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Abstract

Drought is a pressing issue for the Colorado River Basin (CRB) due to the social and economic value of water resources in

the region and the significant uncertainty of future drought under climate change. Here, we use climate simulations from

various Earth System Models (ESMs) to force the Variable Infiltration Capacity (VIC) hydrologic model and project multiple

drought indicators for the sub-watersheds within the CRB. We apply an unsupervised machine learning (ML) based on Non-

Negative Matrix Factorization using K-means clustering (NMFk) to synthesize the simulated historical, future, and change in

drought indicators within the sub-watersheds. The unsupervised ML approach can identify sub-watersheds where key changes

to drought indicator behavior occur, including shifts in snowpack, snowmelt timing, precipitation, and evapotranspiration.

While changes in future precipitation vary across ESMs, the results indicate that the Upper CRB will experience increasing

evaporative demand and surface-water scarcity, with some locations experiencing a shift from a radiation-limited to a water-

limited evaporation regime in the summer. Large shifts in peak streamflow are observed in snowmelt-dominant sub-watersheds,

with complete disappearance of the snowmelt signal for some sub-watersheds. Overall, results indicate a concerning increase in

drought risk. The work demonstrates the utility of the NMFk algorithm to efficiently identify behavioral changes of drought

indicators across space and time. Our unsupervised ML approach can be applied to other spatiotemporal data to process and

understand vast arrays of data associated with climate impacts analysis of hydrologic change, assisting planners to rapidly

assess potential risks associated with extreme events.
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Key Points: 12 

• Unsupervised machine learning automatically identifies key sub-watersheds with 13 
significant changes in their future drought indicators. 14 

• In the Colorado River Basin mountains, distinct differences in future streamflow 15 
seasonality and intensity changes are established.  16 

• Significant uncertainty in drought behavior is observed among the applied climate 17 
models. 18 

• Colorado River Basin sub-watersheds with threshold changes in maximum evaporation 19 
are identified. 20 
  21 
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Abstract 22 

Drought is a pressing issue for the Colorado River Basin (CRB) due to the social and economic 23 
value of water resources in the region and the significant uncertainty of future drought under 24 
climate change. Here, we use climate simulations from various Earth System Models (ESMs) to 25 
force the Variable Infiltration Capacity (VIC) hydrologic model and project multiple drought 26 
indicators for the sub-watersheds within the CRB. We apply an unsupervised machine learning 27 
(ML) based on Non-Negative Matrix Factorization using K-means clustering (NMFk) to 28 
synthesize the simulated historical, future, and change in drought indicators within the sub-29 
watersheds. The unsupervised ML approach can identify sub-watersheds where key changes to 30 
drought indicator behavior occur, including shifts in snowpack, snowmelt timing, precipitation, 31 
and evapotranspiration. While changes in future precipitation vary across ESMs, the results 32 
indicate that the Upper CRB will experience increasing evaporative demand and surface-water 33 
scarcity, with some locations experiencing a shift from a radiation-limited to a water-limited 34 
evaporation regime in the summer. Large shifts in peak streamflow are observed in snowmelt-35 
dominant sub-watersheds, with complete disappearance of the snowmelt signal for some sub-36 
watersheds. Overall, results indicate a concerning increase in drought risk. The work 37 
demonstrates the utility of the NMFk algorithm to efficiently identify behavioral changes of 38 
drought indicators across space and time. Our unsupervised ML approach can be applied to other 39 
spatiotemporal data to process and understand vast arrays of data associated with climate impacts 40 
analysis of hydrologic change, assisting planners to rapidly assess potential risks associated with 41 
extreme events. 42 

 43 
Plain Language Summary 44 
 45 
Our study uses machine learning to characterize multiple sub-watersheds within the Colorado 46 
River Basin (CRB), based on the simulated future behavior of several drought indicators. By 47 
doing so, we are able to identify sub-watersheds of similar behavior within the CRB based on 48 
their response to climate changes and drought. We use the results from models of climate and 49 
water to estimate how drought will change in the future. We then group the behavior of sub-50 
watersheds based on identified similarities in their response to changes we observed. We show 51 
that areas of the upper CRB could experience a large reduction in available water for 52 
evapotranspiration (for use by trees, for example), and that future hydrologic conditions may 53 
more closely resemble those of the Southwest CRB regions today. We are also able to pinpoint 54 
which sub-watersheds should expect large losses in snowpack based on simulated changes to 55 
spring streamflow. The work is important in that it highlights a key tool that can be used for 56 
rapid assessment of vast arrays of climate and hydrology data in a region that may be critically 57 
impacted by future changes in extreme events, such as drought. 58 
  59 
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1 Introduction 60 

Drought causes tremendous global economic and environmental losses each year. 61 
However, drought is also a challenging natural disaster to quantify due to difficulty in 62 
understanding key drivers and a lack of consensus on a definition and method to identify drought 63 
conditions. Further, drought can be difficult to mitigate, leading to increased impacts to economy 64 
and society. Therefore, drought is arguably one of the greatest climate change related risks to 65 
stability of society and economy facing humans today. 66 

It has been estimated that the monetary loss of drought for American farmers and 67 
businesses is $6-8 billion each year (in 2004 value, which is equivalent to today’s value of $8.16-68 
10.88 billion) (“Western Governors Association (WGA). Creating a Drought Early Warning 69 
System fo the 21st Century: The National Integrated Drought Information System,” 2004), 70 
2004). Despite its economic importance, drought is poorly understood among all other climate-71 
induced disasters (e.g., flooding) due to (1) a lack of unanimous definition for drought among 72 
scientists and stakeholders (Blauhut, 2020) and (2) the complex set of factors that influence 73 
drought and its effects on society (Wilhite, 2009). Drought is often defined categorically as 74 
hydrologic (low supply of surface and sub-surface water), meteorological (low rainfall, high 75 
evapotranspiration), or agricultural (low water availability for plants). The drivers of drought are 76 
even more numerous (Xiao et al., 2018). While the implications for drought in a changing 77 
climate are not fully understood and projections of future precipitation remain uncertain, climate 78 
change is expected to amplify and intensify the hydrologic, meteorologic, and climatic factors 79 
that induce drought events leading to higher intensity and frequency of drought events in the 80 
future, with consequences for ecology, economy, and society (Zhou et al., 2019).   81 

The Colorado River Basin (CRB) constitutes an area of increasing drought risk (Strzepek 82 
et al., 2010) and an area of high economic importance related to its freshwater resources (Bennett 83 
et al., 2021; James et al., 2014). Additionally, there is a broad diversity in ecological, climatic, 84 
and hydrologic conditions within the CRB contrasted by the arid Southwest U.S. and the high-85 
elevation snow-dominant mountains of Colorado, Utah, and Wyoming through which the 86 
Colorado River flows. Changes in future climate within the CRB are especially concerning due 87 
to the CRB’s reliance on high-elevation snowpack for annual runoff, with approximately ~70% 88 
of runoff generated from snowpack (Christensen et al., 2004). Observed snowpack has been 89 
declining historically (Fassnacht & Hultstrand, 2015), and is projected to decline strongly into 90 
the future (Ray et al., 2008). 91 

Climate change impacts on surface water vary along elevational and thermal gradients, 92 
e.g., high elevation areas can experience greater warming and may start to behave similarly to 93 
adjacent low elevation areas. This altitudinal gradient shift has been observed among plant and 94 
animal species (Bender et al., 2019; Sekercioglu et al., 2008), snow-pack distribution (López-95 
Moreno et al., 2009), and other hydrologic and meteorologic conditions (Beniston et al., 2018; 96 
Chang & Jung, 2010). While some climate change impacts occur gradually across these 97 
gradients, threshold (anomalous) changes may cause drastic, abrupt, shifts to watershed 98 
behavior, and key altitudinal ranges may be more sensitive than others (Ali et al., 2015; Tromp-99 
van Meerveld & McDonnell, 2006). The most prominent example of such a threshold change to 100 
watershed hydrology is the loss of winter snowpack, which impacts the timing and volume of 101 
peak streamflow during the spring melting period (Christensen et al., 2004; Milly & Dunne, 102 
2020; Wi et al., 2012). In this work, we attempt to identify the most sensitive areas within the 103 
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CRB to changes in drought-indicator behavior due to climate change, as well as the timing of 104 
those changes in the annual cycle, with an emphasis on threshold changes in behavior. 105 

To address the complex relationships between climate and drought, as well as the spatial 106 
diversity and abundance of influencing factors within the CRB (Kao & Govindaraju, 2007), we 107 
present and apply a novel non-negative matrix factorization unsupervised machine learning 108 
methodology to identify changes and differences in the annual temporal behavior of various 109 
extreme drought indicators. We developed the drought indicators using historical and projected 110 
future simulations of hydrologic and water balance parameters using  the Variable Infiltration 111 
Capacity (VIC) hydrology model (Liang et al., 1996). We consider five different drought 112 
indicators: the number of dry dates (dryd), maximum temperature (tempx), minimum soil 113 
moisture (soilmn), minimum streamflow (qn), and maximum evapotranspiration (evapx). 114 

Machine learning has been effectively been utilized in recent years to estimate a plethora 115 
of earth science phenomena (Adhikari et al., 2020; Cho et al., 2020; Rundle et al., 2021; Yang et 116 
al., 2021). By performing these ML analyses, we can identify spatial patterns as well as threshold 117 
changes in hydrologic behavior across the CRB. Using machine learning (ML) models to isolate 118 
specific drought-indicator behaviors, we can limit our analysis of the observed indicator behavior 119 
to key seasonal periods and sub-watersheds within the CRB. ML allow us to disentangle the 120 
complex spatial and temporal relationships between drought-indicators and their influencing 121 
factors. Through use of a novel machine learning approach, we demonstrate a capability to 122 
automatically isolate where key indicator behavior contributes to drought and where and how 123 
behavior will change in the future. Using ML, we also reduce the size of the output data to 124 
analyze by separating relevant behaviors to quickly process large hydrologic model outputs (30 125 
GB for each ESM over a 30-year time period), identify possible errors, and target unforeseen 126 
responses. This approach allows us to dramatically narrow our analysis and processing of the 127 
hydrologic model outputs, improving our ability to understand the spatial and temporal behavior 128 
of drought indicators.   129 

This paper is organized as follows. In the Materials and Methods section, we describe the 130 
study site and the methods and data used for hydrologic modeling the hydrology of the CRB 131 
under different climatic scenarios. We describe the drought indicators chosen and how they are 132 
calculated, based on the outputs from the hydrologic modeling. We further describe the NMFk 133 
algorithm, a novel unsupervised machine learning method applied to cluster the sub-watersheds 134 
within the CRB based on their annual signal behavior. In Results, we detail ML outputs related 135 
to the clustering of drought indicators both spatially and temporally. We interpret the ML results 136 
in Discussion, including the causes and implications for drought in the CRB. The Conclusion 137 
contains a brief description of the key findings as well as a description of the utility of the ML 138 
algorithm for interpretation of model results.  139 

 140 

2 Materials and Methods 141 

2.1 Study Site 142 

The study area for this research is the CRB. Located in the Southwestern Unites States 143 
and Norther Mexico, the CRB covers an area of 6.4x105 km2 (Figure 1). The basin stretches from 144 
sea level in the Gulf of California, to higher than 4000 m in the Southern Rocky Mountains. The 145 
CRB contains a broad range of climate zones and ecosystems, with the observed annual average 146 
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temperature ranging from 4-24 ºC and the average annual precipitation ranging from 79-1699 147 
mm (Livneh et al., 2015). Much of the precipitation throughout the basin falls as snow at high 148 
elevations, and 70% of the annual streamflow originates in the Upper CRB upstream from Glen 149 
Canyon, Arizona (Christensen et al., 2004). Due to this fact, the CRB is often characterized in 150 
two portions: the high-elevation snow dominant Upper CRB and arid low-elevation Lower CRB. 151 
The water resources of the CRB are critical to water security within the CRB and to many 152 
population centers outside the watershed boundaries where a significant amount of the CRB 153 
water is diverted (i.e., Los Angeles, San Diego, Salt Lake City, Albuquerque, Denver, Figure 1). 154 

 155 

2.2 Earth System Model Simulations 156 

In this study, we use six different, commonly-used Earth System Models (ESMs) run 157 
with dynamic vegetation. The ESMs and their dynamic vegetation models are: HadGEM2-158 
ES365 (Collins et al., 2011; Cox, 2001), MIROC-ESM (Sato et al., 2007; Watanabe et al., 2011), 159 
MPI-ESM-LR, IPSL-CM5A-LR (Dufresne et al., 2013; Krinner et al., 2005), and GFDL-160 
ESM2M, and GFDL-ESM2G (Delworth et al., 2006; Shevliakova et al., 2009). We used 161 
statistically downscaled data from the Multivariate Adaptive Constructed Analogue (MACA) 162 
database (Abatzoglou & Brown, 2012). 163 

For this work, we examine the representative concentration pathway (RCP) 8.5 emissions 164 
scenario, which follows shifting greenhouse gas (GHG) emissions levels over time (Le Quéré et 165 
al., 2015) and anticipates substantial increases in GHG emissions by 2100 (van Vuuren et al., 166 
2011). The six ESMs were chosen to represent the spread of projected change in precipitation 167 
and temperature for the CRB as calculated by ESMs available in the downscaled MACA dataset 168 
used in the fifth version of the Coupled Model Intercomparison Project (CMIP5). The six 169 
selected ESMs were selected to capture the spread of scenarios from dry to wet and from the 170 
lowest to the highest temperature increase, both annually and seasonally.  171 

 172 

2.3 Hydrologic Modeling & Drought Indicators 173 

The ESM projected precipitation and temperature were used to force the Variable 174 
Infiltration Capacity (VIC) hydrology model (Liang et al., 1996) using different climate 175 
scenarios for historical (1970-1999) and future (2070-2099) time periods periods. The output 176 
from VIC captures the historical and future climate conditions (as physical indicators) for flow 177 
and drought conditions within the CRB. VIC was implemented and run as described in Bennett 178 
et al. (2018, 2019), and is thus only briefly described herein. VIC is a spatially distributed, 179 
macroscale hydrologic model simulating the full water and energy balance while accounting for 180 
1-D variably saturated infiltration through the vadose zone. VIC includes a decoupled routing 181 
model that is used to estimate surface water discharge (D. Lohmann et al., 1998; Dag Lohmann 182 
et al., 1996). We executed VIC at a daily temporal and a 1 16⁄ ° latitude/longitude (~7 km) 183 
spatial resolutions across the CRB. Simulated streamflow was calibrated by adjusting snow 184 
albedo and soil parameters across all 134 HUC8 sub-watersheds within the CRB. The calibration 185 
uses the United States Geological Survey (USGS) naturalized gauged monthly streamflow data 186 
(USBR, 2012) to compare against simulated streamflow and then uses an automated calibration 187 
tool (Yapo et al., 1998) to correct modeled biases against the USBR data (Bennett et al., 2018). 188 
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Using the hydrologic and meteorological output from the VIC model, we calculated five 189 
individual drought indicators: number of dry dates (dryd), maximum temperature (tempx), 190 
minimum soil moisture (soilmn), minimum streamflow (qn), and maximum evapotranspiration 191 
(evapx). As a first step, we calculate all drought indicators for the 134 HUC8 sub-watersheds for 192 
5-day periods (73 each year, with leap year days removed, for example, January 1st-5th , 6th-10th, 193 
and so on) over the historical and future 30-year periods. We then average the 5-day-periods over 194 
the appropriate 30-year period giving us the average annual cycle for each time period at a 5-day 195 
resolution. The “delta” case is simply the averaged historical annual cycle for a drought indicator 196 
subtracted from the averaged future annual cycle. The dryd indicator is the number of days 197 
within a 5-day period with no precipitation, while the other indicators represent either the 198 
maximum or minimum daily value for each 5-day period. Streamflow here is the average non-199 
routed contribution of both runoff and baseflow from an individual VIC model grid cell.  200 

 201 

2.4 Machine Learning Methodology: NMFk 202 

A novel unsupervised machine learning (ML) approach was applied in this work 203 
(Vesselinov et al., 2018). The ML methods are based on Nonnegative Matrix/Tensor 204 
Factorization (NMF/NTF) coupled with k-means clustering (NMFk/NTFk). The factorization is 205 
solved as a minimization problem, which also allows various optimization constraints 206 
(sometimes referred to as regularization terms) to be applied. In this way, the constraints provide 207 
an efficient way to add physics information in the ML process.  208 

NMF is a Blind Source Separation (BSS) technique that has been widely applied to the 209 
automated extraction of hidden signals present in complex datasets (e.g., earth sciences, 210 
astronomy, biology) with little or no a-priori knowledge or physical modeling efforts (Jung et al., 211 
2000; Nuzillard & Bijaoui, 2000; Sadhu et al., 2017). Perhaps the most prominent benefit of 212 
using an unsupervised ML is that any bias from past experience or subject-matter expertise is 213 
minimized (Belouchrani et al., 1997). Instead, the signals extracted are based only on the 214 
information within the data. NMF does not assume any specific statistical distribution or 215 
independence of the original data. However, NMF does impose nonnegative constraints on the 216 
estimated factorization matrices, so the extracted features are readily interpretable with relation 217 
to the original data. This is an improvement over other BSS techniques, such as Principle 218 
Component Analysis (PCA), that do not generate negative matrix elements and therefore do not 219 
provide direct interpretability of the original data (Kayano & Konishi, 2009). 220 

The fundamental task of NMF is to decompose a data matrix 𝑋 (with dimensions 𝑛 × 𝑚) 221 
into two non-negative matrices	𝑊 ∈ 	𝑅!×# 	𝑎𝑛𝑑	𝐻 ∈ 	𝑅#×$	so that  222 

 223 

𝑋	 = 	𝑊	×	𝐻      224 

 225 

In our case, 𝑚 is the number of sub-watersheds (134 HUC8 sub-watersheds), and 𝑛 is the 226 
number of 5-day time periods throughout the year (73). Note that 𝑘 is a positive integer (less 227 
than 𝑚𝑖𝑛(𝑚, 𝑛)) defining the unknown number of original features (signals) hidden in the data 228 
(Lin, 2007). 𝑊 is often regarded as the feature matrix (i.e., representing the unique signals or 229 
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features present the original data), and 𝐻 is called the mixing matrix capturing how the features 230 
are mixed at each watershed. 231 

NMF determines 𝑊 and 𝐻 by minimizing the cost function 𝑂, which is a measure of 232 
discrepancy between actual data (𝑋) and factorized reconstruction of 𝑋 (𝑊	×	𝐻). In this study, 233 
we use the Frobenius matrix norm during the minimization process: 234 

 235 

𝑂 = %
&
‖𝑋 −𝑊𝐻‖'&=%

&
∑ ∑ (𝑋() − (𝑊𝐻)())&$

)*%
!
(*%       236 

 237 

Here, our goal is to identify and extract the hidden features (signals) in the drought 238 
indicators that contribute to the changes in historical and future hydroclimatic conditions. 239 
However, a significant limitation of the traditional NMF is that a priori knowledge of the number 240 
of features is required to solve the objective function, but this is often unknown in practice. Our 241 
novel method NMFk (Alexandrov & Vesselinov, 2014; Vesselinov et al., 2018) addresses this 242 
limiting using the assumption that an optimum number of features can be obtained based on the 243 
robustness and reproducibility of the NMF results. To this end, NMFk computes solutions for all 244 
possible numbers of features 𝑘 ranging from 1 to d (less than min(m, n)) and then estimates the 245 
accuracy and robustness of these solution sets for different values of 𝑘. For each k value, the 246 
robustness is estimated in NMFk by performing a series of NMF runs (e.g., 1,000) with random 247 
initial guesses 𝑊	and 	𝐻 elements. After that, the series of NMF solutions are grouped using a 248 
custom semi-supervised 𝑘-means clustering. The customization to the original algorithm is to 249 
keep the number of solutions in each cluster equal to the number of NMF runs (e.g., 1,000). The 250 
clustering is applied to measure how good a particular number of extracted features, 𝑘, is to 251 
accurately and robustly describe the original data. The optimal number of features 𝑘+,- is 252 
estimated automatically by the NMFk algorithm. A detailed description of NMFk can be found 253 
in Vesselinov et al., 2018 (Vesselinov et al., 2018). 254 

Here, we use the climate and hydrologic conditions (outputs from VIC from the six ESM 255 
modeled climate scenarios) to extract temporal drought indicator signals for the 134 HUC8 CRB 256 
sub-watersheds. NMFk automatically identifies plausible solutions for the number of drought 257 
indicator signals present in the analyzed dataset with the optimal number of features estimated by 258 
the solution robustness. The data capture annual temporal signal from 134 HUC8 sub-watersheds 259 
resulting in a 134 x 73 matrix. The extracted drought indicator signals are defined as columns in 260 
the feature matrix, 𝑊. The estimated mixing matrix, 𝐻,  represents how each of the common 261 
drought indicator signals is represented in each sub-watershed. Then, the sub-watersheds are 262 
grouped based on the dominance of extracted drought indicator signals within each sub-263 
watershed. 264 

We apply NMFk to historical (1970-1999) and future (2070-2099) time periods as well as 265 
the difference between the two periods (referred to as “delta”). Our unsupervised ML analyses 266 
allow us to identify the temporally unique drought indicator signals observed throughout the 267 
study region for different ESM modeled climate projecetions. Then we apply theoretical and site 268 
knowledge to relate the extracted signals to physiographical characteristics, which allows us to 269 
clarify the contributing factors to the low flow and drought events in CRB. This workflow is 270 
shown in Figure 2, which illustrates the clustering process for qn. 271 
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3 Results 272 

The change in temperature and precipitation across the CRB for the complete set of 14 273 
ESMs in the MACA database is shown in Figure 3. The mean temperature increase of the 14 274 
ESM’s is approximately 5.6 ± 	1.1°𝐶. The mean precipitation also increase by has large variance 275 
among the models (∆𝑃@@@@ = 4.5	 ± 11.1	%). Three of the selected ESM’s used in the analysis 276 
project decreased annual precipitation (IPSL-CM5A-LR, -15.6%; MPI-ESM-LR, -3.33%; 277 
HadGEM2-ES365, -4.04%), while the other three project increased annual precipitation (GFDL-278 
ESM2M, +1.38%; MIROC-ESM, +7.79%; GFDL-ESM2G, + 8.51%). The mean changes in 279 
annual precipitation and temperature are shown in Table 1 for each of the six models. 280 

For brevity, we focus our presentation of results on the wettest and driest models assessed 281 
(GFDL-ESM2G and IPSL-CM5A-LR, respectively), and these models are highlighted in Figure 282 
3. GFDL-ESM2G also exhibits significantly less warming (+4.56°𝐶) than IPSL-CM5A-LR 283 
(+6.33°𝐶), providing us with a warm and wet scenario (GFDL-ESM2G, referred to herein as 284 
warm/wet scenario) and a hot and dry scenario (IPSL-CM5A-LR, referred to herein as hot/dry 285 
scenario). Results for other ESMs at 3 signals can be found in the supplementary materials and 286 
will be mentioned in the text where the results of ESMs showed similar or dissimilar behavior. 287 
GFDL-ESM2G is labelled Wet, and IPSL-CM5A-LR is labelled as Dry in figures.  288 

 289 

3.1 Maximum Temperature (tempx) 290 

The spatial clustering of maximum temperature (tempx) for 2, 3, and 4 signals and each 291 
warm/wet and hot/dry scenario is shown in Figure 4. The rows in Figure 4 show the NMFk 292 
model results at differing number of signals (2, 3,or 4 signals), while each of the columns show 293 
the results of a particular climate scenario and time period (hot/dry, or warm/wet scenario, 294 
Historical/Future/Delta). With 2 signals (panel a1-a6), the sub-watersheds sort into the high-295 
elevation Upper CRB and the low-elevation Lower CRB for both future and historical periods. 296 
The NMFk solution at 2 signals are able to consistently produce solutions across differing 297 
climate scenarios. The extracted 2 tempx signals consistently separates into the Upper and Lower 298 
CRB, with only a few solutions of NMFk found beyond 2 signals (panel b4, b6, c6). 299 
Nevertheless, the spatial clustering based on extracted tempx features for higher number of 300 
signals still roughly follow similar latitudinal and elevational gradients as in the 2 signal 301 
solution. For the case of 3 NMFk signals, the sub-watersheds sort into northern, central, and 302 
southern clusters (b4, b6), with the southern cluster being split in two in the case of 4 extracted 303 
signals (c6). 304 

Figure 5 shows the temporal signal separation in tempx for the warm/wet and hot/dry 305 
scenarios. There is a clear separation in the temporal pattern in tempx between the Upper and the 306 
Lower CRB clusters for the case of 2 signals. For both historical and future periods, the Upper 307 
CRB exhibits cooler temperatures, as expected. The separation between signals is consistent 308 
throughout the year, with slightly more separation during the winter months (panels a1, a2). 309 
However, the clustering based on tempx extracted signals varies across the models, exhibiting 310 
large differences between panels a3 and d3 of Figures 5. The warm/wet scenario show a larger 311 
separation between signals, primarily in the spring, while the hot/dry scenario shows relatively 312 
little separation between signals, except for a brief period in June. Also, the hot/dry scenario 313 
shows the greatest discrepancy in the summer when compared to the warm/wet scenario. 314 
However, seasonal tempx differenes in the “delta” period vary across ESM’s as can be seen the 315 
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supplementary materials and do not appear to have a clear relationship with the projected change 316 
in precipitation. 317 

 318 

3.2 Dry Dates (dryd) 319 

The spatial clustering of dryd at 2 signals shows a distinct grouping in the southeast of 320 
the CRB, with the remainder of the CRB clustering together (Figure 6, panels a1-a4). This 321 
grouping grows slightly from historical to future and largely remains intact with increasing 322 
numbers of signals. At higher signals, we see less convergence and less agreement in groupings 323 
across models and time periods (Figure 6, panels b1-c6). However, the southeast grouping is 324 
represented across different scenarios and time periods, while the clustering of the remainder of 325 
the CRB sub-watersheds is more varied. 326 

Looking at the temporal pattern for 2 signals (Figure 7, panels a1-a3,d1-d3), it is evident 327 
that the grouping of the southeast portion of the watershed is characteristic of fewer dryd during 328 
the summer months, for both historical and future. At a higher number of signals in the historical 329 
and future periods (panel b1,e1, f1-f2), the temporal signal separation between signal magnitude 330 
is more evident in the spring and fall as well. Still, the strength of the summer seasonality in dryd 331 
remains a determining factor in the clustering of sub-watersheds, especially for the cluster in the 332 
southeast basin (blue). 333 

The difference between the historic and future conditions, “delta”, in the number of dry 334 
days (dryd) tends to again cluster along the Upper and Lower CRB at 2 signals across all climate 335 
scenarios, the temporal signal of these groupings tends to be quite different between the 336 
scenarios. The warm/wet scenario shows the Upper CRB as mostly experiencing fewer dryd 337 
throughout the year, and the Lower CRB experiences more dryd in the spring and fewer in the 338 
summer. The warm/wet scenario shows that both Upper and Lower CRB experience mostly 339 
more dryd throughout the year with some variability. It also shows a distinct increase in dryd in 340 
the Lower CRB for the month of July.  341 

 342 

3.3 Maximum Evapotranspiration (evapx) 343 

The spatial results for evapx, shown in Figure 8, again exhibit a separation between 344 
Upper CRB and Lower CRB at 2 signals (panels c1-c6), although more watersheds tend to fall 345 
into the Lower CRB grouping compared to tempx and dryd. We also see that a few watersheds in 346 
the Lower CRB geographically are grouped in the Upper basin under the historical evapx time 347 
period but group with the Lower basin under future periods. While we see similar spatial 348 
clustering between scenarios for the historical and future periods for 2 signals (panels a1-a2), the 349 
patterns diverge dramatically for the delta for 2 signals. The hot/dry scenario groups a large 350 
portion of the Southwest CRB along with the Upper CRB (Figure 8; panel a5), while the 351 
warm/wet scenario shows a delineation between clusters further to the north and running roughly 352 
east-west (panel a6). At 3 or more signals, evapx again shows a similar spatial cluster across 353 
scnearios in the historical but diverges under the future time period (Figures 8; panels b1-c6). 354 
Further, the spatial clusters become less contiguous, in some, but not all, cases (panels b4-b5, 355 
c3).  356 

The temporal signals of evapx, exhibited in Figure 9, show a clear pattern. At 2 signals 357 
(Figure 9; panels a1-a2, d1-d2), the Upper CRB exhibits a peak in evapotranspiration in the 358 
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summer and a minimum in evapotranspiration in the winter, while the Lower CRB grouping 359 
shows a peak in evapotranspiration in both March and a larger peak in the late summer months 360 
with a dip in evapotranspiration during May and June. At 3 or more signals (panels b1-b2, c1-c2, 361 
e1-e2, f1-f2) we see that the separation in temporal signals is largely determined by whether the 362 
signal has one peak in the early summer, or two peaks in the spring and late summer. Further, 363 
clustering is determined by the intensity of the second peak in the late summer and fall.     364 

The scenario results show large disagreement in whether evapx is decreasing or 365 
increasing, particularly in the summer (Figure 9, panels a3,d3) when the discrepancy in 366 
temperature is greatest.  The hot/dry scenario shows that evapx is decreasing across the entire 367 
basin, especially during the summer months. Further, the future hot/dry scenario shows the 368 
Upper CRB exhibiting the same summer dip in evapx as the Lower CRB. The warm/wet scenario 369 
shows increasing evapx in the Upper CRB throughout the year and increasing evapx across the 370 
entire CRB during July. In the warm/wet scenario, the cluster in the Upper CRB which exhibits a 371 
single peak early in the summer is consistent between historical and future time periods, both 372 
spatially and temporally. 373 

 374 

3.4 Minimum Soil Moisture (soilmn) 375 

The spatial clustering of soilmn, shown in Figure 10, forms the least contiguous 376 
groupings of any of drought indices. At 3 signals, sub-watersheds within a single group (red) are 377 
scattered throughout the CRB. Further, no NMFk solutions for any scenario or time period 378 
converge beyond 3 signals. When evaluating the delta in soilmn, it appears that differences 379 
between clusters are more localized and that local topography plays a major role in the spatial 380 
clustering. Further, at 3 signals, a small band of sub-watersheds is grouped at the center of the 381 
Lower CRB (blue at 3 signals; panels b4-b6), while many of the highest elevation sub-382 
watersheds in the northeast of the CRB tend to group together.  383 

The temporal signal for soilmn, shown in Figure 12, similarly shows a wide range of 384 
behavior and a large range in soilmn magnitudes. In both historical and future periods, the 385 
temporal pattern shows a grouping of sub-watersheds with little to zero soilmn and little soilmn 386 
seasonality. Other sub-watersheds show a spring peak in soil moisture, but exhibit a large range 387 
of magnitude in soilmn for those sub-watersheds. Looking at the delta for soilmn, we see that the 388 
spring peak is shifting earlier in the year and becoming larger. The grouping mentioned 389 
previously as a band of sub-watersheds across the lower CRB is largely losing soilmn when 390 
assessed in Figure 12 (panels a3,b3,e3, f3). The signals and seasonality of soilmn clusters 391 
between climate scenarios are quite similar, although the models disagree on the magnitude of 392 
soilmn and the magnitude of the seasonality. The hot/dry scenario exhibits a decrease in soil 393 
moisture across the CRB and a smaller peak in spring soil moisture in the future, while the 394 
warm/wet scenario shows mostly increasing soil moisture throughout the year and a similar 395 
magnitude in spring soilmn peak from historical to future.  396 

 397 

3.5 Minimum Streamflow (qn) 398 

The spatial clustering of qn shows a clear separation in Figures 13 (panels a1-b6) 399 
between the highest elevation and mountainous sub-watersheds within the CRB and the lower 400 
elevation sub-watersheds. At four signals (panels c1-c6), the clustering further splits the lower 401 
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elevation and downstream sub-watersheds such that we begin to see sub-watersheds of the larger 402 
Green River valley grouped together (red; panels a1, a2, and a4) and a southeastern portion of 403 
the CRB grouped together (blue). From historical to future, the clusters of the Lower CRB begin 404 
to expand into the Upper CRB clusters. The delta panels show similar clustering to the historical 405 
and future time periods. However, the high elevation clusters tend to be less contiguous at 3 and 406 
4 signals, and several individual sub-watersheds in the southern portion of the CRB associate 407 
with the highest elevation sub-watersheds at 3 signals. 408 

The temporal signals of qn, shown in Figures 14, exhibit separation between signals 409 
based on the strong spring seasonality between different sub-watersheds. There are clear 410 
differences between clusters based on the timing and magnitude of a spring peak in qn, with the 411 
largest peaks in streamflow occurring later in the spring. The sub-watersheds with the largest 412 
seasonal peak in qn also correspond to the high-elevation mountainous sub-watersheds seen in 413 
Figure 2. For both models, the peak in qn shifts earlier in the year during the future period.  414 

The delta also shows an increase in the qn in the mountainous sub-watersheds during 415 
March through May, followed by a decrease during June where qn peaks during the historical 416 
period. At 3 or more signals, the sub-watersheds with the larger changes in qn tend to be those 417 
with a peak in streamflow later in the year.  The warm/wet scenario shows a seasonal streamflow 418 
peak in the future equal or greater than that of the past, while the hot/dry scenario shows a much 419 
smaller streamflow peak in the future.  420 

Overall, NMFk was able to converge on a solution for nearly all scenarios and time 421 
periods at 4 signals and some instances beyond 4 signals, suggesting that significant behavioral 422 
differences exist in the qn signal and the expected delta in qn signal. 423 

4 Discussion 424 

The ESM projections and VIC modeling results in the CRB show large changes to the 425 
hydrologic functioning. The ESM projections for temperature generally show similar projections 426 
across all ESMs as well as those in the supplementary materials. However, large variance in the 427 
projection of future precipitation does exist (Dai, 2006). The large variability across ESMs 428 
complicates the projection of the CRB hydrologic behavior and creates difficulties when drawing 429 
overarching conclusions related to drought. Still, the warm/wet ESM scenarios may increase 430 
drought due to snowpack loss and an increased evapotranspiration response. The ML results 431 
show a perceptible difference in streamflow timing, likely due to differences in snowpack 432 
retention in the high elevation basins of the CRB. The range of possible climate scenarios 433 
considered here, regardless of ESM model, does point to a hotter CRB with large changes in the 434 
timing and magnitude of streamflow, evapotranspiration, and soil moisture that will present 435 
challenges in managing water resources in the future.  436 

The spatial and temporal pattern of signal separation in dryd clearly demonstrates the 437 
influence of the North American Monsoon (NAM) as a dominant precipitation signal in the 438 
southern CRB. The NAM is most prominent in the Southeastern CRB from late June to 439 
September, resulting in an increase in precipitation (Adams & Comrie, 1997). The results show 440 
the spatial influence of the NAM increasing in the future. However, the separation of temporal 441 
signals for dryd does not change significantly during the active summer monsoon season and 442 
change in summer dryd varies across climate scenarios. Previous studies on the modeled 443 
trajectory or observed trends in the NAM are often contradictory as to whether the NAM is 444 



manuscript submitted to JGR Earth and Space Science 

 

intensifying or weakening (Colorado-Ruiz et al., 2018; Demaria et al., 2019; Luong et al., 2017). 445 
The ML analysis of evapx also shows signs of influence from the NAM. The second spike in 446 
evapotranspiration in the Lower CRB in the late summer demonstrates the water inputs provided 447 
by the NAM. Further, the ML extracted spatial patterns for the Lower CRB sub-watersheds at 3 448 
and 4 signals appears dependent on the strength of the NAM in those areas.  449 

The evapx extracted signals show a clear separation between two evaporation regimes: 450 
the water-limited Lower CRB and a more radiation-limited Upper CRB. The water-limited 451 
nature of the Lower CRB explains the bi-modal annual signal of the Lower CRB, where little 452 
water is available for evapotranspiration in the warmer pre-monsoon season months. The hot/dry 453 
scenario shows a distinct shift in the future toward an increasingly water limited regime in the 454 
summer across the entire CRB. The future hot/dry scenario shows a large dip in evapx across the 455 
basin in June and July when evapotranspiration decreases because of a lack of available water. 456 
Increasing evaporative demand associated with climate change is a key driver of drought in the 457 
American Southwest, with previous studies showing that increases in evaporative demand may 458 
overcome any increases in future precipitation (Ault et al., 2016; Cook et al., 2014, 2015). Our 459 
study shows increasing evaporative demand in critical sub-basins as an important driver of 460 
drought. 461 

The 4-signal spatial clustering shows the borders between a water-limited regime and a 462 
more radiation-limited regime (purple) in evapx. Both hot/dry scenarios show a shift toward the 463 
water-limited regime as the Upper Basin cluster shrinks. However, there is a large difference in 464 
the extent to which the water-limited regime is growing. The hot/dry scenario shows that only 465 
the highest and wettest sub-watersheds will remain somewhat energy-limited during the summer 466 
months while the warm/wet scenario shows a larger number of sub-watersheds within the 467 
energy-limited regime. 468 

It is clear that uncertainty in ESM precipitation could result in a wide range of drought 469 
scenarios, with the driest of those scenarios resulting in threshold changes in areas of the Upper 470 
CRB.  Further, despite projected temperature exhibiting less variance across ESMs, there is still 471 
a large discrepancy in the summer tempx between the two scenarios shown here that could drive 472 
large changes to evapx during the summer months. The future hot/dry scenario clustering also 473 
shows many of the sub-watersheds within the Green River Valley near the border of Colorado, 474 
Utah, and Wyoming clustering together. The extracted temporal signal for this clustering is 475 
characterized by a large peak in evapx during the late spring, and a large dip in 476 
evapotranspiration in June. The results show that the Green River Valley area may experience 477 
large drought pressures from increasing aridity combined with changes in the seasonality of 478 
streamflow and snowmelt upstream. Further, previous studies have cited increasing 479 
evapotranspiration as a major risk in the reduction of Colorado River streamflow (Udall & 480 
Overpeck, 2017). 481 

The ML results of both soilmn and qn exhibit large influences from changes in snowmelt 482 
behavior. A seasonal increase in soilmn and qn occurs concurrently during the spring snowmelt 483 
period. Spatially, qn separates neatly into the snow-dominated mountainous regions of the CRB 484 
and sub-watersheds with relatively little snowfall. Soilmn, however, does not. Instead, influences 485 
from vegetation, geology, and soil type likely complicate the soil moisture signals as we see a 486 
large difference in soil moisture magnitude in the ML results. Changes in soilmn seem to reflect 487 
both seasonal changes in snowmelt and larger changes in soil moisture magnitude throughout the 488 
year.  489 
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A key area of change is the collection of sub-watersheds in the mountainous region of 490 
Arizona which group together in the “delta” analysis. This region exhibits a large loss in soilmn 491 
throughout the year, especially when projected by the hot/dry scenario, but also for the wet 492 
scenario. This could be caused by a decrease in orographic precipitation due to drier air, 493 
combined with an increase in evapotranspiration due to an increase in vapor pressure deficit. The 494 
combined pressures of increasing vapor pressure deficit and loss of snowmelt could drive this 495 
region to experience a severe decrease in existing soil moisture, regardless of precipitation 496 
changes. The delta of soilmn is drastically different between climate models as the hot/dry 497 
scenario shows large decrases in soilmn and the warm/wet scenario exhibits large increases 498 
across nearly the entire basin. The consistency of this discrepancy suggests that differences in 499 
projected temperature contribute to large changes in soil moisture as higher temperature shift the 500 
moisture balance toward drier conditions (Ault et al., 2016). 501 

The streamflow delta certainly indicates a significant shift in the timing of peak 502 
streamflow for the entire CRB and especially the mountainous regions. This shift in streamflow 503 
is well documented and has implications in reservoir management and water availability for 504 
irrigation (Christensen et al., 2004; Ficklin et al., 2013; Solander et al., 2017). However, the 505 
variability in projected climate scenarios results in significant variability in the magnitude of 506 
streamflow. The hot/dry scenario forecasts significantly lower qn values in the future, while the 507 
wet scenario forecasts little delta in qn magnitude while also exhibiting significant shifts in the 508 
timing of spring snowmelt runoff.  509 

Previous studies of snowpack trends in the western U.S. have found that while large 510 
snowpack losses have been observed in mid-altitude areas, the relatively higher altitude regions 511 
have experienced little to no change in the snowpack (Bales et al., 2006; Howat & Tulaczyk, 512 
2005). The altitudinal gradient in snow-melt loss previously resulted in large changes to the 513 
snowpack in the Sierra Nevada and Cascade Mountain ranges, with less snowpack changes in the 514 
high elevation Rocky Mountains of Colorado. However, high elevation areas of the CRB are 515 
projected to see a large loss of snowpack as temperatures continue to rise (Fyfe et al., 2017; 516 
Pederson et al., 2013; Rhoades et al., 2018).  The detected threshold behavior of snowmelt in the 517 
CRB by our ML analyses is intriguing. It also demonstrates the capability of the ML algorithm in 518 
separating the changes hydrologic behavior related to climate change. ML results for 2 extracted 519 
signals clearly identify the areas of large streamflow changes due to snowmelt in the 520 
mountainous regions of the CRB. Further, at a greater number of signals, the algorithm was able 521 
to separate the mountainous regions exhibiting snowmelt into separate groups where snowmelt 522 
changes were more or less severe, delineating where differences in behavior exist based on 523 
threshold hydrologic responses to gradients of temperature change.  524 

The applied unsupervised ML algorithm based on non-negative matrix factorization 525 
(NMFk) proved useful in separating the annual signatures of various drought indicators. The 526 
algorithm automatically detected seasonal differences in qn, soilmn, evapx, and dryd which can 527 
be explained by differences in climate, precipitation sources, and snowmelt timing. NMFk was 528 
also able to distinguish between watersheds based on the magnitude of the extracted signal as in 529 
the case of soilmn, tempx, and evapx. NMFk was particularly useful when applied to the delta 530 
estimates in drought indicators for the sub-watersheds representing the historic and future model 531 
outputs. NMFk was able to identify key watersheds drought indicators that are projected to 532 
change the most or experience a significant change in seasonality. However, because we are not 533 
modeling drought or using a specific drought index (Dai, 2011; Palmer, 1965) directly, it is 534 
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difficult to quantify how the indicators will concurrently contribute to drought in the future. 535 
While NMFk can cluster the indicators concurrently, the interpretation of the results would 536 
require additional work in parsing the direction of change and the importance of drought 537 
indicators. Overall, we found that the NMFk algorithm is a valuable tool in identifying and 538 
interpreting the key regions, timing, and magnitude of change in drought indicators where future 539 
research and analysis can be more focused on certain processes or regions where drought 540 
pressures appear to be increasing.  541 

5 Conclusions 542 

Using a novel application of unsupervised machine learning based on non-negative 543 
matrix factorization, we were able to separate seasonal watershed behaviors related to drought 544 
across a large range of environmental and climatic factors. Using historical and future climate 545 
projections from ESMs, we were able to rapidly assess seasonal changes in the behavior of 546 
drought under different climate conditions. Among the most pertinent changes was the 547 
seasonality and magnitude of qn related to the timing and magnitude of snowmelt runoff. The 548 
ML algorithm automatically separated the sub-watersheds in the mountainous regions of the 549 
CRB into separate groups based on differences in the qn signal response.  550 

While large changes in soilmn for some regions were observed in the results, the modeled 551 
climate scenarios showed large disagreement on whether the soilmn was decreasing or increasing 552 
across large areas in the CRB. Some mountainous regions of Arizona indicated a decrease in 553 
soilmn for both ESM scenarios; likely a result of changes in precipitation and temperature inputs, 554 
loss of snowpack, and increases in evapotranspiration demands.  555 

Other findings included the decrease in summer evapx in many basins, which indicates a 556 
lack of water available for evapotranspiration in these basins. The shift toward a water-limited 557 
evaporation regime was most evident in the hot/dry scenario model (IPSL-CM5A-LR) but was 558 
also observed in some sub-watersheds in the warm/wet scenario model (GFDL-ESM2G) as well. 559 
Areas of the Green River Valley in the Upper CRB appear to be particularly vulnerable to a shift 560 
in evapx due to water availability. The combined effect of streamflow shifts in timing and 561 
magnitude and changes in evaporation regimes are concerning for the ability of infrastructure to 562 
provide the needed storage to accommodate surface-water demands in late summer. While large 563 
uncertainties exist in the projected precipitation within the CRB, our analysis indicates increased 564 
risk of drought and surface-water losses in the future. 565 

The applied unsupervised machine learning methodology worked well to distinguish the 566 
temporal features of drought indicators and provided utility in change detection, feature 567 
extraction, and interpretation of modeled hydrologic and climatic features. Of particular interest, 568 
the ML algorithm was able to distinguish between different progressions of snowpack and 569 
snowmelt change, as well as threshold changes to the evaporation signal. From the ML results, 570 
we were able to identify some key drivers of change based on the spatial and temporal patterns 571 
of the clustering. From this information, we are able to extract key areas of change within the 572 
CRB to provide a more targeted analysis of the factors specific to the changes within those key 573 
areas.  574 

 While additional work is required to further examine the drivers of drought and their joint 575 
effects on the CRB, the analyses presented here demonstrate the value of the ML algorithm in 576 
change detection research related to spatiotemporal patterns in climate and hydrologic 577 
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applications. The ML  algorithm can provide valuable insight into the processing of 2D or 3D 578 
model output from climate or other spacetime oriented simulations that produce large datasets. 579 
Unsupervised machine learning, as shown here, can help aid in the analysis and interpretation of 580 
large-scale model outputs for a large variety of applications.  581 
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S1: Spatial results of historical NMFk clustering algorithm of each drought indicator for each of six 
ESMs at 3 signals and ordered from driest (left) to wettest (right) future projection. 



 
S2: Spatial results of future NMFk clustering algorithm of each drought indicator for each of six ESMs at 
3 signals and ordered from driest (left) to wettest (right) future projection. 



 

 
S3: Spatial results of the ‘delta’ NMFk clustering algorithm of each drought indicator for each of six 
ESMs at 3 signals and ordered from driest (left) to wettest (right) future projection. 



 
S4: Temporal results of the NMFk clustering at 3 signals for the IPSL-CM5A-LR model for each time 
period and the ‘delta’ between historical and future. 
 



 
S5: Temporal results of the NMFk clustering at 3 signals for the HadGEM2-ES365 model for each time 
period and the ‘delta’ between historical and future. 



 
S6: Temporal results of the NMFk clustering at 3 signals for the MPI-ESM-LR model for each time 
period and the ‘delta’ between historical and future. 
 



 
S7: Temporal results of the NMFk clustering at 3 signals for the MIROC-ESM model for each time 
period and the ‘delta’ between historical and future. 
 



 
S8: Temporal results of the NMFk clustering at 3 signals for the GFDL-ESM2M model for each time 
period and the ‘delta’ between historical and future. 
 
 
 



 
S9: Temporal results of the NMFk clustering at 3 signals for the GFDL-EMS2G model for each time 
period and the ‘delta’ between historical and future.  
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 20 
Figure 1: The domain of the Colorado River Basin with adjacent areas that receive Colorado River water. Adapted 21 
from USGS, 2012 (accessed Jan 11th, 2021; USBR, 2012). 22 
  23 
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 24 

 25 
 26 
Figure 2: Process by which the NMFk algorithm is applied to the drough indicator data. A 2d matrix of minimum 27 
streamflow (qn) is created using the 134 HUC8 sub-watersheds with 73 5-day timesteps of streamflow throughout a 28 
year. This matrix is input into NMFk which clusters similar temporal signals of qn together. 29 
 30 
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 33 
Figure 3: Average annual Precipitation changes (%) plotted against temperature changes (°C) for the CRB region 34 
for 14 different ESM’s. GFDL-ESM2G and IPSL-CM5A-LR models are highlighted in red. Of the 14 ESMs, six 35 
were used in our analysis to cover the range of ESM results for precipitation and temperature change. Those six 36 
models are presented in the supplementary materials with the two highlighted models (GFDL-ESM2G and IPSL-37 
CM5A-LR) discussed ind detail here. The vertical and horizontal black lines represent the multi-model mean of 38 
projected temperature and precipitation change, respectively.   39 
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 40 
Figure 4: NFMk spatial grouping of HUC8 subsub-watersheds based on tempx dataset using solutions for 2, 3, and 4 41 
extracted signals. The historical and future time periods, as well as the delta, are shown for both wet and dry 42 
scenarios. Each panel represents an independent NMFk clustering and the colors shown are not meaningful to one 43 
another across panels. Blank panels represent cases for each NMFk could not produce an acceptable solution. 44 
 45 
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 46 
Figure 5: Temporal NFMk clustering of HUC8 subsub-watersheds based on the annual tempx signals for both IPSL-47 
CM5A-LR (dry scenario) and GFDL-ESM2G (wet scenario) simulations. Solutions for 2, 3, and 4 extracted signals 48 
are presented for each time period. The clustering on this figure corresponds directly to the spatial clustering in the 49 
appropriate panels of Figure 3. Each line represents a single sub-watershed, while the dashed lines are representing 50 
the cluster medians at each time-step.  51 
 52 
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 53 
Figure 6: NFMk spatial grouping of HUC8 subsub-watersheds based on dryd dataset using solutions for 2, 3, and 4 54 
extracted signals. The historical and future time periods, as well as the delta, are shown for both wet and dry 55 
scenarios. Each panel represents an independent NMFk clustering and the colors shown are not meaningful to one 56 
another across panels. Blank panels represent cases for each NMFk could not produce an acceptable solution. 57 
 58 
  59 
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 60 
 61 
Figure 7: Temporal NFMk clustering of HUC8 subsub-watersheds based on the annual dryd signals for both IPSL-62 
CM5A-LR (dry scenario) and GFDL-ESM2G (wet scenario) simulations. Solutions for 2, 3, and 4 extracted signals 63 
are presented for each time period. The clustering on this figure corresponds directly to the spatial clustering in the 64 
appropriate panels of Figure 3. Each line represents a single sub-watershed, while the dashed lines are representing 65 
the cluster medians at each time-step.  66 
 67 
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 68 
 69 
 70 
Figure 8: NFMk spatial grouping of HUC8 subsub-watersheds based on evapx dataset using solutions for 2, 3, and 4 71 
extracted signals. The historical and future time periods, as well as the delta, are shown for both wet and dry 72 
scenarios. Each panel represents an independent NMFk clustering and the colors shown are not meaningful to one 73 
another across panels. Blank panels represent cases for each NMFk could not produce an acceptable solution. 74 
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 75 
Figure 9: Temporal NFMk clustering of HUC8 subsub-watersheds based on the annual evapx signals for both IPSL-76 
CM5A-LR (dry scenario) and GFDL-ESM2G (wet scenario) simulations. Solutions for 2, 3, and 4 extracted signals 77 
are presented for each time period. The clustering on this figure corresponds directly to the spatial clustering in the 78 
appropriate panels of Figure 3. Each line represents a single sub-watershed, while the dashed lines are representing 79 
the cluster medians at each time-step.  80 
 81 
 82 
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 83 
 84 
Figure 10: NFMk spatial grouping of HUC8 subsub-watersheds based on soilmn dataset using solutions for 2, 3, and 85 
4 extracted signals. The historical and future time periods, as well as the delta, are shown for both wet and dry 86 
scenarios. Each panel represents an independent NMFk clustering and the colors shown are not meaningful to one 87 
another across panels. Blank panels represent cases for each NMFk could not produce an acceptable solution.. 88 
  89 
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 90 
Figure 11: Temporal NFMk clustering of HUC8 subsub-watersheds based on the annual soilmn signals for both 91 
IPSL-CM5A-LR (dry scenario) and GFDL-ESM2G (wet scenario) simulations. Solutions for 2, 3, and 4 extracted 92 
signals are presented for each time period. The clustering on this figure corresponds directly to the spatial clustering 93 
in the appropriate panels of Figure 3. Each line represents a single sub-watershed, while the dashed lines are 94 
representing the cluster medians at each time-step.  95 
 96 
 97 
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 98 
Figure 12: NFMk spatial grouping of HUC8 subsub-watersheds based on qn dataset using solutions for 2, 3, and 4 99 
extracted signals. The historical and future time periods, as well as the delta, are shown for both wet and dry 100 
scenarios. Each panel represents an independent NMFk clustering and the colors shown are not meaningful to one 101 
another across panels. Blank panels represent cases for each NMFk could not produce an acceptable solution. 102 
 103 
 104 
 105 
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 106 
Figure  13: Temporal NFMk clustering of HUC8 subsub-watersheds based on the annual qn signals for both IPSL-107 
CM5A-LR (dry scenario) and GFDL-ESM2G (wet scenario) simulations. Solutions for 2, 3, and 4 extracted signals 108 
are presented for each time period. The clustering on this figure corresponds directly to the spatial clustering in the 109 
appropriate panels of Figure 3. Each line represents a single sub-watershed, while the dashed lines are representing 110 
the cluster medians at each time-step.  111 
 112 
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 122 

 ΔT (℃) ΔP (%) 
IPSL-CM5A-LR 6.33 -15.60 

HadGEM2-
ES365 6.35 -4.04 

MPI-ESM-LR 5.03 -3.33 
GFDL-ESM2M 4.07 1.38 
MIROC-ESM 6.98 7.79 

GFDL-ESM2G 4.56 8.51 
Table 1: Projected change in mean annual temperature and precipitation in the CRB simulated using the six ESM 123 
models used in this study. IPSL-CM5A-lR and GFDL-ESM2G are in bold and are discussed in detail in this study 124 
while the other models are presented in the supplementary materials.  125 


