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Abstract

Australian fires are a primary driver of variability in Australian atmospheric composition and contribute significantly to regional

and global carbon budgets. However, biomass burning emissions from Australia remain highly uncertain. In this work, we use

surface in situ, ground-based total column and satellite total column observations to evaluate the ability of two global models

(GEOS-Chem and ACCESS-UKCA) and three global biomass burning emission inventories (FINN1.5, GFED4s, and QFED2.4)

to simulate carbon monoxide (CO) in the Australian atmosphere. We find that emissions from northern Australia savanna fires

are substantially lower in FINN1.5 than in the other inventories. Model simulations driven by FINN1.5 are unable to reproduce

either the magnitude or the variability of observed CO in northern Australia. The remaining two inventories perform similarly

in reproducing the observed variability, although the larger emissions in QFED2.4 combined with an existing high bias in

the southern hemisphere background lead to large CO biases. We therefore recommend GFED4s as the best option of the

three for global modelling studies with focus on Australia or the southern hemisphere. Near fresh fire emissions, the higher

resolution ACCESS-UKCA model is better able to simulate surface CO than GEOS-Chem, while GEOS-Chem captures more

of the observed variability in the total column and remote surface air measurements. We also show that existing observations in

Australia can only partially constrain global model estimates of biomass burning. Continuous measurements in fire-prone parts

of Australia are needed, along with updates to global biomass burning inventories that are validated with Australian data.
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Abstract22

Australian fires are a primary driver of variability in Australian atmospheric composi-23

tion and contribute significantly to regional and global carbon budgets. However, biomass24

burning emissions from Australia remain highly uncertain. In this work, we use surface25

in situ, ground-based total column and satellite total column observations to evaluate26

the ability of two global models (GEOS-Chem and ACCESS-UKCA) and three global27

biomass burning emission inventories (FINN1.5, GFED4s, and QFED2.4) to simulate28

carbon monoxide (CO) in the Australian atmosphere. We find that emissions from north-29

ern Australia savanna fires are substantially lower in FINN1.5 than in the other inven-30

tories. Model simulations driven by FINN1.5 are unable to reproduce either the mag-31

nitude or the variability of observed CO in northern Australia. The remaining two in-32

ventories perform similarly in reproducing the observed variability, although the larger33

emissions in QFED2.4 combined with an existing high bias in the southern hemisphere34

background lead to large CO biases. We therefore recommend GFED4s as the best op-35

tion of the three for global modelling studies with focus on Australia or the southern hemi-36

sphere. Near fresh fire emissions, the higher resolution ACCESS-UKCA model is bet-37

ter able to simulate surface CO than GEOS-Chem, while GEOS-Chem captures more38

of the observed variability in the total column and remote surface air measurements. We39

also show that existing observations in Australia can only partially constrain global model40

estimates of biomass burning. Continuous measurements in fire-prone parts of Australia41

are needed, along with updates to global biomass burning inventories that are validated42

with Australian data.43

Plain Language Summary44

Biomass burning inventories estimate the distribution and abundance of gases emit-45

ted to the atmosphere from fires. In this study, we found that three popular fire emis-46

sion inventories (GFED, FINN, and QFED) predict very different emissions of the gas47

carbon monoxide (CO) from fires in Australia. To determine which inventory is best for48

Australia, we fed those emissions into global atmospheric models that combine the emis-49

sions with the chemistry and movement of gases in the atmosphere to predict the abun-50

dance of atmospheric gases, including CO. We compared the predictions to measurements51

in the real atmosphere. We found that two of the inventories (GFED and QFED) are52

better suited for Australian studies than the third (FINN), which failed to capture much53

of the annual variation in measured CO levels. To further the outcomes of this study,54

more ground-based measurements are needed in Australia, particularly in the northern55

half of the continent where most of the fires normally occur. In addition, the use of at-56

mospheric models with finer resolution would also allow us to make better use of the ex-57

isting ground-based measurements to judge the reliability of different fire emission in-58

ventories.59

1 Introduction60

Emissions from biomass burning have a large influence on atmospheric composi-61

tion in the Southern Hemisphere where, relative to the Northern Hemisphere, slash and62

burn practices, pasture maintenance and accidental fires are more common and emis-63

sions from fossil fuels are much lower (Wai et al., 2014). Australia contributes approx-64

imately 5-10% to global biomass burning carbon emissions, with contributions from sa-65

vanna fires in the north and forest fires in the south (Shi et al., 2015; van der Werf et66

al., 2017; Prosperi et al., 2020). These estimates come from global biomass burning in-67

ventories parameterised based on measurements performed almost exclusively outside68

Australia (Akagi et al., 2011). However, Australian ecosystems are uniquely character-69

ized by a large fraction of eucalyptus vegetation, unlike anywhere else in the world (Gill,70

1975), with possible implications for simulation of smoke emissions from Australian fires.71
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The accuracy of global biomass burning emission estimates for Australia has not pre-72

viously been evaluated. Here, we perform a suite of global model simulations of atmo-73

spheric composition driven by three global biomass burning inventories with differing emis-74

sions from Australia. We evaluate these simulations with surface, total column and satel-75

lite observations of carbon monoxide (CO), which is a marker of the degree of smoke in76

the atmosphere, to assess the fidelity of the inventories as well as the capability of ex-77

isting measurements to constrain modelled atmospheric composition in Australia.78

Global biomass burning emission inventories are widely used as inputs to atmospheric79

chemistry models to link emissions to their impacts on atmospheric composition, air qual-80

ity, health, and climate. Most inventories calculate the emissions from fires using some81

variant of the Seiler and Crutzen algorithm shown in Equation 1 (Seiler & Crutzen, 1980):82

Ei = A× L× CC × EFi (1)83

where Ei is the estimated mass of species i emitted from biomass burning, calculated84

as the product of area burnt (A, area), fuel load (L, mass of fuel per area), combustion85

completeness (CC, unitless) and the emission factor for species i (EFi, mass of species86

i emitted per mass of fuel burned). The area burnt is retrieved by satellite imagery. The87

fuel load is the amount of combustible vegetation per unit area and can be estimated88

from satellite data or be parameterised per vegetation type and region. The combustion89

completeness, also referred to as burning efficiency or fractional combustion, is the frac-90

tion of the total fuel load that is fully combusted and released to the atmosphere. It is91

usually modelled based on the type of vegetation burnt, the estimated fire intensity, and92

in some cases the soil moisture content and/or time since the area was last burnt (Giglio93

et al., 2013). In some inventories, satellite-derived fire radiative power combined with94

regional conversion factors is used as a proxy to estimate the amount of fuel combusted95

(A × L × CC ) (Wooster et al., 2005; Darmenov & da Silva, 2015). The emission fac-96

tors represent the fraction of the burnt fuel that is emitted as trace gas i. They are de-97

rived from laboratory and field measurements conducted using specific fuels or in spe-98

cific ecosystems, and are compiled for broad land cover or vegetation type such as sa-99

vanna or tropical forest (e.g., Akagi et al., 2011; Andreae & Merlet, 2001).100

Although most global inventories rely on some form of Equation 1, there are a num-101

ber of variations in their input data sources and implementation that lead to significant102

differences in emission estimates (Liu et al., 2020; Pan et al., 2020). Inter-inventory dif-103

ferences are not globally consistent, and previous work has shown that variability be-104

tween inventories is larger for Australia than for most of the rest of the world (Liu et al.,105

2020). This variability ultimately leads to large uncertainty in Australian atmospheric106

composition as simulated by models that use these inventories as input. Observations107

available to constrain these uncertainties are sparse, with only a handful of long-term108

trace gas measurement sites (including both remote sensing and surface in situ measure-109

ments) spread out across a continent roughly the size of the continental United States.110

Perhaps as a result, no previous work has attempted to evaluate the fidelity of different111

global inventories for simulating atmospheric composition in the Australian environment.112

In this work, we address two fundamental questions for understanding the impact113

of Australian biomass burning on regional and global atmospheric composition: (1) How114

much do current estimates of Australian biomass burning CO emissions vary, and what115

impact does that variation have on simulated CO abundance? ; and (2) Are existing ob-116

servations sufficient to constrain these estimates?. To answer the former, we run a suite117

of model simulations using two global atmospheric chemistry models (GEOS-Chem and118

ACCESS-UKCA, see acronyms list for full names) with three separate global biomass119

burning inventories (GFED4s, FINN1.5, and QFED2.4) and quantify the resultant range120

in the magnitude and interannual variability of CO emissions, simulated CO mixing ra-121

tios in surface air, and simulated CO total columns. To address the latter, we compare122

–3–



manuscript submitted to JGR: Atmospheres

the simulated CO to surface in situ, ground-based total column, and satellite CO obser-123

vations and evaluate the performance of each simulation. In the following sections, we124

first describe the biomass burning emission inventories, global models, and measurement125

datasets (Section 2). We then compare estimates of biomass burning emissions from each126

of the three inventories for Australia and contextualise these on hemispheric and global127

scales (Section 3). Finally, we evaluate the CO simulations using the Australian obser-128

vations and make recommendations as to the most appropriate biomass burning emis-129

sions to use for simulating Australian atmospheric composition (Section 4).130

2 Methodology131

The evaluation was done for the period 2008-2010. This 3-year time frame was se-132

lected to encompass 2009, the year of the ‘Black Saturday’ event which, until the sum-133

mer of 2019-2020, was Australia’s worst bushfire disaster on record. This event took place134

around 7 February 2009 and burnt 4500 km2 of forest in the south-eastern state of Vic-135

toria, claiming 173 lives and destroying more than 3500 buildings (Cruz et al., 2012). This136

major biomass burning event left a clear fingerprint on both atmospheric measurements137

and emission estimates (Paton-Walsh et al., 2012; Siddaway & Petelina, 2011). Thus,138

a 3-year window around the Black Saturday event was simulated to capture the impact139

of interannual variability on the results.140

We quantify the relative importance of variability in emission inventories versus141

variability in chemical transport model by using two global atmospheric chemistry mod-142

els and three emission inventories. The impact of variability in emission inventories is143

quantified by running one model (GEOS-Chem) with all three inventories (GFED4s, FINN1.5,144

and QFED2.4). The impact of model variability is quantified by running both models145

(GEOS-Chem and ACCESS-UKCA) with the same emission inventory (GFED4s). The146

inventories and models are described briefly below (Sections 2.1 and 2.2), along with the147

observations and statistical measures used to evaluate the model simulations (Section148

2.3). Our analysis uses CO as the trace gas that is both measured at the most Australian149

observing sites and most sensitive to biomass burning emissions. Preliminary additional150

evaluation using formaldehyde and ethane (both measured at fewer stations than CO)151

provided no additional insights and therefore is not discussed further.152

2.1 Biomass burning emission inventories153

2.1.1 GFED4s154

The Global Fire Emissions Database version 4s (GFED4s) biomass burning emis-155

sions were used in both the GEOS-Chem model with 3-hourly resolution, and in the ACCESS-156

UKCA model with monthly resolution (models described below). The GFED4s inven-157

tory is described in detail by van der Werf et al. (2017). In brief, the fuel loading in GFED4s158

is derived from the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model159

(Potter et al., 1993; Field et al., 1995; Randerson et al., 1996). The GFED4 burned area160

(without small fires) is obtained from the 500 m MODIS Collection 5.1 MCD64A1 burned161

area product (Giglio et al., 2013). For fires smaller than 21 ha (the size of the 500 m x162

500 m MODIS pixel), the direct mapping of the burned area is not reliable. Therefore,163

to account for smaller fires, active fires from MODIS and 500 m x 500 m surface reflectance164

observations are combined with the MCD64A1 burned area product. The burned area165

of small fires is calculated by multiplying the number of active fires outside the perime-166

ter of the MCD64A1 burned area by the ratio of burned area to active fires within the167

perimeter of the MCD64A1 burned area. The estimate of burned area for each small fire168

is refined by a correction factor to account for the region, vegetation type and season.169

Specific details of this approach are given by Randerson et al. (2012).170
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As detailed by van der Werf et al. (2017) and references therein, fuel load and com-171

bustion completeness are derived from the carbon cycle aspect inherited from CASA. The172

model dynamically adjusts the modelled amount of carbon in different carbon pools (such173

as stems, leaves and litter) using the fraction of absorbed photosynthetically active ra-174

diation, a dataset derived from measurements by the Advanced Very High Resolution175

Radiometer (AVHRR) sensor on-board several satellites. Combustion completeness is176

set between minimum and maximum fractions depending on the land cover and then de-177

fined within those limits using soil moisture. Land cover types include evergreen needle-178

leaf forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf179

forests, mixed forests, closed shrublands, open shrublands, woody savannas, savannas,180

grasslands and croplands. Emission factors are from the inventory compilation by Akagi181

et al. (2011).182

2.1.2 FINN1.5183

The Fire INventory from NCAR version 1.5 (FINN1.5) biomass burning emissions,184

described in detail by Wiedinmyer et al. (2011), were used only as input to GEOS-Chem,185

with daily resolution. In FINN, the location and size of fires are derived from satellite186

detection of active fires only. Active fires are retrieved from the MODIS Thermal Anoma-187

lies Product daily, with a nominal resolution of 1 km2. Fires detected with a confidence188

level of less than 20% are removed. In the tropics, between 30◦N and 30◦S, MODIS takes189

two days to achieve full coverage. Therefore, fires detected on one day are assumed to190

carry over to the following day at half their original size. Because there are two MODIS191

instruments, the possibility of double-counting fires is removed by discounting any hot192

spot detected within a 1-km radius of an existing fire detection each day.193

The MODIS Collection 5 Land Cover Type supplies FINN1.5 with the type of veg-194

etation burned in each pixel. Fourteen of the sixteen land types in the MODIS dataset195

are lumped into six generic land cover classes: boreal forests, tropical forests, temper-196

ate forests, woody savannas and shrublands, savannas and grasslands and croplands. The197

remaining two, water and ice, are used to filter out any anomalous hot spots. The frac-198

tion of tree, non-tree vegetation and bare cover in each pixel is obtained from the MODIS199

Vegetation Continuous Fields product. The area burned is assumed to be 1 km2 for each200

pixel, except for savanna and grassland areas, where it is assumed to be 0.75 km2 (due201

to the lower vegetation density). The area burned values are further scaled using the MODIS202

Vegetation Continuous Field bare cover fraction in each pixel.203

Fuel loading is set by region and generic land cover class based on Hoelzemann et204

al. (2004). For instance, the fuel density for savanna and grassland vegetation in Ocea-205

nia is estimated at 245 g m−2, which is approximately half the density estimated for the206

same land cover type in South America (552 g m−2). This represents a significant dif-207

ference from GFED4s and its dynamically calculated fuel loading. The combustion com-208

pleteness is set depending on the tree cover with three options: tree cover below 40%,209

tree cover between 40% and 60%, and tree cover higher than 60%. As in GFED4s, emis-210

sion factors are from Akagi et al. (2011).211

2.1.3 QFED2.4212

The Quick Fire Emission Dataset version 2.4 (QFED2.4) biomass burning emis-213

sions, described by Darmenov and da Silva (2015), were used only in GEOS-Chem, with214

daily resolution. In QFED, emissions are calculated based on fire radiative power, which215

quantifies the rate of radiant heat produced by a fire and has been shown to be linearly216

related to the mass of fuel consumed in a fire (Wooster, 2002). Fire radiative power and217

fire location are obtained from the MODIS Collection 5 Active Fire product (MOD14218

and MYD14) and the MODIS Geolocation product (MOD03 and MYD03) with a 1 km2
219

spatial resolution, up to four times each day. In the case of pixels obscured by clouds,220
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QFED2.4 uses a technique called the sequential approach, which models a predicted value221

of fire radiative power from a previous measurement in the same pixel. This predicted222

value is then used to correct the observed fire radiative power with a scalar parameter,223

which depends on the quality of the sensor’s retrieval.224

The QFED vegetation map is then used to assign the vegetation type, select the225

relevant coefficient to convert fire radiative power to mass of dry fuel consumed, and se-226

lect the relevant emission factors. The QFED vegetation map is derived from the Inter-227

national Geosphere-Biosphere Programme (IGBP), with improvements of the Brazilian228

tropical forests by the Brazilian National Institute For Space Research (IGBP-INPE),229

with 1 km2 spatial resolution. The IGBP-INPE 17 land cover types are aggregated into230

four basic vegetation types used by QFED: tropical forest, extra-tropical forest, savanna231

and grassland. For each vegetation type, the fire radiative power-to-fuel consumption232

coefficients are based on comparison to GFEDv2. Emission factors are from Andreae and233

Merlet (2001), which for CO are ∼15% different for extratropical forest fires and almost234

identical for savanna fires to those reported by Akagi et al. (2011) (as used in the other235

two inventories).236

2.2 Chemical Transport Models237

2.2.1 GEOS-Chem238

We used the tropospheric chemistry (“tropchem”) simulation of the GEOS-Chem239

(Bey et al., 2001) chemical transport model version 10-01 (http://wiki.seas.harvard240

.edu/geos-chem/index.php/GEOS-Chem v10-01), driven by assimilated meteorologi-241

cal fields from the NASA Global Modelling and Assimilation Office Goddard Earth Ob-242

serving System, Version 5 (GEOS-5) reanalysis data product. For global simulations as243

used here, the native GEOS-5 resolution of 0.5◦ latitude by 0.667◦ longitude by 72 ver-244

tical levels is downgraded for use in GEOS-Chem to 2◦ latitude by 2.5◦ longitude by 47245

vertical levels. The model uses a hybrid sigma pressure vertical grid. The vertical res-246

olution decreases with height, with up to 38 levels in the troposphere. The tropopause247

is calculated dynamically, and so the number of levels in the troposphere varies. Only248

purely stratospheric levels are lumped when downgrading the resolution from 72 to 47249

vertical levels.250

The model was run from 2008-2010. A six month spin-up preceded the period of251

interest to allow the model’s chemistry to reach equilibrium. Model timesteps were 15252

minutes for convection and transport and 30 minutes for emissions and chemistry. Model253

output was saved with hourly resolution at the measurement sites and monthly resolu-254

tion everywhere else.255

Biomass burning emissions (described above) were emitted into the model surface256

layer. Anthropogenic emissions were from the Emission Database for Global Atmospheric257

Research (EDGARv4.2; Olivier et al., 2002) for CO, nitrogen oxides, sulfur dioxide and258

ammonia and the REanalysis of the TROposhperic chemical composition (RETRO; Rein-259

hart & Millet, 2011) for volatile organic compounds. These were supplemented with bio-260

fuel emissions from Yevich and Logan (2003), aircraft emissions from the Aviation Emis-261

sions Inventory Code (AEIC; Simone et al., 2013) and ship emissions from the Interna-262

tional Comprehensive Ocean Atmosphere Data Set (ICOADS; Woodruff et al., 2011) for263

CO and nitrogen oxide and from the Arctic Research of the Composition of the Tropo-264

sphere from Aircraft and Satellites inventory (ARCTAS; Eyring et al., 2005)) for sulfur265

dioxide. Biogenic emissions were from the Model of Emissions of Gases and Aerosols from266

Nature v2.1 (MEGANv2.1; Guenther et al., 2012), calculated online in GEOS-Chem.267
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2.2.2 ACCESS-UKCA268

We used the ACCESS-UKCA chemistry-climate model, which combines the phys-269

ical atmosphere from the United Kingdom Met Office’s Unified Model version 8.4 with270

the UKCA chemistry model (Abraham et al., 2012; Bi et al., 2013; Woodhouse et al.,271

2015, http://www.ukca.ac.uk). In the model setup used here, ACCESS is essentially the272

same as the Unified Model since the ACCESS-specific ocean and land-surface compo-273

nents are not invoked as the model is run in atmosphere-only mode with prescribed monthly274

mean sea surface temperature and sea ice fields, and the UM’s original land-surface scheme275

(Joint UK Land Environment Simulator; JULES) is used. The UKCA configuration used276

here combines both tropospheric and stratospheric chemistry schemes. The total num-277

ber of reactions, including aerosol chemistry, is 306 across 86 species.278

The atmospheric model has a horizontal resolution of 1.875◦ in longitude and 1.25◦279

in latitude, and 85 staggered terrain-following hybrid-height levels extending from the280

surface to 85 km. The vertical resolution decreases with height, with the lowest 65 lev-281

els (up to ∼ 30 km) lying within the troposphere and lower stratosphere.282

The model’s meteorological fields (horizontal wind components and potential tem-283

perature) were nudged to ECMWF’s ERA-Interim reanalyses (Dee et al., 2011) on pres-284

sure levels in the free troposphere. The model output used here was extracted from a285

longer model run starting from 1997. Because the model was not run specifically for this286

work, only monthly mean model output was available.287

Biomass burning emissions were from GFED4s (described above) with CO emit-288

ted into the model surface layer. Anthropogenic emissions were from the Atmospheric289

Chemistry and Climate Model Intercomparison Project (ACCMIP; Lamarque et al., 2013).290

Biogenic emissions were from the MEGAN – Monitoring Atmospheric Composition and291

Climate project (MEGAN-MACC; Sindelarova et al., 2014). A detailed description of292

the ACCESS-UKCA simulation as used here is presented in Woodhouse et al. (2015).293

2.3 Observations294

To evaluate the two atmospheric models over Australia using the three estimates295

of biomass burning emissions, we used a suite of CO observations from surface in situ296

data, ground-based total column data, and satellite-based measurements from the Mea-297

surements Of Pollution In The Troposphere (MOPITT) instrument onboard NASA’s Earth298

Observing System Terra spacecraft.299

Figure 1 shows the locations of the four Australian sites where ground-based in situ300

and/or total column CO observations were available: Darwin (Northern Territory), Cape301

Ferguson (Queensland), Wollongong (New South Wales), and Cape Grim (Tasmania).302

Surface in situ data were available for all sites except Wollongong, for which only total303

column data were consistently available during the study period. At Darwin, surface in304

situ measurements were made using a Fourier Transform InfraRed (FTIR) spectrome-305

ter with 3-minute resolution. The instrumental setup is presented by D. W. T. Griffith306

et al. (2012). At Cape Ferguson, in situ CO was sampled in flasks with approximately307

weekly resolution and analysed by gas chromatography with mercuric oxide reduction308

detector (Langenfelds et al., 2002). At Cape Grim, in situ CO was sampled every 40 min-309

utes by gas chromatography with a mercuric oxide reduction detector (Prinn et al., 2018).310

The Cape Ferguson data is available from the World Data Centre for Greenhouse Gases311

(WDCGG), part of the Global Atmospheric Watch program of the World Meteorolog-312

ical Organisation (Krummel et al., 2016). The Cape Grim data were provided directly313

by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). For com-314

parison to the models, the surface in situ observations were averaged to both hourly and315

monthly resolution.316

–7–



manuscript submitted to JGR: Atmospheres

Figure 1. Location of the ground-based measurements sites: Darwin (12.5◦S, 130.8◦E), Cape

Ferguson (19.3◦S, 147.1◦E), Wollongong (34.4◦S, 150.9◦E), and Cape Grim (40.7◦S, 144.7◦E).

The black lines delimit the northern and southern Australian regions (separated by 25◦ S) re-

ferred to in this study. Satellite image from Google Earth (Landsat/Copernicus).
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Ground-based measurements of total column CO were made at Wollongong and317

Darwin using high-resolution solar FTIR spectrometers. Total column CO measurements318

were from the Network for the Detection of Atmospheric Composition Change (NDACC;319

http://www.ndsc.ncep.noaa.gov/) at Wollongong and the Total Column Carbon Ob-320

serving Network (TCCON; http://www.tccon.caltech.edu/) at Darwin (D. Griffith321

et al., 2014)). The time resolution of both instruments is approximately 1 minute, and322

measurements are only made under cloud free conditions. For comparison to GEOS-Chem323

model output, the total column datasets, including averaging kernels and a priori pro-324

files provided as part of the dataset, were averaged to hourly time resolution, and com-325

parisons were made only for hours with available measurements. Modelled vertical pro-326

files were extrapolated to the instrument’s vertical levels and converted to partial columns.327

Instrumental averaging kernels and a priori profiles were then applied to the model par-328

tial columns and the smoothed partial columns summed to calculate smoothed model329

total columns that account for instrument sensitivity (Rodgers & Connor, 2003). Like-330

wise, the total column datasets were also averaged monthly to account for instrument331

sensitivity when comparing with the ACCESS-UKCA model output (available at monthly332

resolution only).333

To provide broader regional context, the models were also compared to MOPITT334

Version 7 level 3 monthly data, obtained from the NASA data archive (ftp://l5eil01335

.larc.nasa.gov/MOPITT/MOP03JM.007, (NASA/LARC/SD/ASDC, n.d.)). The joint/multispectral336

TIR-NIR product was used, which, with the inclusion of solar reflectance, improves near-337

surface retrievals (Worden et al., 2010). The level 3 product of the nadir-sounding MO-338

PITT instrument has a 1◦ x 1◦ horizontal resolution with global coverage over approx-339

imately three days (Drummond & Mand, 1996; Deeter et al., 2017; Emmons et al., 2009).340

The CO retrieval provides one to two independent pieces of information in the vertical.341

MOPITT uses correlation infrared radiometry, a technique that uses a cell on-board the342

instrument containing CO as reference. The internal length and pressure of this cell are343

modulated to gain spectral information. Buchholz et al. (2017) validated MOPITT CO344

using data from the NDACC network, including from Wollongong. They found MOPITT345

to slightly overestimate CO compared to ground-based FTIR (<10%) but did not find346

any significant latitude-dependent bias.347

Similar to the ground-based total columns, MOPITT instrumental averaging ker-348

nels and a priori profiles were applied to the model output to account for instrumental349

sensitivity. MOPITT data and smoothed model output were then averaged spatially over350

the northern and southern Australia regions shown in Figure 1. The 25◦S latitude was351

chosen as the boundary between the northern and southern Australia regions following352

Buchholz et al. (2018) as: (1) it marks a dramatic change in rainfall and fire hotspot dis-353

tributions (Russell-Smith et al., 2007); (2) it roughly coincides with the Tropic of Capri-354

corn that divides tropical from temperate regions; and (3) it separates Australia’s more355

populous south from the sparsely populated north (about 85% of the Australian pop-356

ulation lives south of 25◦S).357

For all datasets, model-observation agreement was quantified by calculating the mean358

bias (MB, Equation 2) and the Pearson correlation coefficient (r) for each simulation com-359

pared to the relevant measurement dataset:360

MB =

∑N
i=1(Mi −Oi)

N
(2)361

where N is the number of data points and M and O are the model and observed362

parameters respectively. The mean bias represents the average difference between the363

model output and observation. The correlation coefficient quantifies the strength of the364

linearity between model outputs and observation and is indicative of the model ability365

to reproduce the observed variability.366
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Table 1. Australian biomass burning CO emission estimates.

CO emissions (Tg)

Region Year FINN1.5 GFED4s QFED2.4

Northern Australiaa 2008 1.2 8.9 16.
2009 2.1 13. 22.
2010 0.7 4.8 8.7

Southern Australiab 2008 0.5 0.8 1.7
2009 1.8 3.0 3.0
2010 1.8 1.2 2.4

Australian total 2008 1.7 9.7 18.
2009 3.9 16. 25.
2010 2.5 6.0 11.

aNorth of 25◦S
bSouth of 25◦S

3 Biomass Burning Emission Estimates367

3.1 Australian Emissions368

Table 1 presents the total estimated CO emissions from Australian biomass burn-369

ing as calculated from the GEOS-Chem ouptut with each inventory in each simulation370

year, separated into northern and southern Australian contributions (Figure 1). The spa-371

tial distribution of CO emissions is shown in Figure 2 for the year 2009 as an example,372

with total emissions from GFED4s (Fig. 2a) compared to FINN1.5 (Fig. 2b) and QFED2.4373

(Fig. 2c). All three inventories show emissions from savanna fires in the north and for-374

est fires in the southeast, with the northern savanna fires the dominant emission source.375

The total annual Australian biomass burning CO emissions vary by up to an or-376

der of magnitude between inventories. Emissions are lowest in FINN1.5 (1.7-3.9 Tg), fol-377

lowed by GFED4s (6-16 Tg), with the largest emissions from QFED2.4 (11-25 Tg). Liu378

et al. (2020) compared five biomass burning inventories, including the three of this study,379

and also found FINN (v1.5) and QFED (v2.5r1) to be the extreme cases for Australia380

when averaged over 2003-2016. Figure 2 shows that emissions from FINN1.5 are lower381

than GFED4s throughout Australia, while emissions from QFED2.4 are higher than GFED4s382

over the savanna regions but lower over the forest regions (both tropical and temperate).383

The inventories differ most significantly for the savanna fires in northern Australia.384

In both GFED4s and QFED2.4, the northern Australian emissions dominate the total385

Australian emissions budget, responsible for 4.8-13 Tg CO (76-89% of the Australian to-386

tal) in GFED4s and 8.7-22 Tg (79-88% of the Australian total) in QFED2.4. These re-387

sults are consistent with previous estimates that 83% of Australian biomass burning emis-388

sions originate from savanna fires (Shi et al., 2015). FINN1.5 emissions, on the other hand,389

are very low in northern Australia at only 0.7-2.1 Tg of CO. The savanna fire emissions390

in FINN1.5 dominate the total Australian fire emissions only in 2008; in other years they391

account for only 28-53% of the total.392

The inventories also differ in their representations of interannual variability. Summed393

over both regions, FINN1.5 emissions are lowest in 2008, while GFED4s and QFED2.4394

both show the lowest emissions in 2010. All three inventories show the largest emissions395

in 2009, both in the southern Australia region affected by the Black Saturday fires and396

in the northern Australia savanna region.397
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Figure 2. (a) CO emissions (Gg) over Australia in 2009 from GFED4s, along with the abso-

lute differences between (b) FINN1.5 and GFED4s and (c) QFED2.5 and GFED4s.
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Figure 3. Biomass burning CO emissions (Tg) for northern (top) and southern (bottom) Aus-

tralia as estimated by FINN1.5 (teal), GFED4s (blue), and QFED2.4 (orange) from January 2008

to December 2010. Note the difference in scales between the top and bottom panels.

Figure 3 shows the time series of monthly mean CO emissions estimated by each398

inventory for northern and southern Australia (note the difference in scales). In north-399

ern Australia, GFED4s and QFED2.4 show that the largest emission peaks occur from400

September to December each year during the tropical dry season (Edwards et al., 2006),401

although only QFED2.4 shows a distinct peak in the latter half of 2010. FINN1.5 does402

not show any northern Australia seasonal CO increase in 2008 and 2010 and only a very403

small enhancement in 2009.404

In southern Australia, CO emissions peak during austral summer (December to Febru-405

ary), as shown in Figure 3. GFED4s and to a lesser extent QFED2.4 show a peak in south-406

ern Australia CO emissions in February 2009, coincident with the Black Saturday event.407

FINN1.5 does not show any enhancement during this event but does show significant peaks408

in October 2009 and March 2010 that are not seen in the other inventories.409

3.2 Continental, Hemispheric and Global Emissions410

To contextualise the Australian emissions, we also compare the inventory estimates411

for other Southern Hemisphere continents and at hemispheric and global scales. Table412

2 presents annual total biomass burning CO emissions estimates for Australia, Africa,413

South America and South-East Asia (all south of the equator), the Southern Hemisphere,414

and the global total. Figure 4 shows the time series of the emission estimates for each415

region.416

The three inventories agree well at the hemispheric scale, with mean annual emis-417

sions of 177 Tg (FINN1.5), 141 Tg (GFED4s), and 188 Tg (QFED2.4) in the Southern418

Hemisphere. However, this agreement masks differences at the continental scale that op-419

erate in different directions. While Australian emissions were significantly lower in FINN1.5420

than in other inventories, South American emissions are higher in FINN1.5 for two of421

the three years. The three inventories agree best over Southern Hemisphere Africa, with422

GFED4s and QFED2.4 agreeing within 5-15% of one another while FINN1.5 is 15-45%423

lower than GFED4s.424

Figure 4 shows that there are seasonal and interannual differences between the in-425

ventories. For the Southern Hemisphere Africa region, the start of the burning season426

is one month later in FINN1.5 than in the other inventories. In GFED4s and QFED2.4,427

–12–



manuscript submitted to JGR: Atmospheres

Table 2. Annual CO emissions (Tg) obtained from the three inventories for Southern Hemi-

sphere regions and the globe.a

CO emissions (Tg)

FINN1.5 GFED4s QFED2.4

Australia 2008 1.6 10 18
2009 3.9 16 25
2010 2.5 6.0 11

Africab 2008 79 96 107
2009 66 95 101
2010 56 103 117

South Americab 2008 70 33 51
2009 51 17 35
2010 67 102 81

South-East Asiab 2008 3.9 2.7 5.5
2009 17 49 8.1
2010 4.0 1.6 5.8

Southern Hemisphere 2008 141 154 181
2009 178 138 170
2010 213 130 214

Global 2008 327 298 365
2009 297 318 335
2010 299 353 369

a Emissions are calculated from the GEOS-Chem output
b South of the equator
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Figure 4. CO emissions (Tg) from biomass burning in (top to bottom) Australia, Africa,

South America, South-East Asia, the Southern Hemisphere and the global total, as estimated by

FINN1.5 (teal), GFED4s (blue) and QFED2.4 (orange) from January 2008 to December 2010.

For the continental totals, only the regions south of the equator are included. Note the scale

differences between Australia and all other regions.
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there is little year-to-year difference in the seasonal emission maximum, whereas FINN1.5428

predicts lower peak emissions in 2010 than in prior years.429

Compared with Africa, the inventories show more interannual variability in the South-430

ern Hemisphere South America region. All three inventories predict lower emissions in431

2009 and higher emissions in 2010 (coincident with major fires in Bolivia and Brazil; Lewis432

et al., 2011), with 2008 intermediate in GFED4s and QFED2.4 but on par with 2010 in433

FINN1.5. In general, QFED2.4 and GFED4s emissions estimates in this region are quite434

similar in both magnitude and timing, although the annual decline from September to435

October is more rapid in GFED4s. During the South American fires in August-September436

2010, GFED4s estimates are roughly 30% higher than those from QFED2.4. As was the437

case in Africa, the start of the South American burning season is delayed in FINN1.5438

relative to the other inventories. FINN1.5 does not appear to capture the large August-439

September 2010 emission enhancement associated with the Bolivian and Brazilian fires,440

but does show an unexplained large peak in October 2010.441

As shown in Figure 4, the variability on the hemispheric scale is almost exclusively442

driven by the variability in the African and South American emissions. One exception443

is the GFED4s peak in September 2009, which can be attributed to Indonesian fires. In444

general, emissions from Australia are dwarfed by those from Africa and South America,445

with Australia responsible for between 1% (FINN1.5 in 2008 and 2010) and 15% (QFED2.4446

in 2009) of the hemispheric total. This small contribution combined with the long CO447

atmospheric lifetime (2 to 6 months; Khalil & Rasmussen, 1984) complicates the eval-448

uation of the inventories using Australian CO observations, as will be discussed below.449

4 Simulated CO at Australian measurement sites450

As shown in the previous Section, the estimates of Australian biomass burning emis-451

sions differ substantially between the GFED4s, FINN1.5, and QFED2.4 inventories. In452

this section, we evaluate the impact of these different emission estimates on simulated453

CO mixing ratios in the Australian region. We compare the model output to a suite of454

Australian atmospheric observations (described in Section 2.3) to test whether existing455

observations are sufficient to constrain the biomass burning emission estimates and, if456

so, determine which inventories provide the most accurate simulation of CO observed457

over Australia.458

4.1 Northern Australia459

We first compare simulated CO to surface in situ mixing ratios observed at Dar-460

win and Cape Ferguson and to total column observations at Darwin (see Figure 1 for461

locations). Model evaluation using surface in situ observations provides information about462

model/inventory ability to reproduce specific fire events if these occur in the vicinity of463

the site, as most emissions (including those from low-intensity fires) are released within464

the planetary boundary layer. This is especially true at Darwin, which is located in close465

proximity to savanna fires and has previously been shown to regularly sample smoke from466

these fires (Hurst, Griffith, & Cook, 1994; Hurst, Griffith, Carras, et al., 1994; Cook et467

al., 1995; Paton-Walsh et al., 2010; Desservettaz et al., 2017). Cape Ferguson, on the other468

hand, is a more remote site, and surface in situ measurements here tend to be more rep-469

resentative of northern Australia background air (Buchholz et al., 2016). Evaluation us-470

ing the total column data provides complementary information on model simulation of471

regional air mass characteristics, with the column measurements less sensitive to local472

emissions and variations in the boundary layer mixing height than measurements made473

at the surface (Deutscher et al., 2010; Zeng et al., 2015). The integrated nature of the474

total column measurements can make them more appropriate for comparison to global475

models with coarse resolution (including those used here), but also makes them more sen-476

sitive to variations in emissions from distant sources.477
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Table 3. Mean bias between the modelled and measured surface CO mixing ratios and total

columns in northern Australia.a

GEOS-Chem ACCESS-UKCAb

FINN1.5 QFED2.4 GFED4s GFED4s

Surface In Situ (ppbv)

Darwin (observed mean = 157.6)
Hourly data -69.6 (-44%) -36.9 (-23%) -50.4 (-32%)
Monthly mean -69.4 (-44%) -36.8 (-23%) -50.0 (-32%) -2.5 (-2%)

Cape Ferguson
Hourly data 10.6 (17%) 24.1 (38%) 12.9 (21%)
Monthly mean 12.3 (20%) 24.0 (38%) 14.6 (23%) 16.1 (26%)

Total Column (1018 molec cm−2)

Darwin (observed mean = 1.52)
Hourly data 0.079 (5%) 0.269 (18%) 0.153 (10%)
Monthly mean 0.057 (4%) 0.247 (16%) 0.133 (9%) 0.248 (16%)

MOPITTc (observed mean = 1.45)
Monthly mean 0.102 (7%) 0.236 (17%) 0.126 (9%) 0.138 (10%)

a See Figure 1 for locations.
b Only monthly mean model output is available for ACCESS-UKCA.
c Averaged over the full northern Australia region shown in Figure 1.

We first quantify overall simulation performance using the mean bias relative to478

each observed dataset. Table 3 shows the mean bias of each simulation (GEOS-Chem479

with all three inventories and ACCESS-UKCA with GFED4s) in northern Australia. For480

each dataset, the bias has been calculated using both the original hourly data (shown481

in Figure 5) and the data averaged to monthly resolution, with only the latter available482

for the ACCESS-UKCA output. The mean bias relative to MOPITT satellite observa-483

tions averaged over the full northern Australia region is also included in Table 3.484

The mean biases in Table 3 provide a consistent picture: the models underestimate485

CO in the vicinity of fresh local emissions (Darwin surface in situ) but overestimate re-486

gional background CO (Cape Ferguson surface in situ, Darwin and MOPITT total columns).487

The three GEOS-Chem simulations show results consistent with the differences between488

emission inventories described in Section 3: simulated CO is lowest with FINN1.5 fol-489

lowed by GFED4s and then QFED2.4. This means that at sites where the model is bi-490

ased high, the mean bias is smallest for GEOS-Chem/FINN1.5 and largest for GEOS-491

Chem/QFED2.4, while at sites where the model is biased low, the opposite is true. When492

compared to the Darwin surface in situ measurements, the difference between the two493

models (GEOS-Chem and ACCESS-UKCA) with the same inventory (GFED4s) is strik-494

ing: while the GEOS-Chem/GFED4s simulation underestimates observed CO by more495

than 30%, the ACCESS-UKCA/GFED4s simulation is within 2% of the observed mean.496

The reason for this difference will be explored in detail below. For the other measure-497

ments, the differences between models (ACCESS-UKCA/GFED4s vs. GEOS-Chem/GFED4s)498

is smaller than the difference between inventories when using the same model (GEOS-499

Chem).500

The mean biases tell us little about the relative suitability of each inventory to re-501

produce true Australian CO. For most of the year, Australian CO burdens are dominated502

by secondary production from oxidation of methane and other volatile organic compounds503
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Figure 5. Time series of hourly measured (black) and simulated (colours) (a,b) surface and

(c) total column CO in northern Australia. Note that ACCESS-UKCA output was not available

at hourly resolution and is therefore not included in this figure. A similar figure averaged to

monthly resolution can be found in the supplement.

(Fisher et al., 2017). While some of these source compounds are associated with biomass504

burning, most are from biogenic emissions (Zeng et al., 2015). As a result, the overall505

mean CO values in the models are largely driven by sources other than biomass burn-506

ing. Considering the documented general high CO bias in model simulations (Naik et507

al., 2013), a lower bias caused by a change in fire emission inventory might actually re-508

flect a compensating effect of insufficient emissions. Therefore, mean biases are not an509

adequate test of inventory performance for biomass burning episodes.510

Model variability, on the other hand, is more significantly influenced by biomass511

burning emissions due to the seasonal and episodic nature of this source (Edwards et al.,512

2006). GEOS-Chem tagged CO simulations from Fisher et al. (2017) (available only for513

2009-2010) confirm these assumptions hold at the observation sites used here: secondary514

CO is responsible for 70-90% of simulated CO throughout the year, while primary biomass515

burning emissions drive the annual cycle and interannual variability (see Figures S1-S3516

in the supplement).517

We therefore focus our analysis on model ability to reproduce variability rather than518

mean values. The relative ability of each simulation to reproduce the observed variabil-519

ity is quantified using the correlation coefficient r between each simulation and the mea-520

surements. Correlation coefficients calculated using both the hourly data (where avail-521

able) and the monthly means are provided in Table 4. Model ability to reproduce ob-522

served variability at monthly timescales is also shown qualitatively in Figure 6, which523

compares the measured monthly mean CO to the simulated monthly mean after remov-524

ing the mean bias. An equivalent figure without the mean bias subtracted can be found525

in the supplement (Figure S4).526

At Darwin, the GEOS-Chem simulations show limited ability to reproduce the ob-527

served variability from the surface in situ record. For the hourly observations, the cor-528

relation coefficients are r=0.25 for GEOS-Chem/QFED2.4 and r=0.22 for GEOS-Chem/GFED4s,529
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Figure 6. Monthly averaged (a,b) surface CO mixing ratio and (c,d) total column CO in

northern Australia from measurements (black) and simulations (colours). The mean bias of each

simulation has been removed to better highlight differences in variability.
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Table 4. Correlation coefficients (r) between the modelled and measured surface CO mixing

ratios and total columns in northern Australia.a

GEOS-Chem ACCESS-UKCAb

FINN1.5 QFED2.4 GFED4s GFED4s

Surface In Situ

Darwin
Hourly data <0.01 0.25 0.22
Monthly mean -0.09 0.44 0.53 0.80

Cape Ferguson
Hourly data 0.67 0.70 0.73
Monthly mean 0.62 0.79 0.76 0.31

Total Column

Darwin
Hourly data 0.56 0.80 0.82
Monthly mean 0.50 0.80 0.86 0.77

MOPITTc

Monthly mean 0.80 0.94 0.91 0.70

a See Figure 1 for locations.
b Only monthly mean model output is available for ACCESS-UKCA.
c Averaged over the full northern Australia region shown in Figure 1.

implying the model captures at most ∼6% of the observed variability (defined as r2). For530

these simulations, the correlation coefficients improve when both observation and model531

are averaged to monthly resolution, reproducing about 20% (QFED2.4) to 30% (GFED4s)532

of the observed monthly variability. This improvement shows that GEOS-Chem is bet-533

ter able to simulate the mean annual cycle than the individual events sampled in the hourly534

data. With FINN1.5, the GEOS-Chem simulation is uncorrelated with the hourly data535

and weakly anti-correlated with the monthly mean data, suggesting major deficiencies536

in the ability of FINN1.5 to estimate either the magnitude or variability of fire emissions537

near Darwin.538

ACCESS-UKCA performs significantly better for Darwin surface CO than all GEOS-539

Chem simulations, including when both models are driven by GFED4s emissions, with540

ACCESS-UKCA able to reproduce more than twice as much of the seasonal variability541

as GEOS-Chem/GFED4s. Figure 6 shows a much larger seasonal enhancement simu-542

lated by ACCESS-UKCA than by GEOS-Chem, particularly in 2009. The more accu-543

rate simulation of the seasonal peak by ACCESS-UKCA also explains the much smaller544

bias in ACCESS-UKCA relative to GEOS-Chem noted earlier (Table 3).545

The large discrepancy between ACCESS-UKCA/GFED4s and GEOS-Chem/GFED4s546

is surprising given that we expect most of the CO seasonality at Darwin to be driven by547

biomass burning emissions (Edwards et al., 2006; Paton-Walsh et al., 2010), and both548

simulations use the same emission inventory. Other differences between the models that549

could influence simulation of the surface CO mixing ratio include horizontal resolution,550

land fraction (emittable area) in the grid cell containing Darwin, vertical injection height,551

and differences in meteorological fields caused by the use of different reanalysis products.552

We test the influence of each of these on simulated CO using the existing model output.553

We find that nearly all of the difference can be explained by differences in horizontal res-554

olution between the models, as shown in Figure 7. Re-mapping the ACCESS-UKCA out-555
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Figure 7. (a) GEOS-Chem (dark blue) and ACCESS-UKCA (light blue) model grid box loca-

tions in the region near Darwin. The black circle indicates the Darwin measurement site and the

shaded boxes show the grid cells sampled in each model to represent Darwin. (b) Time series of

modelled CO in Darwin surface air from GEOS-Chem (solid dark blue), ACCESS-UKCA (solid

light blue), and ACCESS-UKCA re-mapped to the GEOS-Chem resolution (dashed light blue)

using the Climate Data Operators (CDO) first-order conservative remapping function (remap-

con).

put from the native 1.25◦× 1.875◦ resolution to the coarser 2◦× 2.5◦ GEOS-Chem res-556

olution substantially reduces the peak simulated CO as the emissions are diluted over557

the larger area, effectively eliminating the difference between the two models. Meanwhile,558

as shown in the supplement (Figures S5-S6), there appears to be little impact from the559

land versus ocean fraction in the Darwin grid cell (tested by sampling GEOS-Chem us-560

ing grid cells with higher land fraction to the south and east) or from emission injection561

height and mixing (tested by comparing the simulated vertical distribution between mod-562

els). These results highlight the strong horizontal resolution dependence of near-source563

observation-model comparisons and suggest a more robust test of the inventories at Dar-564

win would require running a high-resolution model forced by the different inventories.565

The Cape Ferguson surface in situ site is located substantially further from local566

emissions. As a result, the differences in model resolution are less important here. All567

simulations appear to have a 1-month lag in the timing of peak CO in 2008 and 2010568

(Figure 6), which is a few months later at Cape Ferguson than at Darwin. However, miss-569

ing data in 2009 and a generally sparse observation record due to the infrequent sam-570

pling (Figure 5) make it difficult to reliably determine the timing of the seasonal peak.571

ACCESS-UKCA performs notably worse (r=0.31) than any of the GEOS-Chem simu-572

lations (r=0.62-0.79) in simulating the annual cycle at Cape Ferguson. Amongst the GEOS-573

Chem simulations, the model best simulates the observed monthly means when using574

GFED4s and QFED2.4, reproducing 58% and 62% of the variability, respectively. With575
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the mean biases removed, the GEOS-Chem/FINN1.5 simulation is nearly identical to576

GEOS-Chem/GFED4s for most of the simulation period but misses the seasonal increase577

in the latter half of 2010 (Figure S4), reducing the correlation with the observations.578

The total column observations are much less sensitive to nearby emissions than the579

surface measurements, as discussed previously. At Darwin, all simulations except GEOS-580

Chem/FINN1.5 are able to reproduce the majority of the variability observed in both581

the hourly data and the monthly means, with correlation coefficients of r=0.77-0.86. All582

four simulations reproduce to some extent the peak total column CO observed in 2009,583

which occurs a few months later in the total column (October) than at the surface (June).584

However, the simulated peak is much smaller in the GEOS-Chem/FINN1.5 simulation585

than in the other simulations or the observations, leading to a weaker correlation. Al-586

though the GEOS-Chem CO total columns at Darwin are typically lower with GFED4s587

than QFED2.4, the situation is reversed during the 2009 peak (Figure S4), presumably588

due to the much larger emissions from the 2009 Indonesian fires in GFED4s than in the589

other inventories (Figure 4). Overall, the GEOS-Chem/GFED4s simulation outperforms590

both the GEOS-Chem/QFED2.4 and the ACCESS-UKCA/GFED4s simulation in terms591

of both mean bias (Table 3) and correlation (Table 4).592

Comparison to the MOPITT satellite total columns averaged over northern Aus-593

tralia captures the seasonal cycle, but shows high bias in all simulations (Table 3), par-594

ticularly from January to April (Figure S4). Consistent with the other comparisons, GEOS-595

Chem/FINN1.5 underestimates the seasonal CO peak. As seen previously for the Dar-596

win total column data, GEOS-Chem/GFED4s provides the best simulation of the MO-597

PITT data when considering both the mean bias (Table 3) and the correlation (Table598

4), with this simulation able to reproduce 88% of the observed seasonal variability. Mean-599

while, ACCESS-UKCA/GFED4s overestimates the strength of the seasonal cycle (Fig-600

ure 6), degrading the correlation (Table 4).601

4.2 Southern Australia602

We perform a similar analysis using the datasets from southern Australia (Cape603

Grim surface in situ and Wollongong total column, plus MOPITT regional averages).604

Inventory analysis using these measurements comes with several caveats outlined here.605

Cape Grim is a remote site on the north-west coast of Tasmania, designed to primar-606

ily sample baseline or background air from the Southern Ocean region (Law et al., 2010;607

Loh et al., 2015). Therefore, differences at Cape Grim between the three GEOS-Chem608

simulations driven by the different inventories are generally more indicative of transported609

emissions from Africa and South America than local emissions from southern Australia.610

Meanwhile, Wollongong is a semi-urban site located on the east coast of New South Wales611

roughly 100 km south of Sydney. The site does occasionally sample smoke from local fires612

(e.g., Rea et al., 2016) but is also sensitive to anthropogenic, biogenic, and long-range613

transported biomass burning sources (Buchholz et al., 2016; Fisher et al., 2017; Lieschke614

et al., 2019).615

The mean biases of each simulation relative to the Cape Grim and Wollongong mea-616

surements and the MOPITT satellite data (averaged over southern Australia) are shown617

in Table 5. Consistent with the results for the remote sites in northern Australia, all sim-618

ulations show a high bias relative to the observations. As before, amongst the GEOS-619

Chem simulations, the magnitude of the bias correlates with the magnitude of the emis-620

sions, with the largest biases using QFED2.4 and the smallest using FINN1.5. Compar-621

ison to the hourly observations (Figure 8) shows that GEOS-Chem clearly overestimates622

the background CO amounts, irrespective of the emission inventory. Comparing the monthly623

means (shown in Figure S7 in the supplement) suggests ACCESS-UKCA provides a bet-624

ter simulation of the southern mid-latitude background than GEOS-Chem, with a smaller625

mean bias at Cape Grim and almost no bias at Wollongong (Table 5). As discussed pre-626
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Table 5. Mean bias between the modelled and measured surface CO mixing ratios and total

columns in southern Australia.a

GEOS-Chem ACCESS-UKCAb

FINN1.5 QFED2.4 GFED4s GFED4s

Surface In Situ (ppbv)

Cape Grim (observed mean = 55.8)
Hourly data 18.3 (33%) 26.3 (47%) 18.6 (33%)
Monthly mean 18.2 (33%) 26.2 (47%) 18.6 (33%) 12.0 (22%)

Total Column (1018 molec cm−2)

Wollongong (observed mean = 1.36)
Hourly data 0.128 (9%) 0.307 (23%) 0.159 (12%)
Monthly mean 0.134 (10%) 0.314 (23%) 0.164 (12%) 0.025 (2%)

MOPITTc (observed mean = 1.35)
Monthly mean 0.068 (5%) 0.207 (15%) 0.093 (7%) 0.006 (<1%)

a See Figure 1 for locations.
b Only monthly mean model output is available for ACCESS-UKCA.
c Averaged over the full southern Australia region shown in Figure 1.

viously, biases in the simulations reflect a combination of bias in the model background627

and inventory-driven differences; we therefore again focus on simulated variability (as628

represented by the correlation coefficient, r) to better differentiate the impacts of the629

different inventories.630

Comparison of the observed and simulated variability (after subtracting the model631

mean biases) is shown in Figure 9. In the observational record, the only clear signal of632

the February 2009 Black Saturday event is seen in the Wollongong total columns. All633

four simulations capture this event to some extent, although only GEOS-Chem/GFED4s634

accurately simulates the strength of the enhancement (consistent with the emissions com-635

parisons shown in Figure 3). In the models, the February 2009 event is also seen at Cape636

Grim by the two simulations that use the GFED4s emissions, but there is no equivalent637

enhancement in the observations or the other simulations. The fact that the anomalous638

enhancement is simulated by both models but only when using GFED4s implies it is caused639

by the strength of the emissions in GFED4s rather than by anomalous transport to the640

Cape Grim site. It is possible that the GFED4s inventory overestimates the emissions641

associated with the Black Saturday event, causing the February 2009 bias at Cape Grim.642

The more accurate simulation of the event at Wollongong could reflect compensating bi-643

ases from emissions overestimates and plume dilution at the coarse model resolution (Eastham644

& Jacob, 2017; Rastigejev et al., 2010), given the significant distance from the fires to645

the Wollongong site. It should also be noted that while there has been recent progress646

in modelling smoke plume injection height (as reviewed by Paugam et al., 2016), both647

models used in this study inject all fire emissions at ground level, adding further uncer-648

tainty to plume dispersion.649

Other observed variations can also be seen in the Cape Grim record in Figure 9,650

including an enhancement in surface CO in March-April 2008. The event is visible in all651

simulations and in the observations, although the FINN1.5 and GFED4s simulations un-652

derestimate the duration and ACCESS-UKCA greatly overestimates the magnitude. The653

March-April 2008 enhancement is likely due to a large fire in the Tarkine Wilderness,654

which burned nearly 20,000 hectares in northwest Tasmania near the Cape Grim site (BrisbaneTimes,655
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Figure 8. Time series of hourly measured (black) and simulated (colours) (a) surface and

(b) total column CO in southern Australia. Note that ACCESS-UKCA output was not avail-

able at hourly resolution and is therefore not included in this figure. A similar figure averaged to

monthly resolution can be found in the supplement (Fig S7).

Figure 9. Monthly averaged (a) surface CO mixing ratio and (b,c) total column CO in south-

ern Australia from measurements (black) and simulated (colours). The mean bias of each simula-

tion has been removed to better highlight differences in variability.
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Table 6. Correlation coefficients (r) between the modelled and measured surface CO mixing

ratios and total columns in southern Australia.a

GEOS-Chem ACCESS-UKCAb

FINN1.5 QFED2.4 GFED4s GFED4s

Surface In Situ

Cape Grim
Hourly data 0.39 0.66 0.48
Monthly mean 0.22 0.72 0.51 0.35

Total Column

Wollongong
Hourly data 0.58 0.65 0.66
Monthly mean 0.78 0.86 0.90 0.70

MOPITTc

Monthly mean 0.86 0.98 0.97 0.64

a See Figure 1 for locations.
b Only monthly mean model output is available for ACCESS-UKCA.
c Averaged over the full southern Australia region shown in Figure 1.

2008). The much larger enhancement in the ACCESS-UKCA/GFED4s simulation than656

in the equivalent GEOS-Chem/GFED4s simulation likely reflects the same resolution657

dependence seen for the local fires at Darwin; however, in this case GFED4s appears to658

overestimate the emissions leading to the high bias in the better resolved ACCESS-UKCA659

simulation. The GEOS-Chem/FINN1.5 simulation at Cape Grim shows a similarly large660

enhancement in April 2010 that is not seen in the observations or the other simulations.661

The magnitude of the peak again suggests local emissions; however, in this case there662

is no evidence of nearby fires and the enhancement appears to be the consequence of er-663

roneous emissions in the FINN1.5 inventory, consistent with the emissions shown in Fig-664

ure 3.665

Overall, GEOS-Chem driven by QFED2.4 provides the best simulation of the ob-666

served variability at Cape Grim, with a correlation coefficient of r≈0.7 (compared to 0.2-667

0.5 for the other simulations), as shown in Table 6. At Wollongong, there is less differ-668

ence between simulations in terms of ability to reproduce observed variability. GEOS-669

Chem simulations driven by QFED2.4 and GFED4s perform similarly to one another,670

with correlation coefficients of 0.65-0.66 against the observed hourly data and 0.86-0.90671

against the observed monthly means. Figure 9 shows that the monthly variability sim-672

ulated by GEOS-Chem/FINN1.5 is nearly identical to that from the other GEOS-Chem673

simulations, except in late 2010 when GEOS-Chem/FINN1.5 underestimates the seasonal674

peak (leading to the weaker correlation in Table 6). The source attribution in the Sup-675

plement (Figure S2) suggests this peak is associated with the South American fires, im-676

plying FINN1.5 underestimates emissions from these fires (as discussed previously in Sec-677

tion 3). Despite having the lowest bias (Table 5), the ACCESS-UKCA simulation is the678

least correlated with the Wollongong observations (r=0.70) but still captures roughly679

half of the observed monthly variability.680

The MOPITT data for southern Australia provide little additional insight. As at681

Wollongong, the GEOS-Chem simulations driven by GFED4s and QFED2.4 provide the682

best simulation of the annual cycle. As the MOPITT data have been averaged over the683

entire southern Australia region, they primarily reflect the southern mid-latitude CO back-684
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ground with little influence from primary biomass burning emissions (Figure S3). The685

exception is the influence of the South American fires in late 2010, when the FINN1.5686

underestimate is again evident. As at Wollongong, ACCESS-UKCA provides the poor-687

est simulation of the annual cycle, with model overestimates in the first half of the year688

and underestimates in the second half that are not seen in the GEOS-Chem simulations.689

A similar pattern was seen in the ACCESS-UKCA comparison to MOPITT in north-690

ern Australia (Figure 6) and is almost certainly due to model chemistry (secondary CO691

production and/or loss) rather than any direct impact of the biomass burning emissions.692

4.3 Statistical Summary & Recommendations693

Figure 10 summarises the simulation-measurement comparisons using a Taylor di-694

agram to simultaneously compare the different simulations on the basis of their corre-695

lation coefficients, root mean squared error (RMSE) and standard deviation relative to696

the observations. The RMSE values are calculated after removing the mean bias. The697

standard deviations are normalised to the relevant observational dataset such that val-698

ues greater than 1 represent greater variability in the simulations than was observed. The699

Taylor diagram provides a condensed visual representation of the overall capabilities of700

the four simulations. An ideal simulation would have an RMSE of 0.0, normalised stan-701

dard deviation of 1.0, and correlation coefficient of 1.0, indicated on the figure as the black702

circle labeled “obs”. The closer each point sits to the “obs” marker, the better that sim-703

ulation represents the observations. We use the monthly mean data here to enable com-704

parison between GEOS-Chem and ACCESS-UKCA simulations on equal footing.705

Consistent with the results presented previously, the models perform best when com-706

pared to the regionally-averaged satellite observations followed by the ground-based to-707

tal column observations, with the worst performance relative to the surface in situ mea-708

surements. This summary reinforces the point that the coarse resolution models used709

here are best suited to interpretation of measurements that represent large spatial scales.710

Higher resolution models would be required to more accurately resolve and evaluate emis-711

sions at the local scale measured by the surface in situ data.712

More importantly, Figure 10 shows that the Australian observational record is most713

accurately simulated using GEOS-Chem with either GFED4s or QFED2.4 emissions. Our714

results suggest that the ACCESS-UKCA simulation, which currently uses only GFED4s715

emissions, would not be improved by using the FINN1.5 or QFED2.4 emissions. Instead,716

the poorer performance by ACCESS-UKCA than GEOS-Chem/GFED4s (except at the717

Darwin surface) may be partly explained by the fact that the ACCESS-UKCA chem-718

istry scheme has some limitations compared to GEOS-Chem – for example, ACCESS-719

UKCA lumps ethane, ethene and ethyne into ethane and lumps propene into propane;720

a generic ”NMVOC” (non-methane volatile organic compound) species is used as proxy721

for acetaldehyde, and ketone is used as proxy for acetone. These simplifications in or-722

ganic compounds will impact CO through secondary production, both in biomass burn-723

ing plumes and in background air.724

Comparison of the three GEOS-Chem simulations suggests that FINN1.5 is not fit-725

for-purpose in simulating CO over Australia. Both near-source and downwind observa-726

tions in northern Australia imply large errors in FINN1.5 estimates of emissions from727

savanna fires, which are virtually non-existent relative to the other inventories (Figure728

3). Meanwhile, observations in southern Australia that largely capture the influence of729

transported emissions also suggest that FINN1.5 underestimates CO biomass burning730

emissions in South America. Liu et al. (2020) previously found that simulations driven731

by FINN1.5 also performed poorly relative to other inventories in Indonesia. While their732

results were based on fine particulate matter, we expect similar biases would affect sim-733

ulation of Indonesian CO emissions, with likely implications for CO transported to north-734

ern Australia. We therefore recommend that FINN1.5 not be used for Australian mod-735
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Figure 10. Taylor diagram summarising the evaluation of the four simulations against

monthly mean surface in-situ (circles), surface total column (hexagons), and regional average

MOPITT satellite (stars) measurements. Evaluation metrics include the normalised standard de-

viation (radial coordinate, normalised to the observed standard deviation), correlation coefficient

(angular coordinate), and root mean square error (RMSE; dashed semi-circles). The black dot

labelled “obs” denotes the ideal performance (identical to the observations).
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elling studies. The results from this study have motivated in part updates to the next736

version of FINN (version 2, in preparation) and future evaluation is recommended when737

that version is released.738

5 Conclusions739

Emissions from Australian biomass burning are a primary driver of seasonal and740

interannual variability in Australian atmospheric composition but remain highly uncer-741

tain due to a dearth of measurements in the unique Australian environment. In this work,742

we used surface in situ, ground-based total column, and satellite total column observa-743

tions to evaluate the ability of two global atmospheric chemistry models (GEOS-Chem744

and ACCESS-UKCA) and three global biomass burning emission inventories (FINN1.5,745

GFED4s, and QFED2.4) to simulate CO in the Australian atmosphere from 2008 to 2010.746

Comparison of CO emissions from the three inventories showed that FINN1.5 es-747

timates substantially lower emissions than the other two inventories, particularly in the748

northern Australia savanna. Estimates from GFED4s and QFED2.4 are similar in sea-749

sonality to one another but with higher magnitude in QFED2.4. On a hemispheric scale,750

the Australian emissions are dwarfed by emissions from Africa and South America, with751

Australia responsible for 1-15% of total Southern Hemisphere fire emissions, complicat-752

ing the interpretation of the Australian evaluation.753

Of the existing observational datasets, we found that only the Darwin surface in754

situ record provides information on fresh biomass burning emissions from Australian sa-755

vanna fires. Here, GEOS-Chem significantly underestimated the CO surface mixing ra-756

tios and reproduced little of the observed variability on either hourly or monthly timescales,757

irrespective of the biomass burning inventory used. ACCESS-UKCA, on the other hand,758

simulated Darwin surface CO to within 2% of the observed mean and reproduced nearly759

two thirds of the observed seasonal variability, with the difference between the two mod-760

els attributable to the finer horizontal resolution of ACCESS-UKCA.761

Elsewhere, the existing measurements in both northern and southern Australia are762

primarily sensitive to background CO and aged smoke. The simulations overestimated763

the CO background at these sites (with the exception of ACCESS-UKCA at Wollongong),764

hindering evaluation of the biomass burning inventories. Although the inventories dif-765

fered substantially in terms of the magnitude of Australian emissions (Section 3), the766

relative impacts of the bias in background CO versus the bias in Australian biomass burn-767

ing CO could not be disentangled.768

Evaluation therefore focused on the ability of each simulation to reproduce the ob-769

served variability. Comparing the two models driven by the same inventory (GFED4s),770

GEOS-Chem captured more of the observed variability at the remote sites than ACCESS-771

UKCA, perhaps due to the more complex chemical mechanism (which would influence772

the secondary production and loss of CO). Amongst the three GEOS-Chem simulations,773

GFED4s and QFED2.4 performed similarly. The simulation with FINN1.5 was notably774

worse, particularly at Darwin where almost no seasonal variability was simulated, high-775

lighting insufficient emissions from savanna fires in FINN1.5. Only GFED4s captured776

the enhanced CO at Wollongong from the Black Saturday event; however, the GFED4s777

simulations overestimated CO at Cape Grim during this event, implying the emissions778

associated with the event may be overestimated in GFED4s. Overall, we recommend that779

global CO modelling studies with focus on Australia and/or the Southern Hemisphere780

use GFED4s emissions rather than QFED2.4 (which leads to large biases when coupled781

with the existing biases in the CO background) or FINN1.5 (which underestimates ob-782

served variability).783

Our results also showed that existing observations in Australia can only partially784

constrain global model estimates of biomass burning. Only the Darwin surface in situ785
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measurements are sensitive to fresh fire emissions, but simulation of CO from these emis-786

sions is highly sensitive to model resolution. Meanwhile, the total column CO measure-787

ments at Darwin and Wollongong are less sensitive to resolution and boundary layer ef-788

fects but are significantly impacted by transported smoke from large emissions upwind789

in Africa and South America. Preliminary evaluation using shorter-lived formaldehyde790

at Wollongong provided no additional insight, as there was virtually no difference be-791

tween formaldehyde simulated at Wollongong using the three different inventories (not792

shown here). While formaldehyde has not previously been measured systematically at793

Darwin, recent equipment upgrades will provide a formaldehyde total column record in794

future, which we expect to provide more useful constraints on biomass burning emissions795

from Australian savanna fires.796

Australian fires are a key contributor to global carbon emissions (Shi et al., 2015;797

van der Werf et al., 2017; Prosperi et al., 2020) and to Australia’s carbon budget (Haverd798

et al., 2013, 2015). Climate change is increasing the risk of extreme fire seasons in Aus-799

tralia (van Oldenborgh et al., 2021), with potentially significant augmentation of car-800

bon emissions as seen during the recent 2019-2020 megafires (Shiraishi & Hirata, 2021).801

At the same time, more frequent fires may be reducing the carbon stores and associated802

fire emissions from Australia’s southeastern forests (Bowman et al., 2020), and adoption803

of Aboriginal fire management practices are already decreasing fire frequency and po-804

tentially emissions from the northern savannas (Ansell et al., 2020; Liu et al., 2021). Im-805

plementing these ongoing environmental and management changes into the next gener-806

ation of global biomass burning emission inventories is a key priority for accurately sim-807

ulating Australian fire emissions and their regional and global impacts.808

Acronyms809

ACCESS-UKCA Australian Community Climate and Earth System Simulator - United810

Kingdom Chemistry and Aerosol811

ECMWF European Centre for Medium-Range Weather Forecasts812

FINN1.5 Fire INventory from NCAR version 1.5813

GEOS Goddard Earth Observing System814

GFED4s Global Fire Emissions Dataset version 4s815

MODIS Moderate Resolution Imaging Spectroradiometer816

MOPITT Measurements Of Pollution In The Troposphere817

QFED2.4 Quick Fire Emissions Dataset version 2.4818
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Figure S1. Source attribution of surface CO mixing ratio at Cape Grim, Cape Ferguson,

and Darwin as simulated by GEOS-Chem. Sources include primary biomass burning emissions

from Australia (red), Africa (green), South America (blue), other regions (grey), primary an-

thropogenic emissions (brown), and secondary production from non-methane volatile organic

compound oxidation (light green) and methane oxidation (orange). The black line represents

total simulated surface CO and the dotted line represents the sum of non-biomass burning con-

tributions to simulated surface CO.

Figure S2. Same as Figure S1 but for total column CO at Wollongong and Darwin.
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Figure S3. Same as Figure S1 but but averaged over northern and southern Australia.

Figure S4. Same as Figure 6 in the main text but without removing the mean bias.
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Figure S5. Time series of in situ surface CO mixing ratios at Darwin from measurements

(black), ACCESS-UKCA/GFED4s (light blue) and GEOS-Chem/GFED4s sampled in the Dar-

win grid cell (dark blue) and the grid cells directly to the south (pink), southeast (orange), and

east (green) of the Darwin grid cell.
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Figure S6. May-July 2009 0-4 km vertical profiles of simulated CO mixing ratios at Darwin

from ACCESS-UKCA/GFED4s (light blue) and GEOS-Chem/GFED4s sampled in the Darwin

grid cell (dark blue) and the grid cells directly to the south (pink), southeast (orange), and east

(green) of the Darwin grid cell.
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Figure S7. Same as Figure 9 in the main text but without removing the mean bias.

October 20, 2021, 10:56am


