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Abstract

Trade wind convection organises into a rich spectrum of spatial patterns, often in conjunction with precipitation development.

Which role spatial organisation plays for precipitation and vice versa is not well understood. We analyse scenes of trade

wind convection scanned by the C-band radar Poldirad during the EUREC4A field campaign to investigate how trade wind

precipitation fields are spatially organised, quantified by the cells’ number, mean size and spatial arrangement, and how this

matters for precipitation characteristics. We find that the mean rain rate, i.e. the amount of precipitation in a scene, and the

intensity of precipitation (mean conditional rain rate) relate differently to the spatial pattern of precipitation. While the amount

of precipitation increases with mean cell size or number, as it scales well with the precipitation fraction, the intensity increases

predominantly with mean cell size. In dry scenes, the increase of precipitation intensity with mean cell size is stronger than in

moist scenes. Dry scenes usually contain fewer cells with a higher degree of clustering than moist scenes. High precipitation

intensities hence typically occur in dry scenes with rather large, few and strongly clustered cells, while high precipitation

amounts typically occur in moist scenes with rather large, numerous and weakly clustered cells. As cell size influences both the

intensity and amount of precipitation, its importance is highlighted. Our analyses suggest that the cells’ spatial arrangement,

correlating mainly weakly with precipitation characteristics, is of second order importance for precipitation across all regimes,

but could be important for high precipitation intensities and to maintain precipitation amounts in dry environments.
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Trade wind convection organises into a rich spectrum of spatial pat-
terns, often in conjunction with precipitation development. Which role
spatial organisation plays for precipitation and vice versa is not well un-
derstood. We analyse scenes of trade wind convection scanned by the
C-band radar Poldirad during the EUREC4A field campaign to investi-
gate how trade wind precipitation fields are spatially organised, quanti-
fied by the cells’ number, mean size and spatial arrangement, and how
thismatters for precipitation characteristics. Wefind that themean rain
rate, i.e. the amount of precipitation in a scene, and the intensity of pre-
cipitation (mean conditional rain rate) relate differently to the spatial
pattern of precipitation. While the amount of precipitation increases
with mean cell size or number, as it scales well with the precipitation
fraction, the intensity increases predominantly with mean cell size. In
dry scenes, the increase of precipitation intensity with mean cell size is
stronger than in moist scenes. Dry scenes usually contain fewer cells
with a higher degree of clustering thanmoist scenes. High precipitation
intensities hence typically occur in dry sceneswith rather large, few and
strongly clustered cells, while high precipitation amounts typically oc-
cur in moist scenes with rather large, numerous and weakly clustered
cells. As cell size influences both the intensity and amount of precipita-
tion, its importance is highlighted. Our analyses suggest that the cells’
spatial arrangement, correlating mainly weakly with precipitation char-
acteristics, is of second order importance for precipitation across all
regimes, but could be important for high precipitation intensities and
to maintain precipitation amounts in dry environments.

K E YWORD S
precipitating shallow convection, spatial organization, field campaign,
observations, trade wind regime
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1 | INTRODUCTION

The trades are raining. This fact is, however, given minimal attention in many studies of the trades (e.g. Siebesma
et al., 2003; Stevens, 2005; Rieck et al., 2012). Trade wind convection is typically described as non-precipitating and
randomly distributed ’popcorn’ convection (e.g. Betts, 1997; Siebesma, 1998; Stevens, 2005). Since the trade-wind
region and its clouds, important to cool our earth, emerged as central to the issue of climate change because they5

dominate the spread in climate sensitivity among climate models (e.g. Bony and Dufresne, 2005; Vial et al., 2013),
new studies have proven this description to be wrong. Field studies and satellite imagery have emphasized how
trade-wind convection organises into a rich spectrum of spatial patterns, often in conjunction with precipitation de-
velopment (Snodgrass et al., 2009; Stevens et al., 2020; Schulz et al., 2021). This raises the question of the role of
spatial organisation for precipitation and vice versa. To address this question, this study investigates the spatial be-10

haviour of precipitating shallow convection and how it matters for precipitation characteristics in the trades.

A fair part of the motivation for our study dates back to the Rain In Cumulus over the Ocean field campaign (RICO,
Rauber et al., 2007). RICO showed that shallow precipitation is common in the trades, with about one-tenth of the
cloudy areas raining (Nuijens et al., 2009; Snodgrass et al., 2009). Other studies estimate that warm rain showers15

contribute 20-30% to the total precipitation amount over tropical oceans and 70% to the total precipitation area (Lau
and Wu, 2003; Short and Nakamura, 2000). Precipitation might be key to understand the vertical thermodynamic
structure, cloudiness, and spatial organisation of the trade regime (e.g. Vogel et al., 2016). Controls on precipitation
in shallow convection, however, remain poorly constrained and the representation of precipitation in large eddy sim-
ulations differs largely (vanZanten et al., 2011). An understanding of how spatial organisation influences precipitation20

rates might help interpret and reduce these differences (Stevens et al., 2021).

Besides quantifying precipitation rates, the RICO campaign highlighted that precipitation was often observed with
arc-shaped cloud patterns associated with cold pool outflows (Snodgrass et al., 2009; Zuidema et al., 2012). These
cold pool signatures reflect how precipitation links processes acting on different scales. The evaporation of precipita-25

tion on the microscale can induce cold pools (Seifert and Heus, 2013; Touzé-Peiffer et al., 2021) and local circulations
on the mesoscale, which can trigger the birth of new convective cells and pattern the convection. These local circu-
lations may change the characteristics of clouds and therefore also precipitation formation. Precipitation, convection,
and their spatial patterns or organisation are thus highly intertwined. Understanding their interplay could be crucial
for a better understanding of the individual processes. In turn, to better understand their interplay, a view from the30

different individual perspectives might be needed.

However, recent studies have mainly focused on the perspective of clouds and their spatial patterns (e.g. Rasp et al.,
2019; Denby, 2020; Bony et al., 2020). An investigation from the perspective of precipitation on its interaction with
spatial organization and an analysis of precipitation patterns in the trades is lacking. Which role spatial organisation35

plays for precipitation and vice versa is poorly understood. Bony et al. (2020) show that cloud patterns differ in their
cloudiness and net radiative effect. How do precipitation characteristics relate to precipitation patterns in the trades?
For the case of deep convection, Brueck et al. (2020) found, using a storm-resolving model, that mesoscale tropical
precipitation varies independently from the spatial arrangement of its convective cells. Louf et al. (2019), investigating
radar observations in the tropics, found that rainfall intensities are strongest for few large cells. How does shallow40

convection differ from deep convection or resemble it in these relationships?
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To address our questions, we investigate scenes of trade wind convection scanned by the C-band radar Poldirad (Po-
larization Diversity Radar, Hagen et al., 2021) during the EUREC4A field campaign (Stevens et al., 2021), which took
place in January and February 2020 in the western tropical North Atlantic near Barbados. In these scenes, we analyse45

how trade wind precipitation fields are organised into spatial patterns and how this relates to the scenes’ precipita-
tion amount and intensity. While the amount of precipitation is related to the scene heating and drying (e.g Nuijens
et al., 2009), the intensity of precipitation is important e.g. in a local sense for the triggering of cold pools (Snodgrass
et al., 2009). Spatial organization is not straightforward to define, and different metrics weight different attributes.
We jointly analyse three attributes to investigate the spatial pattern into which trade wind precipitating convection is50

organised: the number, size, and spatial arrangement of cells. Given the relationship between water vapour, precip-
itation and organisation found in earlier studies (e.g Nuijens et al., 2009; Bretherton and Blossey, 2017), we further
include vertically integrated water vapour as measured by GNSS receivers (Bock et al., 2021) during EUREC4A as
supplementary variable in our analysis.

55

The data and methods used in this study are described in Section 2. First, we investigate the spatial organisation
in trade wind precipitation fields (Sect. 3) by analysing the number, size, and spatial arrangement of rain cells and how
they covary (Sect. 3.1). Second, we show how the moisture environment of rain cells relates to their spatial behaviour
and identify two moisture regimes (Sect. 3.2). With this information, we then analyse and interpret the relationship
between the cells’ spatial organisation and the amount and intensity of precipitation in Section 4. Finally, we show60

how the relationship between precipitation and its spatial pattern behaves in the diurnal cycle (Sect. 5), before we
conclude in Section 6.

2 | DATA AND METHODOLOGY

2.1 | EUREC4A field campaign

EUREC4Awas designed to elucidate the coupling between clouds, circulation, and convection (Bony et al., 2017). The65

field campaign took place in January and February 2020 in the western tropical Atlantic, with most operations based
out of the island Barbados and targeting a comprehensive observation of clouds, precipitation, and their atmospheric
and oceanic environment in the trades upwind of Barbados. A thorough overview of EUREC4A is provided in Stevens
et al. (2021). Here, we exploit observational data from the C-band radar Poldirad that was deployed on Barbados to
provide a detailed view of the upstream precipitating trade wind convection (Hagen et al., 2021). Furthermore, we70

include observations of vertically integrated water vapour from GNSS receivers (Bock et al., 2021) at the Barbados
Cloud Observatory (Stevens et al., 2016).

2.1.1 | C-band research radar Poldirad

Poldirad is a polarimetric C-band research radar of the German Aerospace Center (DLR) (Schroth et al., 1988). During
EUREC4A, Poldirad took long-range surveillance scans at a 5 minute schedule with a maximum range of 375 km in a75

sector of about 100 degree eastward and upwind of Barbados, thus mapping out the spatial distribution of rain cells
in the trade wind region. Here, we use the gridded data interpolated on a 1 by 1 km grid with a size of 400 x 400 km2

from these long surveillance scan and covering the month of February (Fig. 1). This dataset and Poldirads deployment
in the EUREC4A field campaign are described in detail in Hagen et al. (2021). For our analyses we examine the scans
between 25 km and 175 km range (see Fig. 2) as the radar beam remains below about 3 kilometres height up to this80
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range and the frequency of strong echoes is approximately constant, and to limit effects of sea clutter. To discriminate
between meteorological echoes and non-meteorological echoes (like sea clutter, vessels, aircraft and other targets), a
threshold in the copolar correlation coefficient ρHV was applied (see Hagen et al., 2021).

The dataset by Hagen et al. (2021) provides a rain rate derived from the commonly used Z-R relationship Z = 200R 1.685

(Marshall et al., 1955). Here, we use another Z-R relationship Z = 148R 1.55 as in Nuijens et al. (2009), which is
specifically derived for shallow precipitation. Differences in the Z-R relationship lead to uncertainties in the absolute
estimation of rain rates, which, however, is not the aim of this study and a shortcoming we accept for this paper.
Please also note that peaks in rainfall are smoothed by the radar beam and the gridding, resulting in lower absolute
rain rates. Additionally, Poldirads’ radar beam showed an elliptical shape that caused the cells to appear stretched in90

azimuthal direction, resulting in an overestimation of the size of the rain cells. For an estimation of this effect please
see Appendix A in Hagen et al. (2021).

For each scene scanned by the radar, we calculate the precipitation amount P (rain rate averaged across the en-
tire scene, which includes non-precipitating and precipitating areas) and precipitation intensity I (rain rate averaged95

across the precipitating area only), whereby P = I · F with F the rain fraction. To give an overview of the dataset, Fig.
1 shows the time series of both P and I . Gaps in a continuous operation are caused by failures and limited personnel
resources. In our subsequent analyses we exclude radar scans from the period 13-15 February because not only shal-
low cloud systems were present and captured by the radar at this time (Villiger et al., 2022). We also exclude all scans
with less than five precipitating cells as a characterization of the spatial arrangement is difficult for scenes with few100

objects. The dataset captures maxima in P up to roughly 0.2mmh−1, which compares well to precipitation amounts
observed in the RICO campaign (Nuijens et al., 2009), and values of I up to roughly 4mmh−1. Please note that the
dominant relationships between precipitation characteristics and spatial organization that we show in the following
are qualitatively similar when we consider only independent scenes, i.e. only about every 6 hours.
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F IGURE 1 Time series of precipitation amount P , precipitation intensity I (thick lines display hourly means of
the dataset used in the analysis, shading full dataset), and integrated water vapourW .

2.1.2 | Integrated Water Vapour Observations105

To analyse the moisture environment of the rain cells, we use integrated water vapourW observations from GNSS
receivers (Bock et al., 2021) installed at the Barbados Cloud Observatory. This dataset provides high temporal resolu-
tion integrated water vapour measurements at a 5 minute time interval. To provide an estimate ofW for the scenes
scanned by the radar to the east, we shift the time series ofW by 100 km (that is, to the scene center approximately)
assuming a mean wind speed of 6m s−1 and smooth the time series with a running mean of 100 km / 6ms−1 to ac-110
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count for a field mean. The integrated water vapour field is rather smooth so that changes in the interpolation details
do not lead to substantial differences. According to Nuijens et al. (2009), most of the variability in moisture, when
conditioned on precipitation, is in the lower free troposphere. The time series ofW is shown as well in Fig.1.

2.2 | Identification of rain cells and derivation of their spatial attributes

To identify the rain cells that populate each scene we follow Brueck et al. (2020). We use a lower threshold of115

0.1mmh−1, that is ∼ 7dBZ, to define a rain mask that segments precipitating objects from their non-precipitating
environment. The rain cells are derived by a 2D watershed segmentation technique based on the local precipitation
maxima. To detect the local maxima the precipitation field is first smoothed with a multidimensional Gaussian filter
with a standard deviation for the Gaussian kernel of 1. The filtering is not applied to, and does not affect the precip-
itating area and rate. The local maxima are detected by using a maximum filter. This dilates the image. If a pixel is120

unchanged following this dilation, i.e. the dilated image equals the original image, then that pixel is a local maximum.
The local maxima serve as starting points for the watershed procedure. In this procedure, the precipitating neighbour-
hood surrounding a local maximum is filled until it gets into contact with another neighbourhood. Due to possible
regridding artefacts we only consider rain cells of minimum two pixel size. Furthermore, we exclude rain cells that
touch the scene boundary. Figure 2 shows the segmentation for one exemplary scene.125
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F IGURE 2 Example scene of a) rain rate, b) rain mask, and c) rain cell segmentation from 2020-02-11 00:50. For
symbols see text.

After the segmentation procedure, we calculate for each scene the cells’ geometrical properties size, number and
distance between cells. From these, we derive the attributes that we will use to analyse the organisation of trade
wind precipitation fields into spatial patterns. Size, number, and distance are common ingredients in metrics of spatial
organisation, e.g. in the Simple Convection Aggregation Index SCAI (Tobin et al., 2012), the Convective Organisation130

Potential COP (White et al., 2018), or the Radar Organisation Metric ROME (Retsch et al., 2020). Depending on the
metric, certain spatial properties are weighted more heavily than others. Therefore, rather than focusing on just one
metric, we choose to investigate three attributes of spatial organisation together, based on the number, size and spac-
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ing between cells.
135

For each scene, we derive the mean cell size S , which we express in terms of the area equivalent diameter to provide
a length scale similar to the distances between the cells. We will provide an overview of the individual cell sizes and
show how the mean cell size scales with the distribution of cell sizes in a scene in Section 3. The product of mean cell
size expressed in terms of the area π/4 · S2 and the number of cells N equals the precipitating area A = F · Ascene

with F the rain fraction and Ascene the scene area. The first two measures, S and N, hence, inform about the spatial140

composition of the precipitation area. We will use this relationship in our analyses. The time series of S and N are
shown in Fig. 3a,b.
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F IGURE 3 Time series of a) mean cell size S , b) number of cells N and c) the spatial arrangement of cells
quantified by IORG (thick lines display hourly means of the dataset used in the analysis, shading full dataset).

To assess the spatial arrangement of cells, we use the index IORG (Weger et al., 1992; Tompkins and Semie, 2017).
Please note that the naming of IORG might be misleading here, as we consider spatial arrangement as only one at-145

tribute of spatial organisation. IORG is a metric of spatial arrangement based on nearest-neighbour distances and
compares the observed distances between the cells to the distances of a random distribution with the same number
of cells. If nearest-neighbour distances are on average smaller than expected from a random distribution, the cells are
considered clustered, otherwise regularly distributed. The time series of IORG is shown in Fig. 3c. Formally, IORG is
defined as the integral below the curve of the cumulative density function of the actual observed nearest-neighbour150

distances (NNCDF) plotted against the NNCDF for a random distribution of the cells. A value of 0.5 corresponds to
a random distribution, values larger than 0.5 indicate clustering, whereas values smaller than 0.5 indicate regularly
distributed cells. To obtain the random distribution of distances for our domain size, we follow Brueck et al. (2020)
and randomly distribute disks with the same areas and same number as the cells present in the scene domain. The
random distribution results from taking the mean over hundred realizations of this procedure. As a consistency check,155

we investigated a second metric of spatial arrangement based on the distances between all possible pairs of cells
(Tobin et al., 2012), which compares the observed mean all-neighbour distance to the random mean all-neighbour
distance. Both metrics show the same relationships, so that we only show IORG in the remainder of this manuscript.
Please also note that the dominant relationships between precipitation characteristics and spatial arrangement remain
similar when using a different threshold on the number of cells, e.g. considering only sceneswith at least 15 or 20 cells.160
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The time series in Fig. 3 indicate that S , N , and IORG do not vary independently from each other. S and N often
tend to increase and decrease together and decreases in IORG (towards a more regular distribution of rain cells) tend
to go along with increases in N , e.g. on 11 or 19 February. Figure 4 provides an overview of the correlations between
S , N , IORG, P and I across the whole dataset. As indicated by the time series, S and N are positively correlated. The165

IORG and N are negatively correlated and IORG and S are weakly negatively correlated. In the following, we will work
our way from top to bottom in Fig. 4. We will first look more closely at S , N , and IORG and investigate and interpret
how and why they covary (Sect. 3). To do so, we will span a phase space of S and N , following analyses in deep
convection studies (Louf et al., 2019; Brueck et al., 2020). We will use this phase space in our subsequent analyses to
interpret the correlations shown in Fig. 4 in more detail. Analysing organisation and precipitation in the phase space170

will help us to identify two moisture regimes (Sect. 3.2), show that competing effects lead to the weak correlation of
P and I with IORG (Sect. 4) and that I predominantly increases with S , but that this increase differs with the moisture
regime.

S N IORG P

N
I O

RG
P

I

0.61

-0.29 -0.51

0.85 0.84 -0.41

0.52 0.39 -0.18 0.75

0.0

0.5

1.0
R

F IGURE 4 Spearman correlation coefficient R between cell number N , mean cell size S , the cells’ spatial
arrangement quantified by the IORG, precipitation amount P and precipitation intensity I , coloured according to the
absolute correlation between a variable pair.

3 | HOW ARE TRADE WIND PRECIPITATION FIELDS SPATIALLY ORGAN-
ISED?175

3.1 | Number, size and spatial arrangement

Figure 2 shows a scene with a mean cell size S of about 9 km and cell sizes ranging between 2.8 and 20.7 km. There-
with, the scene is exemplary for a large mean rain cell size during EUREC4A (Fig. 3a) and represents well the range
of observed cell sizes (Fig. 5a). Figure 5a shows that a cell size larger than 20 km was rarely observed. The slope of
the distribution of cell sizes falls off towards high cell sizes. This was similarly noted by Trivej and Stevens (2010) for180

precipitation cells in the RICO campaign. About 50% of the cells have a size smaller than 5 km, 10% of the cells have
a size larger than 10 km. We investigate how the mean cell size relates to the individual cell sizes in a scene. Fig. 5b
shows that the maximum cell size and spread in cell sizes, quantified as the interquartile range of cell sizes, increase
with the mean cell size. Both are strongly correlated with the mean cell size with correlation coefficients of 0.89 and
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0.83, respectively. This suggests that a few cells drive the growth in mean cell size. Processes that trigger this growth185

for a few cells thus probably have a dominant role, e.g the merging of cells or colliding cold pools that trigger large
rain cells.
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F IGURE 5 a) Distribution of cell sizes P (Si) (solid line) and cumulative distribution of cell sizes C (Si) (dashed line).
b) Maximum cell size Smax (dark color) and cell size spread, quantified as the interquartile range of cell sizes Siqr (light
color), as a function of mean cell size S per scene.

The joint frequency of occurrence of mean cell size S and cell number N is shown in Fig. 6. The example scene con-
tains 24 cells (Fig. 2), which is exemplary for a moderate rain cell number N during EUREC4A. About 60% of scenes190

contained less than 20 cells and most frequently, scenes contained a small cell number between 5 and 15, and a mean
cell size of around 5 km. Fig. 6 shows that N and S are positively correlated with a correlation coefficient of 0.61
(Fig. 4). In radar scans measuring the number and size of rain cells in deep tropical convection no positive correlation
was found (Darwin radar observations; Louf et al., 2019). In these observations, the largest cell sizes occur for small
cell numbers, while in our analyses the largest cell sizes occur for large cell numbers (Fig. 6). The difference between195

Darwin and EUREC4A possibly reflects a difference between shallow and deep convection. In deep convection, large
cells likely induce local circulations that suppress the growth of other cells around them. Our analyses suggest that this
may not always happen in shallow convection. Given their positive correlation, the phase space of S and N spanned
here, which wewill use in our subsequent analysis, allows us to examine the relationship of a variable with cell number
separately from the relationship of the same variable with cell size.200

In the example scene (Fig. 2), the cells are distributed at an average distance of 70 km (LA) or 15 km if only the dis-
tance to the nearest neighbour is taken into account (LNN). Fig. 7a-b shows how these two properties, LA and LNN,
varied during EUREC4A and that LA and LNN in the example scene are typical observed distances. Most frequently
a LA around 65 km and LNN around 14 km were observed. The distribution of LNN is unimodal and skewed towards205

higher LNN (Fig. 7b). LNN varies only in a narrow range, that is, rain cells have a typical distance to their neighbouring
cell. The distribution of LA shows a less marked peak and is skewed towards small LA (Fig. 7a). Possibly, cold pools
(e.g. visible in Fig. 2 with the typical arc-shaped pattern) smooth and widen the distribution of LA by their varying
strength and extent.

210

If the rain cells in the example scene were randomly distributed, LA would be around 90 km and LNN around 19.5 km.
That is, the observed distances are shorter than the random distances and the scene in Fig. 2 shows a clustered state,
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F IGURE 6 Joint relative frequency of occurrence of mean cell size S and number of cells N with individual
histograms.

which is classified by an IORG of 0.67 (Fig. 2). As indicated in Fig. 7a-b and shown in Fig. 7c, the rain cells arrangement
is clustered in almost all scenes (IORG > 0.5). This was similarly found in studies of deep convection (e.g. Brueck et al.,
2020; Pscheidt et al., 2019). That precipitation fields are usually clustered fits with the idea that precipitation pro-215

cesses develop in cloud complexes with several clustered updrafts and representing inhomogeneities. Precipitation
does not occur randomly but due to inhomogeneities in a field and therewith clustered.
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F IGURE 7 Relative frequency of a) mean distance between all possible pairs of cells LA, b) mean distance
between nearest-neighbour cells LNN and c) the IORG for all, dry (W < median (W )) and wet scenes (W >
median (W )) with median (W ) = 36 kgm−2 .

We now analyse how the cells’ spatial arrangement, cell number and size covary by analysing the IORG in the S-N
phase space spanned before (Fig. 8a). The analysis reveals three main findings. First, few cells (small N ) are more clus-220

tered (higher IORG) than many cells (high N ). For a given S , IORG decreases with N . That is, clustering and cell number
are negatively correlated (R = -0.51, Fig. 4). Brueck et al. (2020), noting the same relationship, point to thermodynamic
considerations that can help explain this behaviour. When conducting idealized simulations, it can be seen that in a
scene starting from homogeneous thermodynamic conditions, many randomly distributed cells appear, whereas in
the presence of inhomogeneities, the number of cells in a scene can be limited. By subsampling the scenes into four225

composites representing the four corners of the S-N phase space (Fig. 9) to show the variability in each composite,
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we further note that scenes with few cells have a wider range of possible spatial arrangements than scenes with many
cells (Fig. 9c). Especially few and small cells, indicative of little precipitation, occur in a variety of spatial arrangements,
which fits the subjective analysis of radar and satellite imagery during the RICO campaign (Rauber et al., 2007).
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230

Second, the co-variability of clustering with cell size are more complex than with cell number. While IORG increases
with S in scenes with a small N , in scenes with a large N , IORG decreases with S (Fig. 8a). Thus, overall, the correlation
between S and IORG is weak (R = -0.29, Fig. 4). Third, IORG consequently maximizes in the lower right corner of the
S-N phase space (Fig. 8a), that is, clustering is typically highest where cells are few and on average large (see also
Fig. 9c). This was similarly found for deep tropical convection (Brueck et al., 2020; Retsch et al., 2020). In Brueck235

et al. (2020) the degree of clustering increases with mean cell size at all cell numbers. The difference between shallow
and deep convection might be explained by the idea that deep convective precipitation often originates from large
precipitating systems, where large cells are part of a large convective object and hence clustered, whereas trade wind
showers can also be associated with less organised precipitation systems, as suggested by the gravel cloud pattern
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(Stevens et al., 2020). Nevertheless, our analysis suggests that the organisation of precipitation in trade wind shallow240

convection shares similarities to deep convection in that clustering and cell number are negatively correlated and the
degree of clustering is typically highest in scenes containing few and, on average, large cells. Next, we will show how
the different scaling of IORG with S in regimes of small and large N is related to different moisture regimes.
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number N , and IORG for four composites representing the four corners in the S-N phase space with Ns < 20, N l >
20, S s < 6 km, S l > 6 km. The number of scenes is equal in each composite.

3.2 | Moisture environment

Past studies have shown that water vapour path is related to precipitation (e.g. Bretherton et al., 2004; Nuijens et al.,245

2009) as well as organisation (e.g. Bretherton et al., 2005; Tobin et al., 2012). InvestigatingW in the S-N phase space
(Fig. 8b), we find that the scenes are on average driest (lowW ) at small N and S and moistest (highW ) at large N and
S . With a moistening of the environment, cells tend to be larger and more numerous. However, whileW increases
markedly with N for a given S , for a given N , the increase ofW with S is weak. For a large cell number,W tends
to increase with S , but for a small cell number,W varies weakly with S . Differences in the water vapour path thus250

mainly appear in the number of rain cells and only slightly in the mean size of the cells. Therefore, the S-N phase
space shows predominantly two regimes: a moist regime (highW ) at high cell number and a dry regime (lowW ) at low
cell number. That dry and moist scenes differ predominantly in the number of cells they contain, whereas the mean
area of the cells only varies weakly withW , was also found in radar observations (Louf et al., 2019) and simulations
(Brueck et al., 2020) of deep convection. In a moist environment, clouds may be less affected by entrainment, which255

allows them to reach deeper and eventually start to precipitate (Smalley and Rapp, 2020). Also, clouds and hence
precipitating cells may live longer in moister environments. Both could explain the enhanced cell numbers in moist
compared to dry environments. That large cells also exist in dry environments, could be related to clustering.

We investigate how the moisture environment and the degree of clustering are related. A comparison of W and260

the IORG in the S-N phase space (Fig. 8b) shows that scenes with a small cell number are typically dryer and show a
higher degree of clustering than scenes with a large cell number (see also Fig. 9d). Fig. 7c displays the histogram of
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IORG in moist versus dry scenes (W ≶ median (W ) with median (W ) = 36 kgm−2). In dry scenes, the distribution shifts
towards a higher degree of clustering. This agrees with idealized studies of radiative convective equilibrium (Brether-
ton et al., 2005; Muller and Held, 2012) and observations (e.g. Tobin et al., 2012), which show that aggregated or265

clustered states of deep convection are typically drier. Our analyses show the same for shallow convection. Possibly,
isolated rain cells, that is with a low degree of clustering, can hardly exist in dry environments as they are strongly
affected by entrainment. Clustering might reduce the updraft buoyancy reduction through entrainment, allowing cells
to develop in hostile, dry environments (Becker et al., 2018).

4 | HOW DOES SPATIAL ORGANISATION MATTER FOR PRECIPITATION CHAR-270

ACTERISTICS?

4.1 | Precipitation amount

First, we analyse how precipitation amount varies as a function of cell size and number. Figure 8c shows that for a
given S , P increases with N , and vice versa, for a given N , P increases with S . Taken together, contours of P follow
well the contour lines of rain fraction F . For the amount of precipitation, the intensity of rain showers is hence of275

secondary importance, which is in agreement with previous studies, e.g. Nuijens et al. (2009). Because precipitation
amount scales very well with precipitating fraction, P is strongly correlated with S and N (R≈0.85, Fig. 4). Conse-
quently, precipitation amounts can be similar for scenes with few and on average large cells or scenes with many and
on average small cells, given a similar rain fraction, and scenes with numerous and on average large cells exhibit usually
the highest precipitation amount (Fig. 9e).280

We note two implications from the relationship of P with N and S . First, although scenes with a mean cell size
of ∼5 km and small cell number occur most frequently, they do not contribute the most to the total precipitation
during EUREC4A (Fig. 8d). Figure 8d shows that the precipitation contribution is shifted to larger and more numerous
cells compared to the frequency distribution (Fig. 6). Although they occur rarely, scenes with the largest and most285

numerous cells do contribute the most to the total precipitation, because of their high rain amount. Additionally, a
moderate cell size and number contribute substantially to the total precipitation through a combination of a moderate
rain rate and moderate frequency of occurrence.

Second, as S is strongly correlated to the maximum rain cell size and cell size spread (see Sect. 3), with an increase in290

P , the cell size spread and maximum cell size increases. This fits observations by Trivej and Stevens (2010) from the
RICO campaign, who highlight that especially large cells at the tail of the size distribution vary with precipitation area,
which, we confirm, determines to a first order the precipitation amount. We find that on average the 20% largest
cells in a scene have a mean cell size 2.5 times larger than the mean scene cell size, contribute half to the precipitating
area and 60% to the precipitation amount. This contribution increases up to 70% in the 10% of rainiest scenes (not295

shown). That is, as the amount of precipitation in a scene increases, the precipitation is distributed more unevenly
across the cells.

Recalling our previous analyses, we notice that P varies differently as a function of S and N than IORG. This is clear
when comparing P and IORG in the S-N phase space (Fig. 8c) and is shown in a more condensed form in Fig. 10, which300

aggregates the dominant relationships between precipitation amount and cell size, number and arrangement. Figure
10 shows that P increases with S or N , IORG not. At large N , IORG is systemically lower than at small N and decreases
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with S . While precipitation amount maximizes at large N and S , the degree of clustering minimizes here, suggesting
both are negatively correlated with each other. This is also indicated by contours of P and IORG in the upper part of
the S-N phase space (Fig. 8c), that tend to be roughly parallel. At small N , however, IORG increases with S (Fig. 10),305

so that in the lower part of the S-N phase space (Fig. 8c), contours of P and IORG are perpendicular to each other,
i.e. suggesting they vary independently. Across the whole datasets, the relationship between precipitation amount
and clustering is therefore negative but foremost weak (R = -0.41, Fig. 4). Consequently, precipitation amounts can
be similar for scenes with a quite different spatial structure (Fig 10) - with rather many, small and weakly clustered
cells or few, large and more strongly clustered cells (see also Fig. 8c).310

These analyses hence suggest that hypothesized mechanisms, such as that clustering increases precipitation through
cell interaction, play overall no or a subordinate role for the precipitation amount in a scene because precipitation
amount increases with rain fraction and maximizes when cells are large and numerous, while the degree of cluster-
ing maximizes when cells are large but few. We find that scenes with small N and large S , that show on average a315

high degree of clustering, also contribute little to the total observed precipitation amount (Fig. 8d). This suggests
that scenes with a high degree of clustering neither precipitate the most nor occur frequently enough to contribute
much to the precipitation amount and, hence, that the spatial arrangement of rain cells is of second order importance
for precipitation amount in the trades. Similar conclusions were drawn for deep convection (e.g Brueck et al., 2020;
Pscheidt et al., 2019).320

Only when considering the moisture environment a positive effect of clustering on precipitation amounts may be
seen. Combining the results of Fig 8b and c, at small N in the dry regime, precipitation amount is higher for scenes
with larger S and a higher degree of clustering. Further, keeping precipitation amount constant while moving in the
S-N phase space into scenes with small N , which tend to be dry, an increase in the mean cell size and an increase325

in the degree of clustering takes place (see also Fig. 10). In this sense, clustering may be considered important for
maintaining precipitation amounts in dry environments as similarly found by Brueck et al. (2020) for deep convection.
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4.2 | Precipitation Intensity

First, we analyse the relationship between precipitation intensity, cell number and mean cell size using the S-N phase
space. Figure 8e shows that for a given N , I increases with S . For a given S , I does not systematically increase or330

decrease with N (see also Fig. 10). Consequently, the positive correlation between I and N across the whole dataset
(R =0.39, Fig. 4) is due to an increase of I with S (R = 0.52, Fig. 4) and the covariation of N with S (R = 0.61, Fig. 4).
While both cell number and size are important for the precipitation amount in the trades, it seems predominantly the
latter for precipitation intensity. This was similarly found in regimes of deep tropical convection (Louf et al., 2019;
Semie and Bony, 2020) and is e.g. important for cumulus parametrizations, where the convective area is a key ingre-335

dient. Whereas the convective or precipitating area well describes the precipitation amount, its composition into cell
size and number is decisive for precipitation intensity.

Possible explanations for why precipitation intensity increases with mean cell size are that large cells protect their
updrafts better from dilution by entrainment, which allows them to sustain stronger updrafts and grow deeper (e.g. Kir-340

shbaum and Grant, 2012; Schlemmer and Hohenegger, 2014). Additionally, enhanced moisture aggregation through
shallow circulations that accompany large clusters (Bretherton and Blossey, 2017), could increase the liquid and rain
water content. Also, large cells may dissipate more slowly, i.e. they live longer, and therefore develop a moister
(sub)cloud layer that leads to less evaporation of the falling raindrops. Here, we can only provide a quantification of
this effect. To do so, we investigate how the rain intensity of an individual cell scales with its size, shown in Fig. 11345

for the mean and maximum rain intensity of a cell. Both, maximum and mean rain intensity, increase with cell size for
cell sizes above 3 km. Cells with a size around 10 km have a mean intensity around 1mmh−1. A maximum intensity
above 1mmh−1 occurs in cells larger than roughly 5 km. As roughly 50% of cells are larger than 5 km (see Sect. 3.1),
roughly 50% of the cells exhibit maximum intensities above 1mmh−1, a threshold associated with the formation of
cold pools in past studies (e.g. Barnes and Garstang, 1982; Drager and van den Heever, 2017).350
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The analysis of I in the S-N phase space further shows that the increase of I with S differs between small and large
N (Fig. 8e), more explicitly shown in Fig. 10. In scenes with small N , the increase of I with S is stronger than in scenes
with large N . This could indicate that cells are competing for moisture and heat - when there are many cells, they can
grow larger, but not as intense as if there are few cells, because they have to compete with many cells. We identified355

a moist regime at large N and a dry regime at small N (Sect. 3.2), suggesting that I increases more strongly with S in
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dry compared to moist scenes and that precipitation intensities are thus highest in dry scenes. Figure 12a,b confirms
this. The distribution of precipitation intensities in dry scenes shows a higher variability and extends to larger values
than in moist scenes. Precipitation intensity is highest in dry environments, which was similarly observed by Louf et al.
(2019) for deep convection. Vogel et al. (2020) find that in dry environments simulated shallow clouds are deeper,360

because the atmosphere is more unstable. This indicates that, next to water vapour, its interplay with stability is deci-
sive for cloud depth and precipitation. Because I increases with S and maximizes in dry environments, precipitation
amount increases for the same rain fraction when moving from a moist environment with more numerous cells to a
dry environment with larger cells (Fig. 12c).
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365

Our previous analyses show that dry and moist scenes also typically exhibit differences in the degree of clustering.
We found that dry scenes are typically more clustered than moist scenes and more clustered convection may help to
let the clouds grow deeper and rain more intense, possibly adding to the enhanced increase of precipitation intensity
with cell size in dry scenes. Figure 12 shows that the increase of I with S is stronger in scenes with a high degree of
clustering than in scenes with a low degree of clustering. This suggests that high precipitation intensities are related370

to scenes with a high degree of clustering. Comparing the variations of precipitation intensity and clustering in the
S-N phase space (Fig. 8e) or Fig. 10, this is confirmed. At large N or moist environments, I increases with S , whereas
IORG decreases with S . At small N or in dry environments, both I and IORG increase with S . Thus both I and IORG

maximize where S is large and N is small (see also Fig. 9c,f) and scenes are dry. The analyses hence suggest that
clustering is important for high precipitation intensities occurring typically in dry environments. For a given mean cell375

size around 7 km, I and the degree of clustering increase as one moves from scenes with large N in the moist regime
to scenes with a small N in the dry regime (Fig. 10). Overall, however, I and IORG vary mostly perpendicular to each
other in the S-N phase space (Fig. 8e), so that across all regimes the correlation between clustering and precipitation
intensity is weak (R = -0.18, Fig. 4).
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5 | DIURNAL CYCLE380

Our analysis so far takes a snapshot view of precipitation. To probe the evolution of the rain cells’ spatial organisation,
we lastly look at the diurnal cycle, a prominent mode of variability in the tropics, revisited recently by Vial et al. (2019).
This also allows us to add some context to our results by discussing our analyses of precipitation patterns in light of the
analyses of cloud patterns in the diurnal cycle (Vial et al., 2021; Vogel et al., 2021). Measurements from the RICO field
experiment show that trade wind convection exhibits a nighttime to early morning peak and an afternoon minimum385

in precipitation (Nuijens et al., 2009; Snodgrass et al., 2009), confirmed by the analyses of Vial et al. (2019). Fig. 13
shows this daily cycle captured in our dataset with precipitation amount peaking in the early morning and having its
minimum in the late afternoon before sunset (Fig. 13a). Please note that the diurnal cycle is not complete on all days
due to gaps in the measurements. Considering only the days with no gaps in the measurements, the diurnal cycle is
similar.390
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The diurnal cycle of cell number and size roughly follow the diurnal cycle of precipitation amount (Fig. 13c,d), which
matches our previous analyses (Sect. 4). Thereby, N tends to peaks before S , suggesting that the increase in precip-
itation in the night is initially driven by more cells, then increasingly by larger cells. As N peaks, rain cells exhibit a
low degree of clustering (Fig. 13e). S stays high as N already decreases. This indicates that small cells might dissipate395

earlier whereas large cells live longer and/or that merging of cells is enhanced. Cells are now spaced closed to each
other indicated by a large IORG. The early daytime between 8 and 12, where S slowly decreases and IORG is high, is
also characterized by a relatively high precipitation intensity (Fig. 13b). Precipitation intensity does not show a clear
diurnal cycle. Vogel et al. (2021) find that cold pools prolong the peak in the diurnal cycle of precipitation into the
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early afternoon, possibly shaping this behaviour seen here.400

Vial et al. (2021) show how the subjectively defined cloud patterns Gravel, Flowers and Fish (Stevens et al., 2020)
vary in the diurnal cycle. Please note that these cloud patterns extend in part over a larger scale than the ones anal-
ysed here. We may capture the gravel pattern, but only the individual rain cells of a single flower and a part of the fish
pattern. Vial et al. (2021) show that the gravel cloud pattern has a peak occurrence around midnight, where we find405

rain cells to be rather small, numerous and weakly clustered. Flowers, which appearance is mainly dominated through
a large mean cloud size (Bony et al., 2020), have a peak occurrence before sunrise, where we also find rain cells to be
rather larger, and fish has a peak occurrence around noon, where we find rain cells cells to be rather large and strongly
clustered. This might indicate that precipitation patterns and cloud patterns scale with each other. Figure 13 shows
that the relationships revealed by our previous analyses, are evident on the diurnal time scale and indicates how the410

number, size, and spatial arrangement of rain cells might relate to cloud patterns and the cells’ life cycle.

6 | SUMMARY AND CONCLUSION

This study investigates the spatial behaviour of precipitating trade wind convection and its implications for precipi-
tation characteristics in the trades as observed during the EUREC4A field campaign. To do so, scenes of trade wind
convection scanned by the C-band radar Poldirad are examined. We investigate the spatial structure in these scenes415

by analysing the size, number and spatial arrangement of rain cells and examine how these relate to the scene’s pre-
cipitation amount and intensity, as well as the water vapour path. A synopsis of the dominant relationships is given
in Fig. 10 and is summarized below.

During EUREC4A, a mean rain cell size of 5 km and a mean distance to the nearest neighbour of about 14 km were420

most common. Up to 60 cells in one scene and amean cell size of 12 kmwere observed. In nearly all scenes, cells were
spaced closer than in a random distribution. That is, the spatial arrangement in scenes of precipitation is almost always
clustered, which is in line with the expectation that precipitation is related to inhomogeneities. In the diurnal cycle, cell
number tends to peak shortly before mean cell size in the early morning, and before the degree of clustering, which
peaks around noon. Whereas cell number and mean size are positively correlated and cell number and clustering are425

negatively correlated, the relationship between mean cell size and clustering is more ambiguous and differs between
scenes with a large and small cell number. Scenes with few and, on average, large cells exhibit typically the highest
degree of clustering, which was similarly found for deep convection (Senf et al., 2019; Brueck et al., 2020; Retsch et al.,
2020). This suggests similarities between the spatial organisation of shallow and deep precipitating convection. Based
on the diurnal cycle we find indications that trade wind precipitation patterns may scale with cloud patterns, provid-430

ing a first observational baseline to study the relationship between the spatial organisation of precipitation and clouds.

We identify two regimes: a moist regime which is characterized by a large cell number, and a dry regime, which
generally has a small cell number. In the dry regime cells are typically more clustered than in the moist regime, which
agrees with deep convective studies (Bretherton et al., 2005; Muller and Held, 2012; Tobin et al., 2012). Clustering435

might reduce the updraft buoyancy reduction through entrainment, allowing cells to develop in hostile, dry environ-
ments (Becker et al., 2018). While we find a systematic relationship between water vapor path, cell number and the
degree of clustering, the relationship between water vapour path and cell size is less clear. Regarding the close re-
lationship between water vapour availability and precipitation in the trades highlighted in Nuijens et al. (2009), our
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analyses suggest that precipitation increases with water vapour path predominantly because of more numerous cells440

that are more scattered rather than larger cells.

We conclude that the amount and intensity of precipitation behave differently to the spatial patterning in trade wind
precipitation fields:

• The amount of precipitation varies closely with cell number and mean cell size because it scales well with rain445

fraction. High precipitation amounts typically occur in scenes that contain many, on average large, and weakly
clustered cells. Precipitation amounts can be similar for scenes that differ markedly in their spatial structure.

• The intensity of precipitation increases predominantly with mean cell size. In dry scenes with few cells, this
increase is stronger than in moist scenes with many cells. High precipitation intensities typically occur in dry
scenes that contain on average large, few, and strongly clustered cells.450

From the three spatial attributes investigated, cell size and number are equally strongly related to precipitation amount,
and cell size is best related to precipitation intensity, thus highlighting the importance of cell size for precipitation char-
acteristics. No causality can be derived from these relationships, though. Clustering and precipitation characteristics
are, across all regimes, negatively and predominantly weakly correlated and hence the spatial arrangement of cells is
of second order importance for precipitation in the trades. This was similarly noted for deep convection (e.g. Pscheidt455

et al., 2019; Brueck et al., 2020). We do find indications, however, that clustering may be important for high pre-
cipitation intensities and to maintain precipitation amounts in dry environments. Our study shows that precipitation
characteristics are related to spatial precipitation patterns and suggests that a better understanding of how spatial pat-
terns are conditioned on the environment, e.g. ambient moisture, will contribute to our understanding of precipitation
in the trades.460
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