.2.1 FLC module input unit 263 

The input unit mainly includes elevation data obtained by using a digital elevation 264 

model (DEM) to calculate the grid flow direction and watershed boundaries, using remote 265 

sensing data to extract river features, and runoff producing depth time series calculated by the 266 

Sim module. 267 

The flow direction is calculated by inputting the watershed boundaries and grid DEM 268 

into the model. According to the extreme value selection principle of, we can obtain the flow 269 
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direction of the water in each grid cell in the analyzed watershed. While this method can be 270 

used to solve most cases, when there are depressions, occlusive lakes or other unique terrains 271 

in the basin, the flow direction can form a dead cycle that obviously cannot be satisfied by such 272 

a calculation method. Different from the depression-filling tools of the ArcHydro or Soil and 273 

Water Assessment Tool (SWAT) model, the idea constructed herein to solve such problems 274 

involves initially setting up the outlet of the basin and then determining the flow path of each 275 

grid cell to this established outlet. When the path is detected to enter a dead cycle, the module 276 

determines the shape of the depression according to the cycle characteristics, looks for the 277 

discharge mouth of the depression, and then directs the flow to the mainstream. Through high-278 

resolution remote sensing images and field measurement data, we extracted and prepared the 279 

characteristic river quantitative data, including the actual river length, average river width, river 280 

bend angle and radius, river roughness, slope and other factors inside each grid cell. 281 

 282 

2.2.2.2 FLC module variable-processing unit 283 

The variable-processing unit in the FLC module is mainly used to calculate the channel 284 

state and hydraulic parameters of each grid cell during the flow generation period; this unit can 285 

be used to debug and perform aggregation calculations at the output unit. At each calculation 286 

step for each grid cell, we first calculate the river discharge, flow velocity and river depth using 287 

the runoff depth and grid area: 288 

𝑅𝐷 = 𝑄∆𝑡 1000𝐴𝐺⁄  (1) 289 

𝑄 = 𝐴𝑆 × 𝑣 = 𝑊𝑅 × 𝐻𝑅 × 𝑣 (2) 290 

where 𝑅𝐷 is the runoff depth (mm); 𝑄 is the average flow discharge (m3 dt-1) in units of time 291 

(∆𝑡); 𝐴𝐺  is the grid area (km2); 𝐴𝑆 is the sectional area (m2); 𝑣 is the flow velocity; and 𝑊𝑅 292 

and 𝐻𝑅 are the river width and runoff height, respectively. 293 

In the general phase (Figure 3b), we assume that the water flow represents uniform flow 294 

in open channels. According to the law of energy conservation, the actual liquid element flow 295 

energy equation of rivers in grids should be as follows: 296 

𝑧1 +
𝑝1

𝜌𝑔
+

𝑣1
2

2𝑔
= 𝑧2 +

𝑝2

𝜌𝑔
+

𝑣2
2

2𝑔
+ ℎ𝑤 (3) 297 

where 𝑧1 and 𝑧2 are the position heads of the inlet and outlet, respectively (m); 𝑝1 and 𝑝2 298 

are the air pressures at the inlet and outlet, respectively (kN m-2); ρ = 1000 is the density of 299 

water (kg m-3); g = 9.81 is the gravitational constant (m s-2); 𝑣1 and 𝑣2 are the initial and end 300 

velocities, respectively (m s-1); and ℎ𝑤 is the total head loss (m). The total head loss can be 301 

divided into the frictional head loss (ℎ𝑓) and local head loss (ℎ𝑗) as follows: 302 

ℎ𝑤 = ∑ ℎ𝑓 + ∑ ℎ𝑗  (4) 303 

ℎ𝑓 = ∑ 𝜆
𝐿𝑅

4𝑅

𝑣2

2𝑔
, 𝜆 =

24

𝑅𝑒
 (5) 304 

ℎ𝑗 = ∑ 𝜁
𝑣2

2𝑔
, 𝜁 =

2𝑔𝐿𝑏

𝐶2𝑅
(1 +

3

4
√

𝑏

𝑟
) (6) 305 
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𝐶 =
1

𝑛
𝑅1 6⁄  (7) 306 

𝑛 = (𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4) × 𝑚5 (8) 307 

where 𝜆 is the frictional head loss coefficient, which can be calculated using an empirical 308 

formula including the Reynolds number (𝑅𝑒); 𝑅 is the hydraulic radius (m); 𝜁 is the local 309 

head loss coefficient; 𝐿𝑏, 𝑏 and 𝑟 are the length (m), width (m) and bend radius (degree) of 310 

the river curve, respectively; 𝐶  is the Chezy coefficient (m1/2 s-1); and 𝑛  is the channel 311 

roughness, which can be calculated using Eq. 8. In Eq. 8, 𝑛0  to 𝑛4  represent the basic 312 

roughness of natural channels, the influence of irregular water surfaces, the influence of 313 

changes in the channel cross section shape and size, the influence of water-blocking substances 314 

and the influence of plants, respectively; and 𝑚5 is the river-winding coefficient, which is 315 

equal to 1 in our research. 316 

Since the river bend degree is not similar to the other variables, it is difficult to unify 317 

the variables related to river bends, so we proposed the concept of the 1-km bend radius 318 

equivalent and converted the length sum of each river bend to the same magnitude to unify the 319 

river bend degree in the analyzed basin. Therefore, the total bending length of 1km bending 320 

radius equivalent 𝐿′𝑏 in the grid can be expressed by the bending radius 𝑅𝑏 and bending 321 

angle 𝑟 of each bend: 322 

𝐿′𝑏 = ∑
𝑟

360°
× 2𝜋 ×

𝑅𝑏

1𝑘𝑚
 (9) 323 

To more realistically reflect the characteristics of grassland rivers, we set the overflow 324 

coefficient to determine whether overflow occurs when a flood peak passes according to the 325 

real-time river depth. When a flood phase occurs (Figure 3b), the raster channel is reset to a 326 

state with no bend and a base river length. After the flood passes (as represented by the recovery 327 

phase in Figure 3b), the river gradually begins to bend with the influence of the geostrophic 328 

deflection force and other factors; that is, the river length gradually recovers to the actual river 329 

length, and curved reaches reappear. The river length, curve length and bending angle of the 330 

three periods can be expressed as: 331 

𝑓(𝐿𝑅 , 𝐿′𝑏 , 𝑟) = {

𝑀𝑎𝑥(𝐿𝑅 , 𝐿′𝑏 , 𝑟), 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑝ℎ𝑎𝑠𝑒

𝑀𝑖𝑛(𝐿𝑅 , 𝐿′
𝑏 , 𝑟), 𝐹𝑙𝑜𝑜𝑑 𝑝ℎ𝑎𝑠𝑒

𝑡𝑚
𝑡𝑛

⁄ 𝑀𝑎𝑥(𝐿𝑅 , 𝐿′𝑏 , 𝑟), 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑝ℎ𝑎𝑠𝑒

 (10) 332 

where, 𝑡𝑚 and 𝑡𝑛 are respectively the time from the last overflow to the present and the total 333 

time it took for the river to recover to bend. 334 

 335 

2.2.2.3 FLC module operation and output unit 336 

The operation and output unit summarizes the parameters calculated by the first two 337 

units at each moment, calculates the time and amount of flowing water moving to the next grid 338 

cell, and iteratively describes the flow situation of each section of the basin in the whole 339 

simulation period layer by layer. First, through the flow direction, we can calculate the number 340 
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of grid layers 𝑗 needed for each grid point to flow to the drainage outlet of the basin. If the 341 

row and column numbers of the watershed grid points are set as 𝑚 and 𝑛, respectively, then 342 

the grid point layer being processed can be expressed as 𝑚(𝑗) and 𝑛(𝑗), respectively. The 343 

flow in a given grid cell at moment 𝑡 can be expressed as 𝑄(𝑡)𝑚(𝑗),𝑛(𝑗), and the time (∆𝑡) of 344 

the runoff flow to the next grid point at this moment can be calculated as follows: 345 

∆𝑡 =
𝐿𝑅

�̅�
=

𝐿𝑅

0.5×(𝑣1+𝑣2)
 (11) 346 

where 𝐿𝑅 is the river length and �̅� is the average discharge velocity. Since our unit time is 3 347 

hours, when the runoff time is not an integer, we divide the flow according to the integer time 348 

so that the flow out of the grid at time 𝑡 is 𝑞(𝑡)𝑚(𝑗),𝑛(𝑗): 349 

𝑞(𝑡 + 𝑓𝑖𝑥(∆𝑡))
𝑚(𝑗),𝑛(𝑗)

= 𝑄(𝑡)𝑚(𝑗),𝑛(𝑗) ×
𝑓𝑖𝑥(∆𝑡)

∆𝑡
+ 𝑄(𝑡 − 1)𝑚(𝑗),𝑛(𝑗) ×350 

∆(𝑡−1)−𝑓𝑖𝑥(∆(𝑡−1))

∆(𝑡−1)
 (12) 351 

where 𝑓𝑖𝑥 is a downward rounding function. 352 

The above equations represent the case in which upstream grid inflow is not considered. 353 

When upstream grid inflow is present, we first calculate the initial flow obtained by the grid 354 

cell as follows: 355 

𝑄(𝑡)𝑚(𝑗),𝑛(𝑗) = 𝑄𝑠𝑖𝑚(𝑡)𝑚(𝑗),𝑛(𝑗) + ∑ 𝑞(𝑡)𝑚(𝑗+1),𝑛(𝑗+1)
𝑑𝑖𝑟
1  (13) 356 

where 𝑄𝑠𝑖𝑚(𝑡) is the flow rate in each grid cell calculated by the flow generation module and 357 

𝑑𝑖𝑟 = 1 𝑡𝑜 7 represents 1 to 7 upstream convergence directions. Notably, a given grid cell has 358 

a total of eight possible directions: north, northeast, east, southeast, south, southwest, west, and 359 

northwest. In the confluence process, if the water flowing from all eight directions flows into 360 

the central point, we regard this grid cell as a depression. When the water surface exceeds the 361 

lowest surrounding elevation within the grid, it is discharged in this direction; please refer to 362 

section 2.2.2.1 for details. 363 

 364 

2.3 Validation 365 

2.3.1 Verification system 366 

To verify the accuracy and applicability of the MYEH model, we adopted dual-drive 367 

data source adaptation, traditional model comparison and measured data inspection methods. 368 

The dual-drive data source adaptation used in this study refers to the drive data generated under 369 

two different observation systems, the China Meteorological Driven Data Set (CMFD) and 370 

Global Land Data Assimilation System Noah Land Surface Model L4 (GLDAS-Noah); these 371 

datasets are brought into the MYEH model to calculate and simulate the ecohydrological 372 

process of the XRB. The comparison with the traditional model is mainly reflected in the 373 

confluence model calculation, in which the length of each grid cell is fixed and the head loss 374 

of the river is not included. The measured data test includes a comparison and verification of 375 

the daily discharge data collected at the Chinese National Hydrological Station in the basin, 376 



manuscript submitted to Water Resources Research 

the discharge data recorded at the self-built automatic detection hydrological stations at three 377 

river sections and the artificially measured real-time discharge data obtained through value 378 

simulations (Figure 2b). 379 

 380 

2.3.2 Multiobjective calibration 381 

To evaluate the MYEH model simulations in the studied semiarid grassland more 382 

comprehensively, this paper selects several evaluation indexes. We used the coefficient of 383 

determination (R2), Nash-Sutcliffe efficiency coefficient (NSE) (Nash & Sutcliffe, 1970), bias 384 

between the simulated and measured values (Bias), transform root mean square error (TRMSE), 385 

mean absolute error (MAE), and Kling-Gupta efficiency (KGE) to quantify the mismatches 386 

between the simulated and tested data. These metrics can be expressed as follows: 387 

𝑅2 = 1 −
∑ (𝑄𝑠,𝑡−�̅�𝑜,𝑡)

2𝑁
𝑡=1

∑ (𝑄𝑜,𝑡−�̅�𝑜,𝑡)
2𝑁

𝑡=1

 (14) 388 

where 𝑄𝑠,𝑡 and 𝑄𝑜,𝑡 are the simulated and observed runoff, respectively, at time t and �̅�𝑜,𝑡 389 

is the mean of the observed and predicted data over the calibration period. 390 

NSE compares the predicted values to the 1:1 line between the measured and predicted 391 

values rather than the best regression line through the points. NSE values range from 1 (optimal) 392 

to −∞, and this metric been frequently used as a hydrologic model calibration objective: 393 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜,𝑡−𝑄𝑠,𝑡)

2𝑁
𝑡=1

∑ (𝑄𝑜,𝑡−�̅�𝑜,𝑡)
2𝑁

𝑡=1

 (15) 394 

𝐵𝑖𝑎𝑠 =
1

𝑁
∑ �̅�𝑠,𝑡 − 𝐸(𝑄𝑜,𝑡)𝑁

𝑡=1  (16) 395 

where 𝐸(𝑄𝑜,𝑡) is the expected observed value. 396 

Following prior studies (Misirli et al., 2003; Tang et al., 2007), one of the objectives 397 

analyzed herein emphasizes low flow errors using the Box-Cox (Box & Cox, 1964) TRMSE, 398 

as shown in equation (12): 399 

TRMSE = √
1

𝑁
∑ (�̂�𝑠,𝑡 − �̂�𝑜,𝑡)

2𝑁
𝑡=1 , 𝑤ℎ𝑒𝑟𝑒 �̂� =

(1+𝑄)𝜆−1

𝜆
 (17) 400 

where �̂�𝑠,𝑡 is the Box-Cox-transformed simulated runoff at time t and �̂�𝑜,𝑡 is the Box-Cox-401 

transformed observed runoff at time step t. The summation is performed from time step 1 402 

through the number of time steps in the calibration period (N). �̂� represents the Box-Cox-403 

transformed runoff value Q, where 𝜆 = 0.3 . The Box-Cox transformation, in addition to 404 

emphasizing low flow periods, also serves to reduce the impacts of heteroscedasticity in the 405 

RMSE calculation. 406 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑄𝑜,𝑡 − 𝑄𝑠,𝑡|𝑁

𝑡=1  (18) 407 
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The KGE (Eq. 17) (Gupta et al., 2009; Knoben et al., 2019) is based on the decomposition 408 

of NSE into its constitutive components (correlation, variability bias and mean bias), addresses 409 

several perceived shortcomings in NSE (although there are still opportunities to improve the 410 

KGE metric and to explore alternative ways to quantify model performances) and is 411 

increasingly used for model calibrations and evaluations: 412 

𝐾𝐺𝐸 = √(1 − 𝛾)2 + (1 − 𝛼)2 + (1 − 𝛽)2 (19) 413 

where 𝛾, 𝛼, and 𝛽 are the linear correlation coefficients, the ratio of their standard deviations 414 

and the ratio of the mean values of the simulated and measured values, respectively. 415 

Additionally, P values were used to test the sample variance in the measured and simulated 416 

values, and the significance level was set to 0.01. When the p value was less than 0.001, there 417 

was a highly significant difference. 418 

 419 

2.4 Overflow frequency analysis 420 

To further understand the steppe river overflow phenomenon, the frequency and 421 

locations of overflow events and the vegetation status of the basin during the whole study 422 

period are assessed. We use a cross-wavelet analysis to study the periodic interactions between 423 

monthly overflow times and precipitation, the leaf area index (LAI) to reflect the vegetation 424 

status, and the southern oscillation index (SOI) and sea surface temperature (SST) to reflect 425 

climate change in the NINO3.4 region. The Morlet wavelet is selected as the wavelet type, and 426 

the confidence level is set to 95%. For detailed introductions of the wavelet transform, see Sang 427 

(2013) and Nourani et al. (2014). 428 

 429 

3 Data 430 

The data used in this paper can be divided into product data and measured data, which 431 

mainly include meteorological data, remote sensing data and verification data. The spatial 432 

resolution and time span of these data are shown in Table 3. 433 

The meteorologically driven data include CMFD and GLDS-NOAH data, among which 434 

CMFD mainly includes 2-m temperature (T), precipitation (P), relative humidity, 10-m wind 435 

speed, longwave and shortwave radiation and air pressure data (Yang et al., 2010). Since the 436 

temporal coverage of the CMFD does not include 2019 or 2020, the meteorologically driven 437 

data representing these two years are obtained by spatial interpolation using data from the self-438 

built stations. The GLDAS-NOAH data are obtained from NASA's Global Land Data 439 

Assimilation System (Beaudoing & Rodell, 2020; Rodell et al., 2004). To match the simulation 440 

time, we used GLDAS-2.0 data from 1980 to 2000 and GLDAS-2.1 data from 2001 to 2020. 441 

For the remote sensing data, Leaflet through the open-source JavaScript library and high-442 

resolution Google historical satellite images downloaded for interactive mapping were used. 443 

The image tile level was 17, and the spatial resolution was 2.15 m. The verification data 444 

included data recorded at China's national stations, self-built hydrological weather stations and 445 

measured artificial river flow data (see Figure 2b and Table 1 for the specific location and 446 
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information of each station). The vegetation data were obtained using Global Land Surface 447 

Satellite (GLASS) product data statistics (Liang et al., 2013a; Liang et al., 2013b); this product 448 

is spatially and temporally continuous, without gaps or missing values, and the wideband 449 

longwave emissivity product is the first product in the world with an 8-day temporal resolution 450 

and 1-km spatial resolution (Liang et al., 2020). The SOI and SST data were provided by the 451 

official website of the Bureau of Meteorology of the Commonwealth of Australia 2021 and 452 

Weatherzone based on data from the Bureau of Meteorology. 453 

 454 

Table 3. Characteristics of the two meteorological datasets. 455 

 456 

4 Results and discussion 457 

4.1 Simulation validation of the MYEH runoff generation and confluence processes 458 

The meteorologically driven data contained in the CMFD and GLDAS-NOAH datasets 459 

were introduced into the MYEH model to simulate the runoff generation and confluence 460 

processes in the XRB from 1980 to 2020, and the river discharge simulated by the model was 461 

verified using the station data shown in Figure 2b. The results are shown in Figure 4 and Table 462 

4. 463 

Figure 4b is a Q-Q plot analysis showing the daily river discharge measured at the XRB 464 

National Hydrographic Station section. According to the kurtosis and skewness of the daily 465 

discharge data, it is not difficult to see that the XRB river discharge presents skewed 466 

distribution characteristics, indicating that the discharge at this section is far below the mean 467 

value. The daily discharge measurements below the mean value are much higher than the 468 

expected value of 0.554 m3 s-1, indicating that slow surface runoff is normal in the XRB and 469 

reflecting the characteristics of a trickling grassland river in a nonflood period (Coe et al., 2011; 470 

Metivier et al., 2016). 471 

The MYEH model performs well when simulating river runoff using two kinds of 472 

meteorologically driven data. From the perspective of evaluation indexes, the R2 and NSE 473 

values were both greater than 0.9, and the KGE value was less than 0.3, indicating that the 474 

MYEH model performed well when controlling the trend of the overall ecohydrological 475 

process (Figure 4a). The daily discharge simulation results obtained using the two 476 

meteorological driven datasets show that the discharge simulated using CMFD was slightly 477 

better than that simulated using the GLDAS-NOAH dataset in the daily flood peak simulations; 478 

specifically, some deviation occurred in the maximum daily flood peak outputs within the year. 479 

The test results of the three automatic hydrological stations show that the simulated results 480 

were relatively accurate (Figure 4c-e), and the corresponding R2 and NSE values were slightly 481 

lower than the test results obtained at the national hydrological station section. The manual 482 

flow measurement results show that the NSE value of the simulated and observed flow values 483 

is high, while the corresponding R2 value is low. The distribution of the scatter diagram is 484 

relatively convergent, and the linear fitting and 1:1 line are also relatively consistent, indicating 485 

that the overall results are reliable and the process simulation error is small. 486 
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 487 

Figure 4. (a) Comparison of the simulated and measured daily sectional discharge at a national 488 

hydrological station obtained using two meteorologically driven datasets with the MYEH 489 

model; (b) Q-Q plot of daily discharge in the XRB; (c-e) comparison of the simulated and 490 

measured daily sectional discharge at three automatic hydrological stations using two 491 

meteorologically driven datasets with the MYEH model; (f) comparison of the simulated and 492 

measured daily sectional discharge at seven measuring sites using the CMFD; and (g) 493 

comparison of the simulated and measured daily sectional discharge at seven measuring sites 494 

using the GLDAS-NOAH dataset. The green points in (a) to (e) are the values observed at the 495 

national hydrological station. 496 

 497 

Table 4. Six evaluation value of simulated runoff in XRB using two data sources. 498 

 499 

The results show that the MYEH model combined with the evapotranspiration and 500 

runoff generation and confluence modules can effectively simulate the runoff process of each 501 

grid section representing the grassland river channel. Combined with the river location of the 502 

three inspection sections, the downstream flow simulations conducted in the basin are also 503 

better than those in the upstream flow-producing area; this result can be mainly summarized as 504 

the influence of different flow-producing methods and measurement accuracy insufficiencies. 505 

The runoff generation modes of steppe rivers can be mainly divided into two types: runoff 506 

generation on the mountain slopes and groundwater outcropping in front of mountains (da Silva 507 

et al., 2018; Gupta et al., 2019). Most of the runoff generation models in the basin conform to 508 

the Sim precipitation and soil water storage module (Zhang et al., 2021), and only a few grid 509 

points contain outcropping groundwater (although such areas can also be simulated using the 510 

soil water storage principle) (Liang et al., 2012; Wagener et al., 2004); however, some 511 

deviations exist (Li et al., 2015; Lopes & Canfield, 2004). On the other hand, the grassland 512 

river characteristics in the upstream flow-producing areas mostly represent wetlands 513 

(floodplains) with soil water contents close to or at saturation (Tang et al., 2020; Wang et al., 514 

2014). In the actual flow measurements collected in such areas, although we selected river 515 

sections in wetlands (floodplains) that met the flow measurement standards, the verification 516 

data did not contain mid-soil flow information, further leading to verification errors (Bendjoudi 517 

et al., 2002; Wagener et al., 2004). 518 

Compared with the validation results of the data recorded at the two hydrological 519 

stations, the tested accuracy of the manual flow measurements was the lowest; this result can 520 

be summarized with two reasons. Firstly, due to the rich data of hydrology station and 521 

automatic flow measurements, the model will be inclined to the site with rich data when scaling 522 

parameters, while there are only a few measured data of manual flow measurement, so the 523 

weight of the data will be reduced and the error will become larger. The other reason is also 524 

related to the characteristics of steppe rivers; during the flood period, sandy riverbeds do not 525 

easily maintain stable shapes (Staudt et al., 2019), and semiarid grasslands experience high 526 
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wind speeds in both the spring and summer rainy seasons (Li et al., 2021), thus affecting the 527 

river flow measurements. 528 

 529 

4.2 Parameter optimization and sensitivity analysis 530 

Model parameters can be defined as quantities that are used to represent the physical or 531 

ecohydrological characteristics of a watershed and remain constant during the simulation 532 

process (Melsen & Guse, 2019; Pfannerstill et al., 2015; Qi et al., 2019). The optimization of 533 

parameters in the MYEH model can make automatic adjustments using a variety of evaluation 534 

indexes to ensure that the simulated and observed runoff values match well (Song et al., 2012). 535 

Figure 5a-c describes model parameter optimization process through the use of three evaluation 536 

indexes (due to a large number of iterations, only partial results are shown in the figure). The 537 

results showed that the related variables of some runoff production modules dominated by soil 538 

water migration still showed convergence trends even under different rating indexes; this 539 

directly reflected the characteristics of the basin among the parameter values (Huang et al., 540 

2015a; Yokoo & Kazama, 2012). 541 

The parameters that control soil, snowmelt and river channels are all important input 542 

variables in ecohydrological models, and subtle changes in these parameters directly affect the 543 

stability of the models. Therefore, it is particularly important to discuss the influence of the 544 

parameters utilized in each module on the practical applications of the model (Guse et al., 2016; 545 

Pfannerstill et al., 2015). The parameters considered in the Sim module and snow routine unit 546 

mainly affect the change in yield over time (Croke & Jakeman, 2004; Huang et al., 2015b), and 547 

the FLC module parameters directly affect runoff collection (Reaney et al., 2014). All three of 548 

these parameter groups alter the flood propagation process to a certain extent. Therefore, the 549 

average simulation results obtained for these two modules and one routine unit were increased 550 

or decreased by 1, 2, 5, 7.5, 10, 12.5, 15, 20, 25, 30% and no change, and a total of 21 conditions 551 

were analyzed, respectively. The results are shown in Figure 5d-f. 552 

The parameter sensitivity analysis results are all within the acceptable range. Among 553 

them, changes in the snow routine parameters had the smallest impact on the simulated runoff. 554 

When the change range was greater than 5%, an increase in the snow process parameters had 555 

a greater impact on the simulation accuracy than a decrease in the snow process parameters. 556 

The parameters of the Sim and FLC modules were much more sensitive than those of the snow 557 

routine unit. When the variation range of the parameters of the above two modules exceeded 558 

5%, the simulated R2 and NSE values dropped to approximately 0.7 and 0.55, respectively 559 

(Figure 5d-e). The KGE index shows that when the variation range exceeded 10, the model 560 

accuracy significantly decreased (Figure 5f). 561 

 562 

Figure 5. Parameter optimization (a-c) and parameter sensitivity analysis (d-f) results obtained 563 

for the MYEH model. 564 

 565 
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4.3 Applicability analysis 566 

The applicability analysis conducted in this paper focuses on the universality of 567 

different driving datasets in the XRB. The results show that the runoff simulation results 568 

obtained using two different meteorological driving datasets were basically distributed on the 569 

1:1 line between the R2 and NSE values, and the TRMSEs of most simulated values were less 570 

than 0.6 (Figure 6). As a test index considering correlation, variability bias and mean bias, the 571 

KGE values remained between 0 and 0.4 on the whole, and the closer the R2 and NSE values 572 

of the two simulated values were, the better the KGE evaluation result was. 573 

In the simulation comparison, the errors resulting from data sources increased when the 574 

lower runoff or base flow were simulated (Balin et al., 2010; Faramarzi et al., 2015; Sikorska 575 

et al., 2015). In addition, collapse phenomena with high R2 values but poor NSE, KGE and 576 

TRMSE values occurred rarely in both the non-icebound period and the icebound period but 577 

occurred slightly more frequently in the non-icebound period than in the icebound period. 578 

These outliers indicate that although the results conform to the change rule in the whole time 579 

series, there is a certain deviation. The main reason for this phenomenon is that there a certain 580 

difference exists in the precipitation data between the two meteorologically driven datasets 581 

(Renard et al., 2011; Schoups & Nasseri, 2021), resulting in consistent flood peak occurrence 582 

times (consistent with the temporal rules) in the runoff generation simulations but deviating 583 

runoff (base flow) flood peak values. 584 

 585 

Figure 6. Comparison of the MYEH model-simulated runoff discharge during the nonfreezing 586 

period (a) and base flow during the freezing period (b) in the XRB as determined using the 587 

CMFD and GLDAS-NOAH data sources. In this figure, NSE and R2 are plotted on the X and 588 

Y axes, respectively, KGE is plotted in color, and TRMSE is plotted using the size of the 589 

markers. The black arrow points in the direction of decreasing flow or base flow. The red arrow 590 

indicates the tendency of both data-source simulations to collapse. NSE: Nash-Sutcliffe 591 

efficiency; KGE: Kling-Gupta efficiency; and TRMSE: Box-Cox transformed root mean 592 

square error. 593 

 594 

4.4 Flood process 595 

In view of the good applicability and strong stability of the MYEH model in the XRB, 596 

we further investigated the confluence mode of the FLC module (runoff in this mode is referred 597 

to as Qs) and two common confluence modes (we called the runoff discharge in these two 598 

confluence modes Qs1 and Qs2). The confluence model that does not consider the actual river 599 

length, river bend or overflow and the confluence model that considers the actual river length 600 

or river bend but does not consider overflow were compared and analyzed in their simulation 601 

of the four flood modes. First, we selected two 1/20-year frequency floods and two 1/50-year 602 

frequency floods in the simulation period. Two driving datasets and three confluence modes 603 

were used to simulate the flood process at the 3-hour scale. Yellow and red five-pointed stars 604 

were used to indicate the initial times at which overflows started in the tributaries and in both 605 
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the tributaries and mainstream. The flow data measured at the XRB National Hydrological 606 

Station section are shown in Figure 7. 607 

The results show that the flood peak times simulated by the two datasets at the diurnal 608 

scale are basically the same, and only the peak flood value differs slightly; this is consistent 609 

with the previous results regarding the universality of the XRB for different driving datasets. 610 

On the whole, Qs1, which does not consider the actual river length, river bend or flood, resulted 611 

in the fastest flood arrival time and the shortest flood duration. Qs2, which considers the actual 612 

river length or river bend, resulted in the latest flood arrival time and the longest flood duration. 613 

Qs, as simulated by FLC, had outputs in the middle of the two results described above (Figure 614 

7). 615 

Both floods that occurred in 1987 were triggered by single heavy rain events. The 616 

rainfall event that occurred on August 11th was short but intense, while the rainfall event that 617 

occurred on August 26th was light but prolonged. Accordingly, on August 11th, runoff reached 618 

the flood peak within 3 to 6 hours, while the runoff peak measured on August 26th was not as 619 

urgent as the former (Figure 7a). In 1998, many basins in China experienced extensive regional 620 

floods, and precipitation in the XRB was abundant. The year 1998 mainly included four floods 621 

caused by continuous precipitation, among which two floods showed a bimodal pattern due to 622 

short interruptions in precipitation (Figure 7b). In 2004 and 2012, extremely rare heavy rains 623 

occurred and caused extreme flood events. The runoff simulation results of different confluence 624 

modes also showed similar differences in these years. The flood peak of the Qs1 mode was 3 625 

to 6 hours earlier than that of the FLC mode, while the flood peak of the Qs2 mode was 3 to 6 626 

hours later than that of the FLC mode. The flood waveform and numerical runoff characteristics 627 

simulated by the three modes were basically consistent. In particular, when river overflows 628 

occurred, the flood peak value simulated by the FLC mode was slightly higher than that 629 

simulated by the Qs1 mode (Figure 7c, d). 630 

 631 

Figure 7. Simulations of the 3-hour flood process under three confluence modes using the 632 

CMFD and GLDAS-NOAH data sources. Figures 7(a) to 7(d) show monsoon floods in 1987, 633 

1998, 2004 and 2012, respectively. Qs indicates the MYEH model confluence mode (FLC). 634 

Qs1 indicates the confluence mode in which the actual river length, river bending and overflow 635 

are not considered. Qs2 indicates the confluence mode in which the actual river length and 636 

river bending are considered but overflow is not considered. The orange and red stars represent 637 

the overflow of tributaries and the overflow of main streams and tributaries in a flood event, 638 

respectively. 639 

 640 

Different confluence modes cause different flood arrival times, flood peak values and 641 

even flood waveforms (Gao et al., 2004; Wagener & Montanari, 2011). Through a comparison 642 

of the three confluence modes, it can be seen that considering the actual river length and river 643 

bend can result in more realistic simulations of steppe river network characteristics. However, 644 

if the overflow situation is not considered, the arrival time of the flood lags behind, and this 645 

situation is more obvious when the flood peak is larger. As a prominent feature of steppe rivers, 646 

channel overflow events not only advance the arrival times of flood peaks but also increase the 647 
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flood peak values to a certain extent. To refine and decompose the impacts of overflow events, 648 

we divided the overflows into tributary overflows and mainstream overflows. Since the 649 

mainstream is wider and deeper than the tributaries, we found that overflows first occur in 650 

tributaries during the whole simulation period and then occur in the mainstream when the flood 651 

becomes sufficiently large. 652 

First, we take 1987 and 1998 as examples to study the influence of tributary overflows 653 

on the confluence of steppe rivers. The two minor floods that occurred on August 7th, 1987, 654 

and June 2nd, 1998, showed that the difference between Qs and Qs1 was mainly that the 655 

overflow event occurred slightly earlier in Qs1 than in Qs; the two overflow values were 656 

basically consistent. When tributary overflow occurred, the Qs-derived peak value basically 657 

exceeded the Qs1-derived value, mainly reflecting the influence of river overflow on the runoff 658 

flood peak (Figure 7a, b). In the extreme flood events of 2004 and 2012, when overflows 659 

occurred in both the tributaries and mainstreams, not only did the Qs-derived peak exceed the 660 

Qs1-derived peak, but the slope of the simulated runoff also gradually increased, and the arrival 661 

time of the flood peak continually approached the Qs1-derived linear confluence value, 662 

reflecting the influence of river overflows on the arrival time and value of the flood peak 663 

(Figure 7c, d). In terms of the overflow process, the length of the flow path was shortened and 664 

the flow velocity was reduced by river bends, thus enabling the flow to converge more quickly 665 

to the downstream section (Cervantes et al., 2020; Knighton et al., 2014). A shorter river 666 

distance serves to reduce losses associated with evaporation, infiltration and other processes 667 

and improves the flood peak value compared with that derived using the mode that does not 668 

consider overflow (Krasnostein & Oldham, 2004). 669 

 670 

4.5 Response analysis of overflow frequency to climate and ecology 671 

Simply speaking, the overflow of river channels is a special situation in which an 672 

abundant inflow of water from the upstream region leads the river to overflow, thus disturbing 673 

the channel parameters and influencing the confluence of river networks. From the perspective 674 

of the hydrological function of a basin, river overflows are extremely destructive, as they lead 675 

not only to frequent riverbank collapses and diversions but also easily lead to extreme 676 

hydrological events such as decreased storage capacities, a steeply rising floods, and increased 677 

river sediment loads. In addition, from the perspective of vegetation ecology, river overflows 678 

can also lead to swamp conditions in valley wetlands and community succession in ecosystems 679 

dominated by plants and microorganisms through the resulting changes in soil moisture, ion 680 

concentrations and nutrient availabilities. Although it is difficult to directly define or judge the 681 

advantages and disadvantages of these succession processes, these processes represent another 682 

scientific question we hope to explore with the help of the proposed grassland watershed 683 

ecohydrological model. 684 

River overflows are not only directly related to precipitation but are also related to the 685 

regional vegetation and river stability. First, according to our simulation of the ecohydrological 686 

process in the XRB, we created a diagram of the annual average overflow frequency in the 687 

study area and the correlation distribution between overflows and the regional vegetation status 688 

(Figure 8a). The overflow frequency results showed that the average annual overflow 689 
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frequency was more than once a year in the upper reaches of the analyzed basin, especially in 690 

the river channel in the northeastern part of the study area and in the Hilltara wetland in the 691 

central and eastern parts of the study area, as the river channel in the upper reaches of the river 692 

and the wetland were relatively shallow and prone to overflowing (Bornette & Amoros, 1991). 693 

The northwestern part of the study area contains the Xilinhot Reservoir, which has low terrain 694 

and a large catchment area, so we did not analyze this region. 695 

The correlation between overflows and ecological conditions showed that the overflow 696 

frequency in the mainstream (OFN) was strongly correlated with the vegetation conditions, and 697 

the correlation between LAI and the mainstream grid prone to overflowing exceeded 0.5. The 698 

correlations between OFN and the vegetation status in tributaries and nonmainstream streams 699 

were higher in the south and lower in the north. According to the precipitation trend analysis, 700 

from 1980 to 2020, LAI and OFN as well as precipitation (17.18 mm 10a-1) and OFN (0.84 701 

10a-1) showed obvious increasing trends (Figure 8b), while LAI, which represents the 702 

vegetation conditions, showed a slight decreasing trend (-0.04 10a-1). Moderate overflow will 703 

improve the ecology of wetland vegetation in the valley. For example, snowmelt and ice-melt 704 

runoff in spring will increase the soil moisture content of wetland in the valley after overflow, 705 

making it easier for the wetland to turn green. It is believed that the real cause of wetland 706 

vegetation degradation in XRB valley should be the combination of riparian vegetation 707 

degradation and stunting caused by overgrazing. These results were consistent with the 708 

conclusion that the increase in OFN was related to the increase in precipitation and the 709 

degradation of vegetation analyzed in the previous section; further, these results are also 710 

consistent with the conclusion reached by Xu et al. (2009) in their study on the effect of the 711 

riparian vegetation ecological status on overflow events in the lower reaches of the Tarim River, 712 

another arid region. 713 

To further study the response trend of OFN to the environmental changes that have 714 

occurred in the last 41 years, we conducted periodic analyses of OFN with precipitation, 715 

vegetation, SOI, and SST in the NINO3.4 region using cross-spectrum analysis techniques. 716 

The significant cross-wavelet energy results obtained between OFN and precipitation, LAI, 717 

SOI and SST were mainly distributed in periods from 5 to 7 years and from 10 to 13 years 718 

(Figure 8c-f), among which the 10-13-year period was the most significant, indicating that 719 

overflows in the XRB have a strong corresponding relationship with global climate change, 720 

such as El Niño changes, and that these two processes are closely related (He et al., 2015; 721 

Kundzewicz et al., 2010; Minville et al., 2010). 722 

In addition, in some years, precipitation and LAI also had significant and strong 723 

interactions with OFN in periods ranging from 1 to 4 years and from 2 to 4 years, respectively, 724 

further indicating that overflow events strongly interacted with precipitation and LAI with short 725 

periods. In the strong interaction cycle lasting 10 to 13 years, the interactions between OFN 726 

and precipitation and between OFN and LAI were in the positive phase; that is, no lag effect 727 

was observed between the overflows and local meteorological or vegetation conditions. The 728 

phase difference between OFN and SST was approximately 30°, indicating that overflow 729 

events in the XRB have a lag period of approximately 2 years in response to global climate 730 

change. 731 
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Overall, the MYEH model that considers river overflow events helps us to understand 732 

that the special steppe river overflow phenomenon is closely related to the local precipitation, 733 

vegetation status, global climate change and other factors; further, this model helps reveal the 734 

unique ecohydrological processes and response mechanisms of typical steppe ecosystems. 735 

 736 

Figure 8. (a) Average annual overflow frequency and the correlation between overflows and 737 

vegetation status. (b) Trend analyses of precipitation, LAI, and OFN from 1980 to 2020. (c-f) 738 

The cross-wavelet energy spectrum analyses of the OFN with precipitation, LAI, SOI and 739 

NINO3.4 SST. The 5% significance level against red noise is shown as a thick contour line. 740 

The relative phase relationships are shown as arrows (with in-phase relationships pointing right 741 

and anti-phase relationships pointing left). 742 

 743 

4.6 Existing problems and uncertainty analysis 744 

4.6.1 Refine the overflow process 745 

Although we optimized the grassland river confluence process by setting the overflow 746 

coefficient and other methods, we still found that the simulated flow value at the maximum 747 

flood peak time was slightly higher, while the flood peak was slightly lower at the later time 748 

units (Figure 4); these results indicated that our confluence speed simulation results were still 749 

overestimated to some extent. A further subdivision of the overflow process (type) may be 750 

helpful for obtaining a more detailed optimization. First, do overflow events permanently reset 751 

channels? This question corresponds to the dynamic treatment of the recovery period following 752 

diffuse flow conditions. The second step is to distinguish overflow events into temporary and 753 

dam break overflow. These errors tend to focus on the flow increases caused by the 754 

summertime rainy season and the spring flood caused by springtime snowmelt. Small 755 

overestimations can be seen in both utilized datasets (Figures 4 and 7). In a more refined river 756 

channel description, it is critical to optimize the confluence process in the future to determine 757 

whether the overflow coefficients can be graded and the sensitivity of the analyzed reach can 758 

be graded, aiming to realize dynamic overflow simulations inside the river network grid cells 759 

for flood control in small grassland river basins. In addition, overflow will affect soil moisture 760 

and vegetation, so the ecological process simulation of a watershed, especially the simulation 761 

of wetland ecological process after overflow, is also the direction for further optimization and 762 

improvement. 763 

 764 

4.6.2 Optimize the parameter selection system 765 

The MYEH model constructed in this study adopts the overall parameter adjustment 766 

principle and comprehensively judges the results using multiple evaluation indexes to select 767 

the simulation results with the highest accuracies, smallest errors and most physically 768 

significant parameter combinations as effectively as possible. Such an evaluation system is 769 

considered comprehensive but still has room for improvement. For example, a variety of 770 

verification methods that aim to ensure data accuracy are included in the evaluation system; 771 
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the evapotranspiration and production confluence module parameters are adjusted 772 

simultaneously; and the simulation results are evaluated. In addition, simulation process 773 

parameters such as the soil moisture content could also be included in the evaluation system to 774 

improve the ecohydrological process simulation accuracy. 775 

 776 

4.6.3 Subsequent module design 777 

Through multiple ecological-hydrological process simulations, we found that a certain 778 

error still exists when simulating the water balance in grassland wetlands. On the one hand, 779 

due to the lack of frozen soil simulations, the water resulting from springtime snowmelt in the 780 

flood season cannot undergo large-scale penetration or flow into the soil, thus leading to 781 

evapotranspiration underestimations; on the other hand, due to this omission, groundwater 782 

recharge is not considered. For the subsequent expansion of the MYEH model, we plan to take 783 

two steps: one step involves improving the FLC module and building frozen soil and 784 

groundwater modules by summarizing and combining existing problems; and the other step 785 

involves considering more ecological-hydrological processes and building modules to 786 

represent the nutrient element cycle, plant growth, grazing disturbances and so on. 787 

 788 

5 Conclusion 789 

Aiming to represent runoff in a semiarid steppe basin with variable meandering rivers 790 

and steep flood flows, we simulated the 3-hour runoff process in the XRB from 1980 to 2020 791 

by constructing runoff generation and convergence modules in the MYEH model to consider 792 

the dynamic actual river length, river bend and overflow characteristics and discussed the 793 

occurrence frequency and influencing factors of steppe river overflow events. The results show 794 

that the MYEH model has a high accuracy and stability when simulating the ecohydrological 795 

process and can also simulate changes in river overflows, flood peaks and arrival times caused 796 

by the passage of large flood events. With the use of an appropriate eco-hydrological model, it 797 

is helpful to further reveal the special phenomenon of the overflow of steppe rivers. Vegetation 798 

degradation caused by overgrazing and the increase of precipitation in the basin are the main 799 

reasons for the increase of the overflow number of XRB, and there is a two-year lag between 800 

the overflow number and global climate change factors. 801 
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Figures 1127 

 1128 

Figure 1. Schematic diagram of natural processes such as the flow convergence, actual river 1129 

lengths, and channel turns of grassland rivers. Note: The river network shown in the figure 1130 

does not correspond to the real modelled river network resolution. 1131 
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 1133 

Figure 2. Location, vegetation types (a), topography and stations (b) in the XRB. SBG: S. 1134 

baicalensis Roshev. grassland; LCG: L. chinensis (Trin.) Tzvel. grassland; SKG: S. krylovii 1135 

Roshev. grassland; SGG: S. grandis P.A. Smirn. grassland; ASG: A. splendens (Trin.) Nevski 1136 

grassland; CMG: C. microphylla Lam grassland; AFG: Artemisia frigida Willd. grassland; 1137 

PAG: P. asperata Mast. grassland; FSG: Filifolium sibiricum (L.) Kitam. grassland; and WCG: 1138 

weed community grassland. 1139 
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 1141 

Figure 3. (a) Schematic diagram of the MYEH model simulation (Sim) module; (b) schematic 1142 

diagram of the MYEH model flow confluence (FLC) module. The full names of the variables 1143 

shown in Figure 3a can be seen in Table 2. DEM: digital elevation model; RS: remote sensing; 1144 

1-km RBRE: 1-km river bend radius equivalent; FTL: flow time length; FFTL: fixed flow time 1145 

length; and RDacc: accumulated runoff depth. 1146 

  1147 



manuscript submitted to Water Resources Research 

 1148 

Figure 4. (a) Comparison of the simulated and measured daily sectional discharge at a national 1149 

hydrological station obtained using two meteorologically driven datasets with the MYEH 1150 

model; (b) Q-Q plot of daily discharge in the XRB; (c-e) comparison of the simulated and 1151 

measured daily sectional discharge at three automatic hydrological stations using two 1152 

meteorologically driven datasets with the MYEH model; (f) comparison of the simulated and 1153 

measured daily sectional discharge at seven measuring sites using the CMFD; and (g) 1154 

comparison of the simulated and measured daily sectional discharge at seven measuring sites 1155 

using the GLDAS-NOAH dataset. The green points in (a) to (e) are the values observed at the 1156 

national hydrological station. 1157 
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 1159 

Figure 5. Parameter optimization (a-c) and parameter sensitivity analysis (d-f) results obtained 1160 

for the MYEH model. 1161 
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Figure 6. Comparison of the MYEH model-simulated runoff discharge during the nonfreezing 1163 

period (a) and base flow during the freezing period (b) in the XRB as determined using the 1164 

CMFD and GLDAS-NOAH data sources. In this figure, NSE and R2 are plotted on the X and 1165 

Y axes, respectively, KGE is plotted in color, and TRMSE is plotted using the size of the 1166 

markers. The black arrow points in the direction of decreasing flow or base flow. The red arrow 1167 

indicates the tendency of both data-source simulations to collapse. NSE: Nash-Sutcliffe 1168 

efficiency; KGE: Kling-Gupta efficiency; and TRMSE: Box-Cox transformed root mean 1169 

square error. 1170 
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 1172 

Figure 7. Simulations of the 3-hour flood process under three confluence modes using the 1173 

CMFD and GLDAS-NOAH data sources. Figures 7(a) to 7(d) show monsoon floods in 1987, 1174 

1998, 2004 and 2012, respectively. Qs indicates the MYEH model confluence mode (FLC). 1175 

Qs1 indicates the confluence mode in which the actual river length, river bending and overflow 1176 

are not considered. Qs2 indicates the confluence mode in which the actual river length and 1177 

river bending are considered but overflow is not considered. The orange and red stars represent 1178 

the overflow of tributaries and the overflow of main streams and tributaries in a flood event, 1179 

respectively. 1180 
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 1182 

Figure 8. (a) Average annual overflow frequency and the correlation between overflows and 1183 

vegetation status. (b) Trend analyses of precipitation, LAI, and OFN from 1980 to 2020. (c-f) 1184 

The cross-wavelet energy spectrum analyses of the OFN with precipitation, LAI, SOI and 1185 

NINO3.4 SST. The 5% significance level against red noise is shown as a thick contour line. 1186 

The relative phase relationships are shown as arrows (with in-phase relationships pointing right 1187 

and anti-phase relationships pointing left). 1188 
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Tables 

 

Table 1. Information of measurement stations in the XRB. 

Name Collector Monitoring indicator Frequency Data length 

National 

hydrological station 

/ Flow discharge 1 day 1964/1/1-

2020/12/31 

Automatic 

hydrological station 

RQ-30 radar sensor (Sommer GmbH, Austria) Water level, flow velocity, flow discharge 1 min 2018/8/15-

2020/12/31 

Bowen ratio system CR1000 (Campbell Scientific Inc., Logan, UT, 

USA) 

Air temperature*, humidity*, wind speed*, wind 

direction*, precipitation, total radiation, soil heat flux, etc 

1 min 2017/6/15-

2020/12/31 

Automatic rainfall 

station 

RG600 tilting rain gauge (Global water, USA) Precipitation 1 min 2016/6/30-

2020/12/31 

Manual flow 

measuring site 

LS1206B propeller type flow sensor (Nanjing 

Nanshui Water Technology Company, PRC) 

Flow velocity 7 days Apr. to Oct. from 

2017 to 2020 

Note: * represents the monitoring indicator is located at a height of 2,3.5, 5,10 meters. 
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Table 2. Summary of parameters used in the Sim module and FLC module within the MYEH model. 

Module Parameter (Units) Full name Range Module Parameter (Units) Full name 

Sim 

Ts (℃) Threshold temperature -3 to 3 

FLC 

AG (km2) Grid area 

CFMAX (mm ℃-1) Degree-3-hour factor 0 to 20 WR (m) River width 

CFR (-) Refreezing factor 0 to 1 LR (km) River length 

CWH (-) Water holding capacity of snow 0 to 0.8 HR (m) Runoff height 

BETA (-) Exponential parameter in soil routine 0 to 7 dH (km) Elevation difference 

LP (-) Evapotranspiration limit 0.3 to 1 FD (-) Flow direction 

FC (mm) Field capacity 1 to 2000 1km RBRE (degree) 1km river bending radius equivalent 

PERC (mm dt-1) maximum flux from Upper to Lower Zone 0 to 100 v1 (m dt-1) Initial velocity 

K0 (dt-1) Near surface flow coefficient (ratio) 0.05 to 2 v2 (m dt-1) End flow velocity 

K1 (dt-1) Upper Zone outflow coefficient (ratio) 0.01 to 8 AS (m2) Sectional area 

K2 (dt-1) Lower Zone outflow coefficient (ratio) 0.05 to 0.8 FTL (dt) Flow time length 

UZL (mm) Near surface flow threshold 0 to 100 FFTL (dt) Fixed flow time length 

MAXBAS (dt) Flow routing coefficient 1 to 6 RDAcc (mm) Accumulated runoff depth 

Note: In this table, dt represents the unit time. 

 

Table 3. Characteristics of the two meteorological datasets. 

Dataset Version Date used in study Temporal resolution 

CMFD 01.05.0016 1980.01.01-2018.12.31 3 hours 

GLDAS-Noah V2.0 1980.01.01-2000.12.31 3 hours 

GLDAS-Noah v2.1 2000.01.01-2020.12.31 3 hours 

Note: CMFD: China meteorological forcing dataset, in which the temperature, pressure, specific humidity, wind speed, downward shortwave radiation, downward longwave 

radiation, and precipitation rate data are used in the study. NASA Global Land Data Assimilation System Version 2 (GLDAS-2) has three components: GLDAS-2.0, 

GLDAS-2.1, and GLDAS-2.2. GLDAS-2.0 is forced entirely with the Princeton meteorological forcing input data and provides a temporally consistent series from 1948 

through 2014. GLDAS-2.1 is forced with a combination of model and observation data from 2000 to present. 
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Table 4. Six evaluation value of simulated runoff in XRB using two data sources. 

 R2 NSE KGE RMSE BIAS MAE 

CMFD 0.947** 0.946 0.029 0.463 0.003 0.147 

GLDAS-Noah 0.932** 0.905 0.262 0.616 0.096 0.191 

Note: ** indicates that the increasing or decreasing trend is significant at α ≤ 0.001. 

 

 

 


