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Abstract

This article is composed of three independent commentaries about the state of ICON principles (Goldman et al., 2021) in

Earth and Space Science Informatics (ESSI) and includes discussion on the opportunities and challenges of adopting them.

Each commentary focuses on a different topic: (Section 2) Global collaboration, cyberinfrastructure, and data sharing; (Section

3) Machine learning and multiscale modeling; (Section 4) Remote sensing for advancing Earth system model development

by integrating field and ancillary data. ESSI addresses data management practices, computation and analysis, and hardware

and software infrastructure. Our role in ICON science therefore involves collaborative work to assess, design, implement, and

promote practices and tools that enable effective data management, discovery, integration, and reuse for interdisciplinary work

in Earth and space science disciplines. Networks of diverse people with expertise across Earth, space, and data science disciplines

are essential for efficient and ethical exchanges of FAIR research products and practices. Our challenge is then to coordinate

the development of standards, curation practices, and tools that enable integrating and reusing multiple data types, software,

multi-scale models, and machine learning approaches across disciplines in a way that is as open and/or FAIR as ethically
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possible. This is a major endeavor that could greatly increase the pace and potential of interdisciplinary scientific discovery.
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Key Points: 27 

• Networks across communities, with Coordinated data and information modeling 28 
practices, improve scientific outcomes for all involved. 29 

• Integrated, Coordinated, and Open data requires sustainable support to create and 30 
maintain infrastructure for interdisciplinary Networks.  31 

• Integrated and Coordinated use of data in machine learning calls for Open benchmark 32 
datasets, shared across Networks for improved outcomes. 33 
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Abstract 35 
This article is composed of three independent commentaries about the state of ICON principles 36 
(Goldman et al., 2021a) in Earth and Space Science Informatics (ESSI) and includes discussion 37 
on the opportunities and challenges of adopting them. Each commentary focuses on a different 38 
topic: (Section 2) Global collaboration, cyberinfrastructure, and data sharing; (Section 3) 39 
Machine learning for multiscale modeling; (Section 4) Aerial and satellite remote sensing for 40 
advancing Earth system model development by integrating field and ancillary data. ESSI 41 
addresses data management practices, computation and analysis, and hardware and software 42 
infrastructure. Our role in ICON science therefore involves collaborative work to assess, design, 43 
implement, and promote practices and tools that enable effective data management, discovery, 44 
integration, and reuse for interdisciplinary work in Earth and space science disciplines. Networks 45 
of diverse people with expertise across Earth, space, and data science disciplines are essential for 46 
efficient and ethical exchanges of FAIR research products and practices. Our challenge is then to 47 
coordinate the development of standards, curation practices, and tools that enable integrating and 48 
reusing multiple data types, software, multi-scale models, and machine learning approaches 49 
across disciplines in a way that is as open and/or FAIR as ethically possible. This is a major 50 
endeavor that could greatly increase the pace and potential of interdisciplinary scientific 51 
discovery.  52 

Plain Language Summary 53 
We present commentaries on the state of “ICON principles'' in Earth and Space Science 54 
Informatics. ICON principles (Integrated, Coordinated, Open, and Networked) are meant to 55 
improve the research experience for all. Ultimately, data standardized according to community 56 
conventions and formats lead to more effective and efficient collaboration, data discovery, 57 
integration, and analyses. Data standards, tools, and machine learning developed using ICON 58 
principles enhance our understanding of Earth processes. Using ICON principles improves 59 
model results and efficacy, fosters interdisciplinary research, and provides a framework by which 60 
non-experts can confidently contribute volunteered data and findings. Standardized data also 61 
provides reliable common resources to help train and benchmark machine learning algorithms. 62 
When networked communities work together to standardize and share data openly, the resulting 63 
web of research products is more readily findable, accessible, interoperable, and reusable 64 
(FAIR). Ongoing support is crucial to develop and sustain the people, systems, and tools 65 
necessary to embrace ICON principles in Earth and Space Science Informatics now and in the 66 
future.  67 

1 Introduction 68 
Integrated, Coordinated, Open, Networked (ICON) science aims to enhance synthesis, 69 

increase resource efficiency, and create transferable knowledge (Goldman et al., 2021a). This 70 
article belongs to a collection of commentaries (Goldman, et al., 2021b) spanning geoscience on 71 
the state and future of ICON science. Earth and Space Science Informatics (ESSI) encompasses a 72 
broad field that addresses data management practices, computation and analysis, and hardware 73 
and software infrastructure. ESSI’s role in ICON science therefore involves collaborative work 74 
to assess, design, implement, and promote practices and tools that enable effective data 75 
management, discovery, integration, and reuse for interdisciplinary work in Earth and space 76 
science (ESS) disciplines. In this series of commentaries, we examine the current state, 77 
challenges, and opportunities of ICON science through the lenses of global collaboration, 78 
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cyberinfrastructure, and data sharing (Section 2); machine learning and multiscale modeling 79 
(Section 3); and remote sensing for advancing Earth system models (ESM) development by 80 
integrating field and ancillary data (Section 4). 81 

2 Global collaboration, cyberinfrastructure, and data sharing 82 

2.1 Current status  83 
Global collaboration across disciplines is essential to the development and 84 

implementation of data/metadata standards and cyberinfrastructures. Thus, many organizations 85 
have emerged to facilitate such collaboration, e.g., Research Data Alliance, World Data System, 86 
Earth Science Information Partners. These organizations have produced numerous active groups 87 
involved in Earth, space and environmental science data and research, and developed many data 88 
tools and services, e.g. Earth, Space and Environmental Sciences Data Vocabulary Repositories. 89 
Research is more efficient with Networked data practices and cyberinfrastructures that support 90 
scientific discovery. Yet, there is still a large disconnect and lack of Coordination across many 91 
informatics communities and the broader communities we aim to support. 92 

Research teams often lack sufficient resources (e.g., appropriate cyberinfrastructure, 93 
expert data/software personnel, financial allotment) to effectively manage, standardize, and 94 
publish high-quality data (Mons, 2020). This hinders data from being Open and/or Findable, 95 
Accessible, Interoperable, and Reusable (FAIR; Wilkinson et al., 2016). Further, specific 96 
criteria to implement the FAIR Guiding Principles (Gries et al., 2019; Jones et al., 2019) 97 
inevitably vary across disciplines and data types as inconsistencies in interpretations of the 98 
principles have grown (e.g., Kinkade & Shepherd, 2021; Mons et al., 2017; Stall et al., 2019). 99 
Importantly, FAIR does not mean Open; data can be Open without being FAIR, and vice versa 100 
(see What is the difference between “FAIR data” and “Open data” if there is one?). Thus, even if 101 
the data cannot be fully Open, it is still possible for the science itself to be Open, or at least 102 
transparent.  103 

Supporting ESS research requires assessing, designing, building, and maintaining 104 
cyberinfrastructures (e.g., data repositories/archives, application programming interfaces (APIs), 105 
visualization tools, search interfaces) that are often organized around a particular data type, 106 
discipline, or organization (e.g., Pertzold et al, 2019). Ever-increasing volumes of open data and 107 
tools now allow us to ask science questions that synthesize data and knowledge across scientific 108 
disciplines from globally distributed resources, thus expanding the impact of funded research 109 
(e.g., Michener, 2015; Rosenberg et al., 2019). More successful Networked data sharing efforts 110 
(e.g., Global Biodiversity Information Facility, Ameriflux, Consortium of Universities for the 111 
Advancement of Hydrologic Science, Inc., Long-Term Ecological Research Network, National 112 
Ecological Observatory Network, Deep Carbon Observatory, HydroShare) have been driven by 113 
(1) demand for and funding to support a specific data type (Barrett et al., 2012; Novick et al., 114 
2018; Robertson et al., 2014); (2) reporting standards that enable global data search and 115 
integration (e.g., Wieczorek et al., 2012; Yilmaz et al., 2011); and (3) associated user-friendly 116 
tools (Clark et al., 2016; Robertson et al., 2014).  117 

2.2 Challenges and opportunities  118 
Most cyberinfrastructures lack the resources for Integration and Coordination 119 

necessary for broader interdisciplinary work, including guidance and leading practices; domain 120 
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semantics; technical, data, methodological, and instrumentation standards; workflow 121 
management; training; and sustainable technical and financial support. These deficits hinder the 122 
availability of Open data that could foster machine actionable, interdisciplinary scientific 123 
discovery. While existing standards and practices may address similar concepts, they are not 124 
fully interoperable or Integrated within and across relevant disciplines. Valuable resources are 125 
spent developing/updating translators, or disciplinary standards are simply disconnected and 126 
inefficient for interdisciplinary users. Coordination is needed to implement standards for 127 
effective interdisciplinary data discovery and exchange. A major challenge to Coordination 128 
involves a lack of consistent and transparent protocols (e.g., data and code production, 129 
processing methods) across interdisciplinary teams. Further, informatics initiatives and working 130 
groups (e.g. RDA, ESIP) are primarily volunteer-based without appropriate recognition or 131 
funding that would accelerate and improve this work. These combined factors create barriers to 132 
Open and FAIR data.  133 

Replicable and transparent research that reflects ICON principles requires sustainable 134 
investment in cyberinfrastructure to improve interoperability and Integration. Global high-level 135 
Coordination across organizations is needed to bridge siloed efforts across disciplines, 136 
organizations, and/or countries. A commitment to community engagement is needed to bring 137 
together input across disciplines, understand data management challenges and needs, and 138 
promote the adoption of shared practices. Making data as Open and/or FAIR as ethically 139 
possible requires key advocates who facilitate Networked collaboration.  140 

Data users, code contributors, and tool developers should align with established standards 141 
or community practices. We can encourage practices that promote ICON principles, such as 142 
Open publication of study plans (e.g., PLOS ONE study proposals), data production and 143 
processing protocols (e.g., Common Workflow Language), and software code. We must 144 
continually evaluate how to Coordinate and Integrate across existing cyberinfrastructure from 145 
local to global scales, which involves iterative rounds of engagement; education and outreach; 146 
and feedback across data providers, tool and service creators, and scientists who use ESS data 147 
and services. Coordinating Networks across disciplines will involve technical approaches to 148 
connect related data (e.g., globally unique and resolvable persistent identifiers (PIDs), APIs, 149 
ontologies, geospatial standards) and promoting widespread adoption of community standards 150 
that improve scientific outcomes and benefit all participants in the Network. Coordination is 151 
also key to shifting legacy cyberinfrastructure and data to be more ICON-aligned.   152 

3 Machine learning for multiscale modeling 153 

3.1 Current status  154 
Over the past decade, artificial intelligence approaches, including machine learning 155 

(AI/ML), have revolutionized scientific discovery across disciplines, including Earth and space 156 
science informaticsinformatics (Maskey, Alemohannad, et al., 2020). The AI/ML revolution, 157 
driven by a wealth of Open data and rapid technological development in computational 158 
cyberinfrastructure, has led to more processing power and greater Networking between 159 
cyberinfrastructure as well as data generators and data users which allows unprecedented 160 
resource and data sharing. There are many success stories demonstrating how AI/ML has been 161 
used to address challenging issues in ESS, e.g., extreme weather prediction (Maskey, 162 
Ramachandran, et al., 2020; Pradhan et al., 2018; Wimmers et al., 2019), land use/land cover 163 
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change monitoring (Hansen et al., 2013), Earth system modeling (Reichstein et al., 2019), 164 
endangered species identification (Allen et al., 2021), spatial downscaling of climate models and 165 
satellite observations (López López et al., 2018; Vandal et al., 2019), space weather forecasting 166 
(Wintoft et al., 2017), and lunar and planetary landform classification (Palafox et al., 2017; 167 
Silburt et al., 2019). Various funding agencies worldwide have recently released their strategic 168 
plans and guidelines to expand the investment in AI/ML research which will further its adoption 169 
within informatics for at least the next decade to accelerate scientific discovery and address 170 
pressing societal issues such as combatting climate change, facilitating the energy transition, and 171 
ensuring food security. 172 

3.2 Challenges and opportunities 173 
To accelerate this adoption, the ESS community needs to collectively address several key 174 

challenges to make AI/ML in ESS more efficient and ICON-aligned. Most AI/ML applications 175 
in ESS are ad hoc research that lacks system-wide Coordination and are time-consuming. There 176 
are little AI-ready data (e.g., cleaned, harmonized, formatted, well documented) that can be 177 
efficiently Integrated across domains or applications and few recommended practices on proper 178 
model development and documentation (Maskey, Alemohammad, et al., 2020). As the capacity 179 
and application scope of AI/ML heavily depends on patterns in training data, it should be as 180 
representative as possible. These requirements for big training datasets have led to calls for 181 
libraries of Open and FAIR benchmark datasets (WILDS, Koh et al., 2020; Radiant Earth 182 
Foundation; Rasp et al., 2020) related to questions within ESS (Crystal-Ornelas et al., 2021).  183 

AI-ready training datasets and standardized AI/ML model development practices would 184 
enable the ESS community to collaboratively develop open AI/ML applications at scale. 185 
However, there are no current community-recommended practices on how to properly develop, 186 
document, and share the AI/ML applications that track provenance and enable reproducibility 187 
(Sun et al., 2020). Increased connection through cloud computing (Gorelick et al., 2017; Mayer-188 
Schönberger & Cukier, 2013) allows sharing data and models in the cloud, enabling Networked 189 
researchers around the world access to these resources without being limited by local computing 190 
power. However, despite recent progress, work needs to be done to make cloud computing more 191 
accessible. Increased Openness in the exchange of data handling practices allows sharing 192 
common workflows while handling large datasets. Integration across disciplines could be 193 
improved by: (1) including physics in ML models (Jia et al., 2019; Raissi et al., 2019), (2) 194 
leveraging ML exploratory tools (Montavon et al., 2017; Ying et al., 2019), and (3) better 195 
mechanism for codevelopment between domain experts and AI/ML developers. Coordination 196 
via automated workflows would improve development efficiency (e.g., auto-sklearn, AutoKeras) 197 
(He et al., 2021). To improve AI engineering efficiency and reduce data collection and 198 
processing costs, developers may also use data augmentation methods such as mixup (Zhang et 199 
al., 2017) to fill in the missing data and enhance data quality (Alexandrov & Vesselinov, 2014; 200 
Vesselinov et al., 2018). 201 

The ability to readily interpret and generalize AI/ML models are also major concerns for 202 
the ESS community (McGovern et al., 2019; Toms et al., 2020). To address complex questions 203 
in ESS systems, we need to better understand why AI/ML models perform in a certain way, their 204 
consistency with domain knowledge, and how models developed using a specific set of data can 205 
adjust dynamically to shifts in ESS data. To address these concerns, the ESS community should 206 
establish benchmark tasks with Open and standardized data and a Coordinated evaluation 207 
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framework to enhance future development. Licensing approaches are still evolving, highlighting 208 
the need for increased Coordination on policy and ethics considerations. Ethical awareness, 209 
conduct, and responsibility in AI/ML and related activities are essential to the practice of 210 
principled research; while beyond the scope of this paper, some particular concerns include 211 
misleading results due to biased training data; cognitive biases in general; and incorrect 212 
annotation, classification or characterization of data. AI/ML applications heavily rely on input 213 
data, thus the ESS community needs to establish Coordinated standards that clarify the impact 214 
of input data quality on downstream applications to ensure trustworthiness. These community 215 
standards should Integrate both domain sciences and social sciences.  216 

4 Aerial and satellite remote sensing for advancing Earth system model development by 217 
integrating field and ancillary data 218 

4.1 Current status 219 
Remote sensing technology combined with field and ancillary data (e.g., field 220 

measurements, other imagery; Acton, 1996) provides a compelling example of how dedicated 221 
resources supporting ICON science and advanced AI/ML technologies have transformed the 222 
development of ESMs as they have advanced from aerial imagery of the early nineteenth century 223 
(Necsoiu et al., 2013) to the present-day’s Google Earth Engine (Gorelick et al., 2017) and 224 
Unmanned Aerial Vehicles (Singh & Frazier, 2018). Most publicly-funded remote sensing 225 
datasets are Open and hosted on public repositories (e.g., government-sponsored repositories, 226 
Github, Zenodo). In addition, this data is distributed through Coordinated standards between 227 
government agencies across the globe (Alameh, 2020). Integration of remote sensing 228 
technology with independent field measurements and high spatial resolution satellite imagery has 229 
been essential for ESM validation. This also includes estimating derived data products (e.g., 230 
from satellites) accuracy and quantifying uncertainty (Strahler et al., 2006). Crowdsourcing and 231 
citizen science have further advanced the integration of remote sensing with field data (e.g., 232 
RaspberryShake, Khan et al., 2018; Saralioglu & Gungor, 2020; Worldwide 233 
Hydrobiogeochemistry Observation Network for Dynamic River Systems [WHONDRS], Stegen 234 
& Goldman, 2018), resulting in broader Networked efforts that benefit researchers and a wide 235 
variety of data users. Many agencies in the US and Europe have made some or all of their data 236 
Open to all users internationally. Some examples, associated cyberinfrastructure, and tools are 237 
included in an associated github repository. 238 

4.2 Challenges and opportunities 239 
Two primary challenges that the ESM community still faces are limited global data 240 

collection and inadequate cyberinfrastructure. Despite advances in sensors, crowdsourcing, and 241 
citizen science (e.g., RaspberryShake, WHONDRS), collecting and hosting high-quality global 242 
data present immense challenges. For example, RaspberryShake has collected more than 30TB 243 
of seismographic data over the past decade but lacks the necessary cyberinfrastructure to reliably 244 
and sustainably store it. 245 

Recent progress in AI/ML has improved available data to represent Earth system 246 
processes (e.g., thermal, land physics and hydrology, radiation, atmospheric ocean circulation) in 247 
ESMs (Rasp et al., 2018). ML, in particular, requires massive datasets to represent processes at 248 
both normal and extreme events (e.g., hurricanes, wildfires); however, extreme event data are 249 
rare due to the unique challenges faced during collection. Thus, the concept of crowdsourcing 250 
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data collection, using Coordinated methods (e.g., RaspberryShake, WHONDRS) on extreme 251 
events, is an attractive option that improves Networked research.   252 

There has been a Coordinated effort from US and European agencies to develop 253 
cyberinfrastructure that improves and increases access to data to enhance predictions and 254 
understanding of various Earth system processes. For example, the European Space Agency 255 
Sentinel data products are recently available in the Copernicus Data and Information Access 256 
Service cloud environments. In addition, the US Geological Survey Landsat satellite data 257 
inventory has been Open to the public since 2008 and has been in the cloud since 2020 (U.S. 258 
Geological Survey, 2008). Furthermore, the National Aeronautics and Space Administration 259 
(NASA) and the National Oceanic and Atmospheric Administration (NOAA) have adopted a 260 
strategic vision to leverage cloud computing and operate multiple components of their data 261 
systems in a retail cloud environment. This calls for action to identify the opportunities to 262 
improve policy and strategy planning across various countries to make satellite data products 263 
accessible to all users in open data portals. In addition, automated quality assurance of satellite 264 
observations is needed to support global, regional, or local data services. Coordinated across 265 
international agencies, a standard open data cyberinfrastructure will help to assure ESM data 266 
from multiple sources (national, regional, governments, academia, and the private sector) are 267 
available and easily Integrated into open-source platforms and networks. 268 

 Coordination would help international agencies and organizations build a standard open 269 
data cyberinfrastructure to ensure that Earth science data are free, Open, and easily Integrated 270 
into ESMs. We also need next-generation sensors and satellites which provide more fine 271 
resolution data to increase the accuracy of ESMs. For example, the joint NASA-Indian Space 272 
Research Organization (ISRO) Synthetic Aperture Radar (SAR) (NISAR) mission is anticipated 273 
to provide Open radar data with a spatial resolution of less than a centimeter to Integrate into 274 
ESM for studying the Earth’s features and processes. The role of AI/ML needs to be expanded to 275 
fill the gaps of remote sensing data. 276 

5 Concluding remarks 277 
Earth and space science research facilitated by modern informatics techniques that follow 278 

the ICON principles enables data synthesis, increases resource efficiency, and creates knowledge 279 
that transcends individual systems (Goldman et al., 2021a). ESSI can work to ensure that diverse 280 
scientists have user-friendly resources to contribute and use data that follows community 281 
conventions. Such collections of Open and/or FAIR data, shared across Networks for mutual 282 
benefit, are critical to appropriately train AI/ML, which furthers Integration and Coordination 283 
in Earth and space science informatics. Cross-community Networks improve scientific outcomes 284 
for all involved. Communities must work together to share data openly using community 285 
standards, to produce Open and/or FAIR data that enables data synthesis and can revolutionize 286 
fields of research (e.g., Kelling et al., 2009). Ongoing, sustainable support is vital to create and 287 
maintain the cyberinfrastructure and human resources necessary for Integrated, Coordinated, 288 
and Open and/or FAIR data (as much ethically as possible) for interdisciplinary Networks. 289 
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