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Abstract

Working with airborne electromagnetic (AEM) data acquired in the Kaweah Subbasin in the Central Valley of California,

U.S.A., we developed a new approach for imaging the top of the bedrock and the confining Corcoran Clay layer. Our approach

included multiple L2-norm and Lp-norm inversions as well as an interpolation process. The major improvement in imaging

the two targets was made in the Lp-norm inversion step by incorporating prior knowledge. For the Corcoran Clay, pairs of

resistivity and driller’s logs at two wells guided the selection of the best resistivity model and were used to increase the accuracy

of the estimated Clay thickness. The bedrock surface was poorly constrained by well data in the existing groundwater model,

appearing as a flat surface. We had good AEM data coverage in the area so had higher confidence in the obtained map of

the bedrock surface at depths ranging from 15 m to 160 m. There was relatively good agreement between the location of the

Corcoran Clay in the AEM data (depth ranging from 50 to 130 m and thickness ranging from 3 to 25 m) and the existing

groundwater model, with both depth and thickness showing ˜15% relative difference. The AEM data provided information

about the continuity of the Corcoran Clay that is challenging to capture in the well data. The locations of the bedrock and

Corcoran Clay were used in a structurally-constrained inversion to improve the imaging of the smaller-scale resistivity structure.
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Key Points:  10 

• Airborne electromagnetic (AEM) data were used to map out the large-scale structure in 11 

the groundwater model of the Kaweah subbasin in California’s Central Valley. 12 

• A new approach to the inversion of AEM data improved the accuracy in estimates of the 13 

depth to bedrock and the depth and thickness of the confining Corcoran Clay layer. 14 

• The defined large-scale structure was used in a structurally-constrained inversion of the 15 

AEM data to improve the imaging of smaller-scale structure. 16 

  17 
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Abstract 18 

Working with airborne electromagnetic (AEM) data acquired in the Kaweah Subbasin in the 19 

Central Valley of California, U.S.A., we developed a new approach for imaging the top of the 20 

bedrock and the confining Corcoran Clay layer. Our approach included multiple L2-norm and Lp-21 

norm inversions as well as an interpolation process. The major improvement in imaging the two 22 

targets was made in the Lp-norm inversion step by incorporating prior knowledge. For the 23 

Corcoran Clay, pairs of resistivity and driller’s logs at two wells guided the selection of the best 24 

resistivity model and were used to increase the accuracy of the estimated Clay thickness. The 25 

bedrock surface was poorly constrained by well data in the existing groundwater model, 26 

appearing as a flat surface. We had good AEM data coverage in the area so had higher 27 

confidence in the obtained map of the bedrock surface at depths ranging from 15 m to 160 m. 28 

There was relatively good agreement between the location of the Corcoran Clay in the AEM data 29 

(depth ranging from 50 to 130 m and thickness ranging from 3 to 25 m) and the existing 30 

groundwater model, with both depth and thickness showing ~15% relative difference. The AEM 31 

data provided information about the continuity of the Corcoran Clay that is challenging to 32 

capture in the well data. The locations of the bedrock and Corcoran Clay were used in a 33 

structurally-constrained inversion to improve the imaging of the smaller-scale resistivity 34 

structure. 35 

 36 

 37 

  38 
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1 Introduction 39 

With climate change and population growth, there is increasing concern about the depletion of 40 

groundwater resources and recognition of the need for sustainable management. A groundwater 41 

model is the foundation on which to build effective groundwater science and management. 42 

Required to inform the development of the groundwater model is information about the 43 

subsurface that captures spatial heterogeneity at the level needed as the input for flow modeling. 44 

All groundwater models include some representation of the large-scale structure of the 45 

groundwater system − the hydrogeologic units and other major features relevant for modeling 46 

flow. Information derived from driller’s logs, recorded when wells are drilled, is typically used 47 

to build the model. The logs potentially provide valuable information at point locations, but the 48 

quality of the driller’s logs can be highly variable and challenging to quantify. In addition, the 49 

spatial density of the driller’s logs might be too low to adequately capture the continuity of the 50 

large-scale subsurface features. Uncertainty in representing the large-scale structure can have a 51 

significant impact on the predictions obtained from a groundwater model.   52 

 53 

The airborne electromagnetic (AEM) method is potentially a highly effective means of imaging 54 

large-scale structure for the development of a groundwater model (Foged et al., 2013; Kang et 55 

al., 2021; Knight et al., 2018; Sattel & Kgotlhang, 2004; Wynn, 2002). Inversion of the acquired 56 

AEM data recovers a resistivity model of the subsurface which can be transformed, through the 57 

use of well data, to a model displaying the variation in lithology or sediment type. This observed 58 

variation can then be interpreted to identify the large-scale features of the groundwater system, 59 

e.g. mapping out the lithologic units or sediment packages that define the major aquifers and 60 

aquitards. One challenge when using the AEM method for this application, however, is the 61 

limited spatial resolution of the method resulting in uncertainty in the recovered resistivity model 62 

and interpreted locations of the large-scale features.  63 

 64 

In this study, we developed a new approach to the AEM inversion workflow. This approach was 65 

designed for the scenario where AEM data are being acquired in an area with no existing 66 

groundwater model and limited high-quality well data. Our objective was to achieve improved 67 

imaging of the subsurface so as to capture, as accurately as possible, the large-scale features 68 

required for developing a groundwater model using the AEM data and high-quality well data 69 

from a few locations. We accomplished this through a “targeted inversion approach” where we 70 

defined as targets specific features which we wanted to accurately resolve in our study area − the 71 

bedrock surface (at the top of the bedrock) underlying the sediments of the aquifer system and 72 

the confining clay layer dividing the system into an upper and lower aquifer. While these two 73 

features were defined for our study area, the Kaweah Subbasin located in California’s Central 74 

Valley, U.S.A., they define part of the large-scale structure in many groundwater systems 75 

throughout the Central Valley and elsewhere in the world. Using the commonly-adopted L2-76 

norm approach to the inversion of AEM data, a bedrock surface will appear as a smooth 77 

transition rather than a distinct boundary in the recovered resistivity model, introducing 78 

uncertainty in its location. Similarly, the lack of a distinct boundary at the upper and lower 79 

boundaries of a clay layer will introduce uncertainty in its location and can cause the thickness of 80 

the layer to be significantly overestimated. Errors in the depth to bedrock and the thickness of the 81 

confining layer could significantly impact the accuracy of the results obtained from a 82 

groundwater model. 83 

 84 
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Our targeted inversion approach utilized a multi-step inversion process which included both the 85 

standard L2-norm inversion and the Lp-norm inversion (Fournier & Oldenburg, 2019), the latter 86 

allowing us to incorporate prior knowledge about the targets. To form 2D maps displaying the 87 

locations of the targets – the large-scale features, we integrated high-quality well data and the 88 

resistivity models recovered through L2-norm and Lp-norm inversions. To demonstrate the 89 

efficacy of our approach, the locations of the targets that we obtained were compared with the 90 

locations within the existing groundwater model which had been constructed using available well 91 

data. Once the large-scale structure had been identified, this was used in a final inversion to 92 

obtain improved imaging of the smaller-scale structure. Through the developed multi-step 93 

approach, we formalized a process, readily transferable to other locations, designed to obtain 94 

improved imaging of groundwater systems from AEM data. 95 

 96 

2 Background 97 

2.1 Hydrogeology and existing groundwater model in the study area 98 

The Kaweah Subbasin is located in the southern part of the Central Valley, referred to as the San 99 

Joaquin Valley, with the eastern edge defined as the interface between the valley floor and the 100 

foothills of the Sierra Nevada Mountains. As part of their efforts to better understand their 101 

groundwater resources and meet the requirements of California’s Sustainable Groundwater 102 

Management Act (SGMA, 2014), the local water agencies developed a groundwater model of the 103 

subbasin using 600 driller’s logs and 50 oil and gas well logs, the latter including both lithology 104 

logs and resistivity logs (Fugro West, 2016). The model covers the subbasin, extending ~2 km 105 

outside the subbasin boundary except along the eastern edge, ranges from a depth of ~120 m in 106 

the east to ~500 m in the west and contains three layers, of variable thickness, with a cell size of 107 

150 m × 150 m.  108 

 109 

A description of the hydrogeology of the subbasin is given in the report by Fugro West (2016). 110 

The key features defining the layers in the groundwater model are in a geologic cross-section 111 

(modified after Fugro West, 2016), the location of which is shown in Figure 1a with the cross-112 

section in Figure 1b. The sediments within the subbasin are divided into an upper and lower 113 

aquifer in the western half by a confining clay layer, the Corcoran Clay. The aquifers are 114 

described as Quaternary alluvium with numerous interbedded sands and clays. Generally, more 115 

clays are present in the lower aquifer than in the upper aquifer. The Corcoran Clay is described 116 

as Quaternary lacustrine and marsh deposits. The aquifers are underlain by bedrock in the east 117 

which abuts low permeability sediments to the west along a boundary interpreted to be the 118 

Rocky Hill Fault. 119 

 120 

The groundwater model contains three layers: the upper aquifer which ranges from 100 m to 150 121 

m in thickness; the Corcoran Clay which ranges from 10 m to 20 m in thickness, and the lower 122 

aquifer which ranges from 200 m to 350 m in thickness. Note that the three layers are defined 123 

throughout the model. In the current groundwater model the extent of the Corcoran Clay was 124 

modified from the work of Page (1986) using available well data (Fugro West, 2016) and 125 

corresponds to the location where the Clay is no longer continuous. Where the Corcoran Clay is 126 

absent, the three layers effectively become a single aquifer. As shown in Figure 1b, the base of 127 
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the model in the east is defined by the top of the bedrock, then going west is interpreted to lie at 128 

the top of the package of low permeability sediments. 129 

 130 

Both the top of the bedrock and the location Corcoran Clay are important large-scale features of 131 

the groundwater model, the former defining the position of a no-flux boundary and the latter 132 

controlling the hydraulic connectivity between the upper and lower aquifers; thus, the accuracy 133 

of their locations and the thickness of the Clay directly impacts the accuracy of model 134 

predictions. The spatial coverage of the well logs used to constrain the depth to bedrock was 135 

poor (GKGSA, 2020), due to the fact that there were relatively few wells reaching the bedrock 136 

surface. While the spatial coverage of the well data used to map the location of the Corcoran 137 

Clay was reasonably good, there are concerns about the quality of the well data (e.g., a large 138 

locational error (~ 2 km) for the driller’s logs) and interpretations of continuity between wells, 139 

particularly at the edges of the Clay where it becomes discontinuous.  140 

 141 

2.2 The AEM method 142 

The AEM method uses electromagnetic induction to obtain information about the resistivity of the 143 

subsurface. Time-varying electric currents are injected through a transmitter loop suspended below 144 

an aircraft to generate induced currents in the subsurface. These induced currents will depend upon 145 

the resistivity of the subsurface and generate an induced voltage that can be measured at a receiver 146 

loop also carried by the aircraft. The aircraft moves continuously while the receiver loop is 147 

recording, with the raw voltages stacked at predetermined intervals to provide measurements 148 

referred to as AEM soundings or the observed AEM data.  149 

 150 

Inversion of the observed AEM data is necessary to obtain a 3D resistivity model of the 151 

subsurface resistivity. In hydrogeologic applications, a spatially-constrained inversion approach 152 

(Viezzoli et al., 2008) is most commonly used to recover, at each AEM sounding location, a 153 

vertical 1-D profile of resistivity fitting the observed AEM data. The spatial constraints, favoring 154 

a smooth transition of resistivity values between adjacent sounding locations, are implemented in 155 

the inversion through a regularization function. The regularization function also includes a 156 

reference model through a smallness constraint (Oldenburg & Li, 2005). Conventionally, an L2-157 

norm is used for the constraints in the regularization function. In this study, in addition to an L2-158 

norm we utilized an Lp-norm which makes it possible to incorporate additional prior knowledge 159 

(Fournier & Oldenburg, 2019).  160 

 161 

The AEM inversion is non-unique, i.e., there are many resistivity models that can fit the data. A 162 

typical form of non-uniqueness is the presence of a depth, commonly referred to as the depth-of-163 

investigation (DOI), below which resistivity changes in the model do not make a noticeable 164 

difference in the AEM response. We used Oldenburg and Li's (1999) approach performing two 165 

inversions with different homogeneous reference models to define the DOI. Another well-known 166 

form of non-uniqueness, of specific relevance to our study, is due to the fact that the AEM response 167 

is sensitive to the conductance of a layer, which is the thickness divided by the resistivity 168 

(Geowissenschaften et al., 2007); so neither the resistivity nor the thickness of the layer can be 169 

independently resolved. Given this limitation, other reliable information needs to be incorporated 170 

into the inversion.   171 

 172 
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3 Available Data 173 

In 2018, ~800 km of AEM data were collected over the Kaweah Subbasin using the SkyTEM 174 

312 system (Sorensen & Auken, 2004). Figure 1a shows the AEM soundings along the flight 175 

lines of the survey, which were located to maximize coverage in the region of the groundwater 176 

model while avoiding urban areas (Kang et al., 2020). The acquisition of the AEM data was 177 

managed by, and the data processed by, Aqua Geo Frameworks (Asch et al., 2019).  178 

 179 

Our objective was to develop an approach that would make it possible to accurately image the 180 

bedrock surface and confining clay layer using primarily the AEM data. In addition to the AEM 181 

data, we utilized data from six wells that could be considered, with confidence, to be of high 182 

quality. This included three driller’s logs in the northeastern corner of the subbasin (locations 183 

shown in Figure 1a) that had been manually inspected (Steklova, personal communication, 184 

2020). These provided point information about the depth to bedrock. We also had access to an 185 

additional three pairs of logs, resistivity (16-inch normal) and driller’s logs from the same 186 

monitoring wells, referred to as Wells A, B, C (locations shown in Figure 1a), considered by the 187 

local water agencies to be of very high quality. These pairs of logs, in the western part of the 188 

subbasin, provided information about the location of the Corcoran Clay. We took each pair of 189 

logs and, at the well location, defined the depth and thickness of the Corcoran Clay. 190 

  191 

4 Targeted inversion approach 192 

Our targeted inversion approach included three steps; 1) L2-norm inversions to obtain starting 193 

resistivity models, 2) Lp-norm inversions to obtain improved resistivity models, and 3) the 194 

integration of the output from the inversions and the high-quality well data to obtain 2D maps 195 

displaying the location of the two targets – the top of the bedrock and the Corcoran Clay layer. 196 

For use in the final interpolation step we selected two resistivity models − a primary (the better) 197 

model and a secondary model, with the former interpolated to generate a 2D map of the target 198 

and the latter used, with the primary model, to provide a measure of error for the purpose of 199 

weighting in the interpolation process.  200 

 201 

For all inversions of the AEM data, we used the regularization function, 𝜙𝑚
(𝑚), which can be 202 

written as  203 

 204 

𝜙𝑚
(𝑚) =  𝛼𝑠 ∫ (𝑤𝑠

cell(𝑚 − 𝑚ref))
𝑝𝑠

𝑑𝑉                 205 

                  + 𝛼𝑟 ∫ (𝑤𝑟
cell 𝑑𝑚

𝑑𝑟
𝑤𝑟

face)
𝑝𝑟

𝑑𝑉 + 𝛼𝑧 ∫ (𝑤𝑧
cell 𝑑𝑚

𝑑𝑧
𝑤𝑧

face)
𝑝𝑧

𝑑𝑉 ,        (1) 206 

 207 

where the first term is the smallness constraint, and the two other terms are the spatial 208 

constraints, one acting in the radial direction, denoted by 𝑟, and the other in the vertical direction, 209 

denoted by 𝑧; 𝑚 and 𝑚ref indicate an unknown, to be recovered, resistivity model and a 210 

reference model, respectively. The unknown and reference resistivity models were defined at 211 

each AEM sounding location with resistivity values assigned in 39 vertical cells; the thickness of 212 

a cell at the ground surface was 3 m and increased at a constant rate resulting in a total depth of 213 

550 m. Alpha values, 𝛼𝑠, 𝛼𝑟 , 𝛼𝑧, determine the relative importance of each term. Given that 214 

layered sediments are the dominant materials in the study area, 𝛼𝑧 was set to five times smaller 215 
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than 𝛼𝑟 to indicate our preference for laterally-continuous rather than vertically-continuous 216 

structure; 𝛼𝑟 was fixed to 1. The value of 𝛼𝑠 was set to either include (𝛼𝑠= 1) or not include (𝛼𝑠= 217 

0) the smallness constraint in the regularization function.  218 

 219 

The exponent 𝑝 acts on all the constraints. In terms of the smallness constraint, p influences the 220 

form of the resulting distribution of all the resistivity values in the 3D resistivity model. The 221 

conventional L2-norm inversion, which corresponds to setting 𝑝=2, favors a smooth Gaussian 222 

distribution, where the center of the distribution is the reference model. In the Lp-norm the value 223 

of 𝑝 can vary from 0 to 2 (Fournier & Oldenburg, 2019), which has the impact of favoring 224 

distributions that vary from sparse (isolated peaks) at low values of 𝑝, to Gaussian at p=2. The 225 

extreme value of 𝑝=0 denotes a distribution that has the fewest possible number of peaks 226 

deviating from the reference model.  227 

 228 

The value of 𝑝 also acts on the spatial constraints. Setting 𝑝=2 denotes a smooth transition in 229 

resistivity values in space (laterally and vertically). The extreme value of 𝑝=0 indicates a model 230 

with an abrupt transition − a large resistivity contrast, at the fewest number of interfaces between 231 

cells possible while still fitting the data. Assuming that the greatest resistivity contrast will be 232 

found at the interfaces (lateral and vertical) between hydrogeologic units, not within the units, 233 

this allows an abrupt transition only at an interface between subsurface units.  234 

  235 

While the model space for the solution with the L2-norm is convex, making it relatively 236 

straightforward to solve the optimization problem, when 𝑝 ≤ 1 the model space for the Lp-norm 237 

is non-convex making it challenging to find a solution. The Lp-norm has been implemented for 238 

the spatial constraints in the inversion of AEM data (often referred to as a sharp inversion) 239 

(Vignoli et al., 2015). In this study, we implemented the Lp-norm for both the spatial and 240 

smallness constraints. This had not been previously done, and introduced an even greater 241 

challenge to finding a solution given the increased level of non-convexity, but provided the 242 

enhanced flexibility we desired for incorporating prior knowledge. 243 

 244 

The cell-based and face-based (where “face” refers to interface between the cells) weightings 245 

(𝑤cell and 𝑤face, respectively) capture the level of confidence in the smallness constraint and 246 

spatial constraints at a given cell or face; the greater the weighting, the higher the level of 247 

confidence. 248 

 249 

To conduct our inversions we used SimPEG, a Python-based open-source geophysics software 250 

package (Cockett et al., 2015; Heagy et al., 2017). Further details regarding the solution of the 251 

inverse problem can be found in Appendix A. 252 

 253 

4.1 Step 1: L2-norm inversions  254 

The parameters used in all inversions in our multi-step approach are given in Table 1. In Step 1, 255 

we carried out three L2-norm inversions. The objective in this step was to obtain a domain of 256 

interest for each target; one for the top of the bedrock, 𝐷bedrock
, and the other for the Corcoran 257 

Clay layer,  𝐷clay
. These domains defined the general regions within which we identified the 258 

presence of each target. An L2-norm inversion favoring a smooth transition of resistivity values 259 

in the lateral directions was most appropriate for this purpose. We only used spatial constraints, 260 
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setting 𝛼𝑠= 0 in the first inversion (Inversion 1 in Table 1) so did not need to define a reference 261 

model. This setup (or setting a very small value of 𝛼𝑠) is considered standard practice for the 262 

inversion of AEM data. 𝐷bedrock
 and 𝐷clay

 were selected from the L2-norm inversion by visually 263 

identifying the boundaries of the targets. We then added a buffer of a few kilometers to these 264 

boundaries to ensure that we captured the full extents of the targets within the defined domains.  265 

 266 

Given that identifying the top of the bedrock is a relatively simple target with AEM data, we 267 

decided that the model recovered from this first L2-norm inversion was sufficiently accurate to 268 

be used, not just to define the domain, but also as the secondary model for that target. At each 269 

location in 𝐷bedrock
, we assigned the top of the bedrock to the depth that divided the full depth 270 

range into two depth intervals – one above and one below, with minimal variance in the 271 

resistivity values of each depth interval.  272 

 273 

While the first L2-norm inversion was not sufficiently accurate for locating the Corcoran Clay, 274 

we used it to identify a depth interval that would include the Clay that was used in developing 275 

reference models for the Lp-norm inversions in the next step. Identifying the top and base of the 276 

Clay was done subjectively, by selecting the top and base of a continuous low-resistivity zone in 277 

the 3D resistivity model. Note that this “Clay-containing” depth interval was on the order of 80 278 

m to 160 m in thickness, so much larger than was expected for the thickness of the Clay alone.  279 

 280 

Two other L2-norm inversions (Inversions 2 and 3 in Table 1) were used, with the smallness 281 

constraint added (𝛼𝑠= 1), to calculate the DOI.   282 

 283 

4.2 Step 2: Lp-norm inversions 284 

 285 

The L2-norm inversions allowed us to identify the regions where our targets were present, but 286 

there was still considerable uncertainty in the exact locations of these targets. In this next step, in 287 

order to improve our ability to locate these targets, we incorporated prior knowledge specific to 288 

each target and performed an Lp-norm inversion(s) within the domain of interest for each target.  289 

 290 

Our prior knowledge was based on a general understanding of the hydrogeology of the study 291 

area (Faunt, 2010; GKGSA, 2020) and familiarly with the resistivity of geologic materials. In 292 

terms of locating the top of the bedrock, given the composition of the aquifers and the bedrock in 293 

the study area, we used the fact that there should be a large resistivity contrast at the interface 294 

between the bedrock and the overlying aquifer. In locating the Corcoran Clay, we used the fact 295 

that there should be a large resistivity contrast at the interfaces between the coarser-grained 296 

sediments of the aquifers and the Corcoran Clay. We also knew that the thickness of the Clay 297 

layer was generally much thinner than the over/underlying aquifers. Below we describe the 298 

methodology used to resolve each of the targets.  299 
 300 

4.2.1 Top of the bedrock 301 

To locate the top of the bedrock, we conducted an Lp-norm inversion (Inversion 4 in Table 2) 302 

using only the AEM data within 𝐷bedrock
, setting 𝛼𝑠=0 (only the spatial constraints were used), 303 

and the 𝑝-values of the spatial constraints (𝑝𝑟, 𝑝𝑧) to zero. This tailored the inversion to assign a 304 

large resistivity contrast only when required to fit the data. The location of this large resistivity 305 
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contrast could then be interpreted to be the top of the bedrock and the recovered resistivity model 306 

used as the primary resistivity model for this target. In the primary resistivity model, we 307 

determined at each sounding location whether the bedrock surface was present or absent and, if 308 

present, estimated the depth to bedrock. 309 

 310 

4.2.2 Corcoran Clay layer 311 

Two Lp-norm inversions were conducted to locate the Corcoran Clay so as to have available a 312 

primary resistivity model and a secondary model. We defined the primary resistivity model as 313 

one that showed good agreement with the resistivity and driller’s logs from Wells A and B; and 314 

the secondary resistivity model as one that showed good agreement with the resistivity and 315 

driller’s logs from Well B. Both Lp-norm inversions used the same spatial constraints but a 316 

different smallness constraint by changing the reference model.  317 

 318 

In setting the spatial constraints, we used the prior knowledge that there should be a large 319 

resistivity contrast at the boundaries of the Clay so, as was done in locating the top of the 320 

bedrock, 𝑝-values for the spatial constraints were set to zero. In addition, we incorporated the 321 

fact that the Clay is much thinner than either the overlying upper aquifer or underlying low 322 

aquifer. In a recovered resistivity model therefore, most of resistivity values should correspond 323 

to the aquifer materials and relatively few to the Clay. To obtain such a sparse distribution of 324 

resistivity values, centered on the aquifer resistivity values, we added the smallness constraint to 325 

the regularization with 𝑝s = 0.  326 

 327 

To define the two reference models used to obtain the primary and secondary models, we 328 

identified two regions: outside and inside the Clay-containing depth interval identified using the 329 

resistivity model recovered from the first L2-norm inversion. In both reference models we set the 330 

resistivity values for the cells outside the Clay-containing layer equal to those in the L2-norm 331 

recovered resistivity model, but varied the resistivity value of the cells inside the Clay-containing 332 

layer. We allowed the homogeneous resistivity of the Clay-containing layer, 𝜌ref
clay

, to range from 333 

10 Ωm to 30 Ωm, iteratively solving for two resistivity values which, when used in the reference 334 

models, resulted in the recovery of the primary and secondary resistivity models. Given that the 335 

vertical extent of the Clay-containing layer likely included borders of the surrounding aquifers, 336 

the range of resistivity was determined by choosing 1th and 99th percentile of the resistivity 337 

values within the Clay- containing layer. Resulting values of 𝜌ref
clay

 for the primary and secondary 338 

models were 30 Ωm and 20 Ωm, respectively.  339 

 340 

In the two recovered resistivity models (primary and secondary), we determined at each 341 

sounding location whether the spatially-continuous Corcoran Clay was present or absent, 342 

interpreting a large resistivity contrast at two interfaces as the top and base of the Clay. The 343 

depth to the top interface was defined as the depth to the Clay. For the Clay thickness, we could 344 

have used the distance between the top and base, but wanted improved accuracy given the 345 

inability of the AEM method to independently resolve resistivity and thickness. Representing the 346 

Clay, with total thickness 𝑇cc and resistivity 𝜌cc, as a series of layers, each of thickness 𝑇𝑖 with 347 

resistivity 𝜌𝑖, what is captured in the AEM data is an integrated measurement that can be 348 
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represented as applying an electric field oriented parallel to these layers resulting in the 349 

following relationship: 350 

 351 
𝜌cc

𝑇cc
=  ∑

𝜌𝑖

𝑇𝑖
                                                                                                                                                  (2) 352 

 353 

At an AEM sounding, the Corcoran Clay, with total layer thickness 𝑇AEM and total resistivity 354 

𝜌AEM , was recovered in the resistivity model as a layer of two or three resistivity cells each with 355 

thickness 𝑇c,i and resistivity 𝜌c,i where 356 

 357 
𝜌AEM

𝑇AEM
=  ∑

𝜌c,𝑖

𝑇c,𝑖
                                                                                                                                            (3) 358 

 359 

We wanted to accurately recover the true 𝑇cc as opposed to 𝑇AEM. We accomplished this through 360 

a calibration process using well data, referring to the determined thickness of the Clay as 361 

𝑇calibrated and the determined resistivity of the Clay as 𝜌calibration . 362 

 363 

For the primary model, we had sounding locations close to Wells A and B. From the resistivity 364 

logs from Wells A and B, we had estimates of the thickness of the Clay, 𝑇cc
wellA and 𝑇cc

wellB, 365 

respectively. For an AEM sounding close to the location of Well A we could write 366 

 367 

𝜌calibration

𝑇cc
wellA

=  ∑
𝜌c,i

𝐴

𝑇c,i
𝐴                                                                                                                                   (4) 368 

 369 

where superscript A indicates the closest sounding location to Well A. Using the two soundings 370 

closest to Well A and the two closest to Well B yields: 371 

 372 

𝜌calibration

𝑇cc
wellA

+
𝜌calibration

𝑇cc
wellB

=  ∑ (
𝜌c,i

𝐴

𝑇c,i
𝐴 +

𝜌c,i
𝐵

𝑇c,i
𝐵 )                                                                                        (5) 373 

 374 

Rearranging this, we obtain  375 

 376 

𝜌calibration =

∑ (
𝜌c,i

𝐴

𝑇c,i
𝐴 +

𝜌c,i
𝐵

𝑇c,i
𝐵 )

1

𝑇cc
wellA +

1

𝑇cc
wellB

                                                                                                                  (6)  377 

 378 

The calibration process, resulting in a calibrated clay thickness, 𝑇calibrated can be written as  379 

 380 

𝑇calibrated =
𝑇AEM

𝜌AEM

(𝜌calibration)−1                                                                                                           (7) 381 

 382 

This calibration was applied to all values of Clay thickness (𝑇AEM) obtained from the primary 383 

resistivity model to obtain our best estimates of Clay thickness. The calibration resistivity of the 384 

primary model was 5 Ωm.  385 
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 386 

The same procedure was applied for the secondary model, but the Clay was only found to be 387 

present at the sounding location closest to Well B, not at the sounding location closest to Well A. 388 

Therefore, only Well B was used in the calibration, so the calibration resistivity became: 389 

𝜌calibration =  𝑇cc
wellB ∑

𝜌c,i
𝐵

𝑇c,i
𝐵 . The resulting calibration resistivity for the secondary model was 7 390 

Ωm. 391 

 392 

4.3 Step 3: Integration of data to generate maps of targets     393 

The locations of the targets were obtained from Steps 1 and 2 at each sounding location. In this 394 

step, the locations of the targets from the AEM data were integrated with the high-quality data 395 

from six wells to generate 2D maps of the targets on a uniform grid with a cell size of 150 m, 396 

which is the same as the groundwater model. The accuracy of the depth to the bedrock surface 397 

and to the Corcoran Clay that we were able to obtain from AEM data was limited by the 398 

thickness of the resistivity cells. Therefore we used the thickness of the resistivity cell at the 399 

target depth to provide a measure of error in the 2D maps. Due to the calibration process, the 400 

estimated Clay thickness was not limited by the thickness of the resistivity cell. The fact that the 401 

calibration resistivity values were 5 Ωm and 7 Ωm indicated that there could be roughly 30% 402 

relative error in the estimate of the Clay thickness.  403 

 404 

4.3.1. Top of the bedrock  405 

The top of the bedrock was displayed in a 2D map as the depth to bedrock. For developing this 406 

map, the input data were: (1) depth to bedrock from the three driller’s logs, (2) depth to bedrock 407 

estimates at all sounding locations in the primary and secondary resistivity models within 408 

𝐷bedrock where the bedrock surface was determined to be present in Step 2.  409 

 410 

The depth to bedrock values from the primary model, 𝑑target
aem , were interpolated giving higher 411 

weighting to the values with lower errors; with error defined as the absolute difference between 412 

the estimates from the primary and secondary models. The depths extracted from the three 413 

driller’s logs, 𝑑well, were used as hard constraints. Given the degradation in the lateral resolution 414 

of AEM data with depth, an estimate of the depth to bedrock obtained at a sounding location was 415 

assigned to an area, the radius of which depended upon the depth,  𝑧target. The definition of this 416 

radius is based upon the propagation of induced currents in a homogeneous subsurface 417 

(Nabighian, 1979), and is given by the following equation:   418 

 419 

 420 

𝑟aem = 𝑧target√3 + 𝑟tx loop                  (8) 421 

 422 

where 𝑟tx loop is the effective radius of the transmitter loop; 𝑟tx loop was 11 m. Assigning depth 423 

values to the 2D map was done through an averaging function, 𝐹avg[⋅], which averages grid 424 

values of the 2D map, 𝑚2𝐷, within the distance 𝑟aem  from each sounding location:  425 

 426 

𝑑target
aem = 𝐹avg[𝑚2𝐷; 𝑟aem]                            (9) 427 
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 428 

The interpolation is an inverse operation of equation 8, which can be written as  429 

 430 

𝑚2D(𝑥, 𝑦) = 𝐹avg
−1[ 𝑑target

aem , 𝛿𝑑target
aem , 𝑑𝑤𝑒𝑙𝑙]                        (10) 431 

 432 

where 𝛿𝑑target
aem  indicates the measure of error. The solution of this inverse problem adopted the 433 

framework used for the inversion of the AEM data (Appendix A). Given that this inverse 434 

problem was non-linear due to the imposed hard constraints, providing a starting 2D map of the 435 

depth to bedrock was required. For this, we used an inverse distance weighting of 𝑑target
aem  to 436 

populate all cells in the 2D grid.  437 

 438 

To incorporate our preference that the depth to the bedrock varies smoothly in the lateral 439 

direction, we only used the spatial constraints for a regularization function, which can be written 440 

as 441 

 442 

𝜙𝑚(𝑚) =  𝛼𝑥 ∫ (
𝑑𝑚

𝑑𝑥
)

2

𝑑𝑉 + 𝛼𝑦 ∫ (
𝑑𝑚

𝑑𝑦
)

2

𝑑𝑉                                                                                     (11) 443 

 444 

Both alpha values for the spatial constraints were set to 1, providing an equal weighting in the 𝑥- 445 

and 𝑦- directions.  446 

 447 

 448 

4.3.2. Corcoran Clay layer 449 

The location of the Corcoran Clay was displayed in two 2D maps as the depth to the top of the 450 

Clay and the Clay thickness. As was done for mapping the depth to bedrock, we interpolated the 451 

weighted-by-error locations of the Clay layer from the primary resistivity model, using the 452 

secondary model to estimate error. We included values for the depth to the Clay only at sounding 453 

locations where the Clay was identified in the primary resistivity model from Step 2. We 454 

included values for the Clay thickness at all sounding locations within 𝐷clay with the thickness 455 

given as 0 at any sounding location where the Clay was not identified. The three pairs of well 456 

data were used as hard constraints. The starting 2D map was generated by using the inverse 457 

distance weighting of the locations of the depth to the Clay and Clay thickness from the primary 458 

resistivity model.  459 

 460 

5 Results 461 

The DOI, obtained in Step 1 using an L2-norm inversion, ranged from 240 m to 380 m which 462 

covers the depth range within which both of the targets are present in the groundwater model. 463 

The domains of interest for the targets, obtained in Step 1 using an L2-norm inversion, are shown 464 

in Figure 2. As expected, 𝐷bedrock was located along the eastern edge of the subbasin and 𝐷clay 465 

in the western half. In Figure 2 we also show the locations within the domain of interest for each 466 

target where the target was determined, from the Lp-norm inversion, to be absent; in the figure 467 

we show each tenth sounding (~200-300 m spacing). As seen in the figure, there was a large 468 

AEM data gap at the center of the survey area due to the presence of urban areas. This resulted in 469 
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a high level of uncertainty in using AEM data to map the extent of the targets in these areas. 470 

Shown in the figure are the western boundary of the bedrock, and the northern and eastern 471 

boundaries of the Clay from the groundwater model. The comparison with the results obtained 472 

from the AEM data will be discussed in a later section. 473 

 474 

In Figures 3 and 4 we show, along two selected transects B-B’ and C-C’ (locations in Figure 2), 475 

vertical sections displaying the resistivity models recovered from the L2-norm and Lp-norm 476 

inversions. All visualizations of recovered resistivity models are shown between the ground 477 

surface and the average DOI of 300 m.  The section in Figure 3 focuses on the top of the 478 

bedrock, and Figure 4 on the Corcoran Clay with a larger resistivity range (5-300 Ωm) shown in 479 

Figure 3 than in Figure 4 (8-100 Ωm).   480 

 481 

The sections in Figure 3 extend from B, at the western limit of 𝐷bedrock, to B’. Included on the 482 

sections are three driller’s logs which describe bedrock and the overlying sediments. In Figure 3a 483 

(L2-norm) we interpreted the most resistive unit to be the bedrock, but found a smooth transition 484 

from the bedrock to the overlying lower resistivity materials. The top of the bedrock, obtained 485 

using the minimal variance approach, falls within the depth range corresponding to this 486 

transition. Using the Lp-norm inversion, with the recovered model shown in Figure 3b, we found 487 

an abrupt change in resistivity between the bedrock and overlying lower resistivity materials, the 488 

depth of which is in good agreement with what is seen in the driller’s logs. Moving from east to 489 

west (B’ to B), we see a sharp close-to-vertical interface separating resistive bedrock (to the east) 490 

from lower resistivity sediments (to the west). These lower resistivity sediments are identified, at 491 

shallower depths in the driller’s log just east of this interface, as predominantly clay. This lateral 492 

location along B-B’, which is referred to as B1, is marked as a vertical dashed line. All bedrock 493 

in regions westward of this location will be beneath the DOI so not seen in the AEM data. This 494 

location is interpreted as the western limit of the bedrock in this transect. This same vertical 495 

interface between bedrock and sediments was found for other flight lines within 𝐷bedrock and 496 

defined as the western limit of the bedrock. 497 

 498 

In Figure 4a is a vertical section extending from C to C’ (on Figure 2) which displays the 499 

resistivity model recovered from the first L2-norm inversion. The interpreted location of the layer 500 

that contains the Corcoran Clay corresponds to the zone of lower resistivity varying in thickness 501 

from 80 m to 160 m. In Figures 4b and 4c, which extend from C to the northern limit of 𝐷clay, 502 

we show the primary and secondary resistivity models for the Clay recovered from the Lp-norm 503 

inversions. For both of these models the interpreted location of the Corcoran Clay lies within the 504 

depth range of the Clay-containing layer located using the L2-norm inversion, but the thickness is 505 

significantly reduced. In the primary model close to the northern boundary of 𝐷clay, we see a 506 

location where the continuous portion of the Clay ends, which is referred to as C1; this is defined 507 

in this section as the northern boundary of the Corcoran Clay.  508 

 509 

In Figure 5, we compare 1D profiles from the three resistivity models shown in Figure 4 with the 510 

resistivity logs and sediment type information at Wells A and B within the depth range of 0 m to 511 

250 m from the surface. As expected, for the recovered resistivity model from the L2-norm 512 

inversion we see a gradual transition in resistivity values around the top and base of the Clay, 513 

leading us to (subjectively) identify a Clay-containing layer. The depth to the top of this layer is 514 

about 60-80 m and its thickness ranges from 80 m to 160 m. We note, that if only an L2-norm 515 
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inversion were available, this Clay-containing layer would likely be interpreted as the location of 516 

the Corcoran Clay. In contrast to what is seen in the L2-norm resistivity model, the primary 517 

resistivity model (from the Lp-norm inversion) shows a sharp transition in resistivity values 518 

across the top and base of the Clay. The interpreted location of the Clay agrees well with the 519 

driller’s logs at Wells A and B, and corresponds to a depth interval where there are significant 520 

changes in the resistivity logs. The resistivity values in the model are lower than those in the logs 521 

by a factor of 1.5-2, likely to due to a bias towards sampling conductive materials in the AEM 522 

method. The secondary resistivity model shows good agreement with the logs from Well B, but 523 

fails to match the resistivity values in Well A. This was interpreted to be due to the 524 

underestimation of the reference resistivity value, 𝜌ref
clay

.  525 

 526 

We now present our results as 2D maps in Figures 6 and 7. While we have results, from the 527 

interpolation process in Step 3, throughout the entire domains of interest for each target, the 528 

uncertainty will increase as the distance from an AEM sounding increases. We thus elected to 529 

display only those results that were within 3 km of an AEM sounding. We compared the 2D 530 

maps to the existing groundwater model by calculating the difference in areas where both our 2D 531 

maps and the groundwater model contain the targets.  532 

 533 

The 2D map displaying the depth to bedrock is shown in Figure 6a. The first feature to note is 534 

the solid red line which represents the western boundary of observed bedrock in the AEM data 535 

This boundary was located by connecting the locations of the most-western soundings where 536 

bedrock was present. In some places, the location of this boundary is well-defined, constrained 537 

between two soundings that are close together; e.g., one to the east where bedrock was present 538 

and to the west where bedrock absent. In a number of locations, however, the uncertainty in the 539 

location of this western boundary is relatively high, increasing as the distance to an AEM 540 

sounding increases. There are differences between our mapped western boundary and that 541 

defined in the groundwater model that cannot be explained by this uncertainty alone and are not 542 

due to a limitation in the DOI of the AEM data. The depth to bedrock in the groundwater model 543 

ranges from 100 m to 170 m below the surface; this depth range is located above the DOI and is 544 

a depth range within which the sensitivity of the AEM data is relatively high.  545 

 546 

The depth to bedrock determined from the AEM data generally increases towards the west 547 

resulting in a thickening of the package of sediments overlying the bedrock. The depth to 548 

bedrock, on average 60 m, ranges from 15 m ± 4 m to 160 m ± 14 m, where the error is due to 549 

the thickness of resistivity cells at these depths. In Figure 6b, we display the difference obtained 550 

when subtracting the depth to bedrock in the groundwater model from the depth that we 551 

determined. The depth that we determined was always less, with the difference averaging -80 m 552 

and ranging from -150 m to -5 m.  553 

 554 

In Figures 7a and 7b, we present 2D maps displaying the thickness of and the depth to the 555 

Corcoran Clay, respectively. The blue solid line contours where the thickness (determined 556 

through interpolation in Step 3) is zero, which we define as the northern and eastern boundary of 557 

the continuous portion of the Clay. As was the case in mapping the extent of the bedrock, the 558 

uncertainty in the location of this boundary increases as the distance to an AEM sounding 559 

increases. We again observe differences in the lateral extent of the Clay interpreted from the 560 

AEM data and that shown in the groundwater model. The Clay thickness, as interpreted from the 561 
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AEM data, increases towards the southwest, with localized thinning or thickening. The thickness 562 

averages 17 m, ranging from 3 ± 1 m to 25 ± 7.5 m; with the relative error estimated from the 563 

calibration with the well data (~ 30% error). The depth to the Clay, averaging 100 m, also 564 

generally increases towards the southwest, ranging from 50 ± 6 m to 130 ± 12 m; with the error 565 

equal to the thickness of the resistivity cells.  566 

 567 

In Figure 7c and 7d, we show the differences in thickness and depth – subtracting the values 568 

from the groundwater model from the values obtained with our approach. For the Clay thickness 569 

(Figure 7c) we found relatively large differences of -15 m to -10 m in the region between the 570 

boundary of the Corcoran Clay in the groundwater model and the boundary that we determined. 571 

Elsewhere the difference ranged from -6 m to 5 m with the absolute difference averaging 3 m. 572 

The differences in the depth to the Clay (Figure 7d) averaged -15 m, ranging from -30 m to -10 573 

m; we always found the Clay at a shallower depth. The difference is greater along the eastern and 574 

western edges of the region where we identified the presence of the Clay, than it is in the center.  575 

 576 

6 Discussion 577 

6.1 Comparison of the L2-norm inversion and the targeted inversion approach 578 

Let us first consider how the targeted inversion approach, when compared to using the L2-norm 579 

inversion alone, improved our ability to image the two targets of interest – the bedrock surface 580 

and the confining clay layer. As shown in Figure 3a, the top of the bedrock appeared in the L2-581 

norm resistivity model as a smooth transition between the resistive bedrock and overlying low-582 

resistivity sediments. As a result, delineating the top of the bedrock from this model was not 583 

straightforward, requiring the use of a variance-minimization algorithm. In contrast, the Lp-norm 584 

resistivity model shown in Figure 3b revealed a sharp interface at the top of the bedrock, that we 585 

were able to recover by incorporating the prior knowledge of a large resistivity contrast between 586 

the bedrock and the overlying sediments into the spatial constraints of the Lp-norm. The good 587 

agreement with the three driller’s logs gave us confidence in our approach.  588 

In addition to using the spatial constraints in the Lp-norm inversion to locate the Corcoran Clay, 589 

the smallness constraint was added so as to also incorporate the prior knowledge that the Clay is 590 

much thinner than the over/underlying aquifers. As shown in Figure 5, what we interpreted as the 591 

Clay-containing layer in the recovered resistivity model from the L2-norm inversion was 592 

shallower and thicker than the interpreted Corcoran Clay in the driller’s and resistivity logs from 593 

Wells A and B. In particular, the thickness of the Clay-containing layer was 4 to 5 times greater 594 

than the thickness of the Clay layer seen in the well data. This is to be expected given the 595 

diffusive nature of the AEM measurement and is a clear illustration of the problem of using a 596 

resistivity model recovered from an L2-norm inversion to interpret the thickness of a confining 597 

clay layer. The Clay layer imaged in the primary model from the Lp-norm inversion is much 598 

closer in thickness to the logs from Wells A and B (Figure 5) demonstrating the value of the Lp-599 

norm inversion for imaging the Clay layer. An important aspect of the Lp-norm inversion was 600 

utilizing high-quality well data, without which we would have not able to select the primary 601 

resistivity model.  602 

  603 

When compared to the conventional approach of using an L2-norm inversion, we found that the 604 

targeted inversion approach, involving a combination of L2-norm and Lp-norm inversions, 605 



 16 

yielded significant improvements in our ability to image the depth to bedrock and the confining 606 

clay layer in the study area. While requiring more time and input, in the form of prior 607 

knowledge, we were able to obtain more accurate information about the locations of the large-608 

scale features.  609 

 610 

6.2. Comparison of the results obtained from the AEM data to the existing groundwater model  611 

The existing groundwater model from our study area was constructed using relatively dense well 612 

data. The fact that this model was not utilized in our targeted inversion approach provided us an 613 

opportunity to assess the efficacy of our approach by comparing the locations of the targets we 614 

obtained to those in the existing groundwater model.  615 

 616 

We start by discussing the location of the bedrock surface, where we found a relatively large 617 

difference between our approach and the groundwater model. The location we determined for the 618 

boundary marking the western extent of the bedrock (within the depth range of the groundwater 619 

model and the AEM data) differed by ±5 km from the boundary location in the groundwater 620 

model. In addition, the average difference between the depth estimates was about -80 m 621 

corresponding to a relative difference of roughly 130%. In contrast to the flat top of the bedrock 622 

in the groundwater model (as illustrated in Figure 2b), our mapping showed considerable 623 

topography (i.e., variation in depth), as would be expected given the erosional history of an 624 

exposed bedrock surface. Given the lack of well data providing information about the location of 625 

the bedrock surface in the groundwater model, it is very likely that neither the extent of the 626 

bedrock surface nor the depth to the bedrock are accurately captured in the groundwater model. 627 

With the AEM data, we were able to obtain accurate imaging of the bedrock surface – in those 628 

areas where AEM data are available. The limitation with the AEM data is the lack of coverage in 629 

some areas due to the spacing of the flight lines, and the presence of urban areas (where AEM 630 

data acquisition is not allowed); but the coverage is far superior to that of the well data. In 631 

comparing the two approaches to mapping the bedrock surface, we have much higher confidence 632 

in the location obtained through targeted inversion than that shown in the groundwater model. 633 

 634 

In building the groundwater model, a greater number of wells were available in the region of the 635 

Corcoran Clay than in the region where the bedrock surface is present. It is, however, very 636 

difficult to accurately map out the Corcoran Clay using the well data given the abundance of 637 

other clay interbeds in the upper and lower aquifers. The Corcoran Clay is blue to gray or bluish 638 

green in color so is commonly referred to in driller’s logs as “blue clay”. Unfortunately, the color 639 

cannot conclusively identify the Corcoran Clay as many clays in the area that lack iron oxide are 640 

blue or gray. Further, even if the description in the driller’s log does not say blue, the clay might 641 

be part of the Corcoran clay, as the driller may have decided that all clays in the area were blue 642 

so it was not worth repeating. Given all of this, mapping the Corcoran Clay with AEM data can 643 

provide a valuable complement to the interpretation based on the well data.  644 

 645 

Let us first discuss what is shown as the northern and eastern boundary of the Corcoran Clay. As 646 

seen in Figure 7a, the boundary of the Clay that we located is about 3-7 km inside (to the west 647 

of) the boundary in the groundwater model, except for a small area where our boundary extends 648 

to the east of the model boundary. In Figure 8, we compare the mapping of the Corcoran Clay – 649 

as either present or absent, in the AEM data and in the well data. In the well data we used the 650 
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description " blue clay” within the depth range of 50 to 150 m in the driller’s log as an indication 651 

that Corcoran Clay was present at that location. In the region where the boundary of the Clay in 652 

the model lies to the east of what we determined, there are only three wells with “blue clay” and 653 

18 without. Along the southern stretch of this region, our mapped boundary seems to show better 654 

agreement with the well data than the groundwater model boundary does. As evidence of the 655 

challenge of using well data to locate the Corcoran Clay in the groundwater model, it is 656 

interesting to note the 13 reports of “blue clay” in wells to the east of the boundary in the model.  657 

 658 

One likely explanation for the difference in the boundary locations, where the AEM boundary 659 

lies inside that in the groundwater model, is the challenge of using well data to differentiate the 660 

continuous Corcoran Clay from discontinuous Corcoran Clay, or from the occurrence of other 661 

clays at a similar depth. In reviewing the resistivity models recovered from the AEM data, we 662 

see clay-rich zones in the region between the two boundaries, but these zones are not continuous 663 

with the Corcoran Clay. An example of this is shown in Figure 4, where clay is present to the 664 

east of Well C1 but it is not continuous with the Corcoran Clay. It is possible that the Corcoran 665 

Clay becomes discontinuous in this region, but was mapped as part of the continuous Corcoran 666 

Clay in the groundwater model. It is also possible that these clay-rich zones are not part of the 667 

Corcoran Clay at all, but just identified as such in the groundwater model.  668 

 669 

In the area where our determined boundary crosses over and goes to the east of the model 670 

boundary, our boundary is not well constrained by AEM soundings due to the presence of an 671 

urban area. Nor is it well constrained in this area by the appearance/absence of “blue clay” in the 672 

driller’s logs.  673 

 674 

The advantage we have in both the AEM data, is the ability to see the continuous Clay layer. As 675 

such, we tend to put greater confidence in the location of the boundary determined from the 676 

AEM data. The key limitation is the high level of uncertainty in areas with poor AEM data 677 

coverage. If the boundary location in these areas has a significant impact on the accuracy of the 678 

groundwater model, additional data should be acquired. 679 

 680 

In regions where the Clay was identified in the AEM data and the groundwater model, we 681 

identified small to moderate differences in Clay thickness. In the groundwater model the Clay 682 

thickness ranged from 10 m to 20 m; in our 2D map it ranged from 3 ± 1 m to 25 ± 7.5 m. The 683 

relative difference was ~15%. The depth to the Clay in the groundwater model ranged from 50 ± 684 

90 m to 160 m ± 12 m ; in our 2D map it ranged from 50 ± 6 m to 130 m ± 12 m , again 685 

resulting in a relative difference of ~15%. 686 

 687 

6.3 Further use of the results from the targeted inversion 688 

While the targeted inversion approach provided accurate locations of the large-scale features of 689 

interest in this study area, there is additional information at a smaller scale that can be obtained 690 

about the groundwater system from the AEM data. This requires a high-quality resistivity model 691 

over the entire study area. To obtain such a model, we implemented a structurally-constrained 692 

inversion where information about the location of large-scale features is used to constrain the 693 

inversion. Applications to date have been in the inversion of ground-based or marine-based EM 694 

data and have used the large-scale features interpreted from seismic sections available in the 695 
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same area as the EM data  (Brown et al., 2012; Key, 2009). We used the locations of the bedrock 696 

surface and the Corcoran Clay obtained from our targeted inversion approach. In using the 697 

structurally-constrained inversion, we exploited the face-based weightings in the regularization 698 

function (equation 1) to place a large resistivity contrast at the known locations of the targets and 699 

the cell-based weightings to minimize the resistivity variations in the lateral and vertical 700 

directions within the bedrock and the Clay layer. Further details about the structurally-701 

constrained inversion can be found in Appendix B.  702 

 703 

In Figure 9a, we show a three-dimensional view of the final resistivity model covering the entire 704 

subbasin. In the west, the Corcoran Clay divides the upper and lower aquifers, thinning out 705 

towards the east, where the upper and lower aquifers merge. In the eastern part of the basin, the 706 

resistive bedrock underlies low-resistivity sediments. As expected, we see sharp resistivity 707 

contrasts delineating the targets. In addition to delineating the targets – as had been done with the 708 

targeted inversion approach, the final resistivity model recovered from the structurally-709 

constrained inversion also provided other information which can also be used to improve the 710 

existing groundwater model.  711 

 712 

As shown in Figure 1b, the existing groundwater model is defined with the base at the top of a 713 

package of “low-permeability sediments” throughout much of the Kaweah subbasin and at the 714 

bedrock surface along the eastern edge. When we review a vertical section through the final 715 

resistivity model in Figure 9b (along transect D-D’ shown in Figure 9a) we see low-resistivity 716 

materials adjacent to the bedrock in the east (near D’) that then continue to the west for ~30 km 717 

extending to the DOI. We interpret these to be clay-rich sediments equivalent to the package of 718 

“low-permeability sediments” described in the groundwater model. The top of these sediments is 719 

above the base of the groundwater model along most of the transect. This suggests that either the 720 

base of the model needs moving to shallower depths or a new layer needs to be added to the 721 

lower aquifer. As can be seen in the 3D view of the resistivity model in Figure 9a, the package of 722 

low permeability sediments is present throughout the eastern half of the subbasin. This has 723 

important implications for groundwater flow within the subbasin and for recharge coming into 724 

the valley from the mountain block.  725 

 726 

The resistivity model recovered from the structurally-constrained inversion provides more 727 

accurate information about the resistivity values in the upper and lower aquifers. In Figure 8c, 728 

we see a clearly imaged layer in the upper aquifer, just overlying the Corcoran Clay, with 729 

resistivity values higher than those found in the lower aquifer. This is to be expected given the 730 

reports of more clay in the lower aquifer than the upper aquifer (Fugro West, 2016). However, 731 

this resistivity feature was not clearly identified in the resistivity model recovered from either the 732 

L2-norm inversion (Figure 3a) or from the Lp-norm inversion (Figure 3b). This demonstrates the 733 

value of the structurally-constrained inversion, where knowing the large-scale structure allows 734 

for improved imaging of the smaller-scale features.   735 

  736 

7 Conclusions 737 

Accurate groundwater models, to support groundwater science or management, require as input 738 

information about the large-scale structure of the groundwater system. We conclude that a multi-739 

step targeted-inversion approach provides an effective way to extract the most accurate 740 
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information from AEM data about the large-scale structure. Having defined the large-scale 741 

structure, this can then be used to improve the recovery of the small-scale resistivity structure. 742 

By implementing an Lp-norm inversion, we were able to incorporate prior knowledge. This made 743 

it possible to refine the recovered resistivity images so as to more accurately locate the targets. In 744 

implementing an Lp-norm inversion in other areas, the needed prior knowledge should not be 745 

difficult to obtain if information is available about the types of geological material present and 746 

the expected changes in resistivity associated with the large-scale features. The presence of high-747 

quality well data would provide an additional source of information that could be incorporated 748 

into the inversion and would definitely result in improved imaging; but we were successful in 749 

this study with data from only six wells.  750 

The targeted inversion approach includes multiple L2-norm and Lp-norm inversions as well as an 751 

interpolation process, so it requires more computation and time than other approaches. We 752 

conclude, however, that this can easily be justified by the benefits obtained in terms of improved 753 

imaging. In addition, running multiple inversions could readily be parallelizable, and many of the 754 

other processes in the approach (e.g., interpolation) could be automated.  755 

In the adoption of AEM data for the development of groundwater models, the optimal approach 756 

is to first work with all existing well data and other sources of information to develop a 757 

groundwater model, and then determine where the AEM data could be most valuable in reducing 758 

uncertainty in the model. All available data, included the acquired AEM data, would then be 759 

integrated to develop a model that fits all sources of data. Such an undertaking would require a 760 

significant effort with hydrogeologists working closely with geophysicists.  761 

In this study we elected to use the existing groundwater model solely as a means of assessing our 762 

ability to extract information about the large-scale features from the AEM data. This allowed us 763 

to address the key question: what information can we obtain from AEM data to support the 764 

development of a groundwater model? This study has shown the information about large-scale 765 

structure that can be obtained from AEM data. There will inevitably be uncertainty in locating 766 

large-scale features, uncertainty that − as with well data, increases as the distance from the AEM 767 

data increases.   768 

Given the growing use of the AEM method for groundwater science and management, we hope 769 

there will be continued development of our approach for the inversion of AEM data and 770 

integration with other forms of data, so that we can maximize the benefit of all available datasets. 771 

To accelerate this, we have publicly released the numerical codes used in this study through a 772 

Python-based open-source software, SimPEG (https://www.simpeg.xyz).  773 
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Appendix A Inversion Methodology 863 

To find an inversion model, 𝑚, which fit the observed AEM data and favored prior knowledge in 864 

the regularization function, 𝜙𝑚(𝑚), we used SimPEG, a Python-based open-source geophysics 865 

software package (Cockett et al., 2015; Heagy et al., 2017) to minimize the following objective 866 

function, 𝜙(𝑚): 867 

 868 

𝜙(𝑚) = 𝜙𝑑(𝑚) + 𝛽𝜙𝑚(𝑚)                         (A1) 869 

 870 

subject to 𝜙𝑑 ≤  𝜙𝑑
∗  &  𝑚lower ≤ 𝑚 ≤ 𝑚upper          871 

 872 

Here 𝜙𝑑 indicates data misfit, 𝑚 is an inversion model, 𝛽  is a trade-off parameter, and 𝜙𝑑
∗  is a 873 

target misfit; 𝑚lower and 𝑚upper are the upper and lower bounds of the inversion model. The 874 

inversion iteration was started with the initial guess, 𝑚0, and repeated until a good fit of the data 875 

was found (𝜙𝑑 ≤  𝜙𝑑
∗ ). The initial 𝛽 value, 𝛽0, was estimated by a power method, then decreased 876 

with a constant factor (0.5) within the iteration to reduce the importance of the regularization 877 

term. The initial guess was determined by finding a best-fitting half-space model. The upper and 878 

lower bounds of the model were set to positive infinity and negative infinity, respectively, 879 

indicating that there were no bounds constraints used.  880 

 881 

Use of a Lp-norm in the regularization function makes the minimization problem non-convex 882 

(equation A1), and thus it was required to have an effective strategy to solve the inverse problem. 883 

We followed Fournier and Oldenburg (2019)’s strategy, which first finds a model with the L2-884 

norm inversion then activates the Lp-norm inversion.  885 

 886 

Given the large range of resistivity values in the survey area, the distribution was best 887 

represented in logarithmic form; so, the inversion model was defined as:  888 

 889 

𝑚 = log(𝜌−1) = log(𝜎) ,     𝑚 ∈ ℝ𝑀                                  (A2) 890 

 891 

where 𝜎 is electrical conductivity (𝑆/m) and M is the number of the inversion model, 𝑚. The 892 

data misfit function was defined as   893 

 894 

𝜙𝑑(𝑚) = ∑ (
𝐹𝑖[𝑚]−𝑑𝑖

𝑜𝑏𝑠

𝜖𝑖
)

2

,                                                                                                    𝑁
𝑖=1              (A3) 895 

 896 

where 𝐹[⋅] is a forward modelling operator predicting AEM data for a given model,  𝑑𝑜𝑏𝑠 ∈  𝑅𝑁 897 

is the observed AEM data; 𝑁 is the number of data.  The standard deviation (or data error) of the 898 

𝑖-th datum, 𝜖𝑖, is defined as   899 

 900 

𝜖𝑖 = relative error (%) ×  0.01 × |𝑑𝑖
𝑜𝑏𝑠| + floor                                        (A4) 901 

 902 

The relative error and floor were set to 3% and 10-15 V/A-m4 for most of sounding locations 903 

except for the locations close to the eastern edge of the survey area. We found that the signal-to-904 

noise (S/N) ratio at the eastern edge was relatively low due to shallower bedrock surface 905 

compared to other regions. To take into account this, we assigned the greater level of data error: 906 
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10% and 10-14 V/A-m4. The target misfit, 𝜙𝑑
∗ , was set to 𝑁 assuming the chi-squared distribution 907 

of the data error (Oldenburg & Li, 2005).   908 

 909 

Appendix B Structurally-Constrained Inversion 910 

After the locations of the targets were obtained from the targeted inversion approach, we applied 911 

the structurally-constrained inversion to recover the final resistivity model accurately imaging 912 

both the large-scale and small-scale structures. For this inversion, additional parameters needed 913 

to be added to the regularization function: faced-based and cell-based weightings (equation 1). 914 

For each face of the resistivity model (where “face” refers to interface between the cells), a 915 

different value of the face-based weighting (e.g., 𝑤𝑧
face) can be set; similarly, for each cell of the 916 

resistivity model a different value of the cell-based weighting (e.g., 𝑤𝑠
cell) can be set. Higher 917 

weightings indicate a higher level of confidence in the corresponding constraints. For instance, 918 

assigning larger values for the face-based weightings would make smoother transition of 919 

resistivity in lateral and vertical directions. To allow for sharp resistivity contrast at the targets, 920 

therefore, the level of confidence was decreased for the spatial constraints at the faces. For this 921 

we first found the closest faces for each target and then assigned zero for the corresponding face-922 

based weightings while the face-based weightings for other faces were set to 1.  923 

  924 

We used the cell-based weightings to promote smoother resistivity variations for cells 925 

corresponding to either the bedrock or the Clay compared to the other cells. Similarly, assigning 926 

larger cell-based weightings for the spatial constraints would make a smoother transition of 927 

resistivity. For cells below the top of the bedrock and within the Clay layer, we assigned a large 928 

value (10) for the cell-based weightings corresponding to the spatial constraints (i.e., 𝑤𝑟
cell and 929 

𝑤𝑧
cell) while for other cells the cell-based weightings were set to 1.  930 

 931 

Due to the large sensitivity of AEM data to conductive materials, it was easier for the inversion 932 

to update resistivity values around the Clay layer, which altered the boundaries of the Clay layer 933 

that we incorporated through the face-based weightings. Thus, it was necessary to provide 934 

additional constraint related to the resistivity information about the Clay to preserve the 935 

boundaries from our targeted inversion approach. For this, we utilized the smallness constraint in 936 

the regularization function (equation 1); this includes a reference model and a cell-based 937 

weighting. We generated a reference model composed of two regions: the Clay layer and others. 938 

Due to the fixed vertical thickness of resistivity cells, it was not possible to directly use the depth 939 

to the Clay and Clay thickness obtained from our approach. The top and base of the Clay were 940 

set to the closest faces resulting in small errors (~2-5 m). Due to these errors, it was necessary to 941 

apply the same calibration idea (used in Step 2) when assigning resistivity values to cells 942 

corresponding to the Clay layer. From the conductance of the Clay layer obtained from the 943 

primary resistivity model (Step 2), we calculated an equivalent resistivity value providing the 944 

same thickness of the Clay at each sounding location. For other cells, we assigned a mean 945 

resistivity value, 16 Ωm, of the recovered resistivity model from the L2-norm inversion 946 

(Inversion 1 in Table 2). The cell-based weighting for the smallness constraint was set to 1 for 947 

cells corresponding to the Clay layer while a much smaller value (10−3) was assigned for the 948 

other cells to minimize the impact of the reference model at those cells. 949 

  950 
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  951 

  952 

Figure 1. (a) Location map of the study area and datasets used, in the Kaweah subbasin, Central 953 

Valley of California, U.S.A. In the legend GW stands for the groundwater model. (b) Geologic 954 

cross-section located at A-A’ modified from Fugro West (2016).   955 

 956 

 957 
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  958 

 959 

Figure 2. The extent of the groundwater model (GW) and the domains of interest for both the 960 

bedrock (𝐷bedrock ) and the Corcoran Clay (𝐷clay), and sounding locations where the targets 961 

were absent within the corresponding domain of interest. For plotting these sounding locations, 962 

every 10th sounding location is shown. Also shown are the western boundary of the bedrock 963 

from the groundwater model and the northern (N) and eastern (E) boundary of the clay from the 964 

groundwater model. AEM soundings cover much of the area defined by the groundwater model 965 

with gaps corresponding to urban areas. Resistivity model(s) at transects B-B’, C-C’, and D-D’ 966 

are shown in Figures 3, 4, and 9b, respectively.  967 

 968 

 969 

 970 
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 971 

 972 

Figure 3. Comparison of the interpreted top of the bedrock in resistivity models recovered from 973 

(a) an L2-norm inversion (secondary resistivity model) and (b) an Lp-norm inversion (primary 974 

resistivity model). Both resistivity models are along B-B’ shown in Figure 2.  Vertical dotted line 975 

indicates the western limit of 𝐷bedrock  and the dashed line indicates the location of B1 (marked 976 

in Figure 2). White gaps indicate locations where AEM data were not acquired. 977 

 978 

 979 

 980 
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  981 

 982 

Figure 4. Comparison of the interpreted location of the Corcoran Clay in resistivity models 983 

recovered from (a) an L2-norm inversion, (b) an Lp-norm inversion with 𝜌ref
clay

 = 30 Ωm (primary 984 

resistivity model), and (c) an Lp-norm inversion with 𝜌ref
clay

 = 20 Ωm (secondary resistivity 985 

model). Resistivity models are shown along C-C’ in Figure 2. Horizontal black dashed lines 986 

indicate the top and base of the Clay-containing layer interpreted from the L2-norm inversion; a 987 

vertical dashed line indicates the northern limit of the Clay. Vertical dotted line indicates 𝐷clay  988 

and dashed line indicates a lateral location C1 (marked in Figure 2). White gaps indicate 989 

locations where AEM data were not acquired. 990 

 991 

 992 

  993 
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 994 

Figure 5. Comparison of the resistivity models recovered from the AEM inversions to the 995 

resistivity logs and sediment type information from Wells A and B. (a) L2-norm inversion. (b) 996 

Lp-norm inversion with 𝜌ref=30 Ωm (primary resistivity model). (c) Lp-norm inversion with 997 

𝜌ref=20 Ωm (secondary resistivity model). A blue transparent box indicates the Corcoran Clay 998 

layer identified in the driller’s logs from Wells A and B. Grey dashed lines indicate the top and 999 

base of the Clay-containing layer interpreted from the recovered resistivity model of the L2-norm 1000 

inversion.   1001 



 30 

 1002 

 1003 

Figure 6. Two-dimensional maps showing a) the depth to the bedrock from the targeted 1004 

inversion approach and b) the difference between results in a) and the depth to bedrock in the 1005 

groundwater model (GW). In displaying locations where bedrock is absent or present every 10th 1006 

sounding location (200-300 m spacing) is shown. Regions outside the GW are white in color.  1007 

 1008 

 1009 

 1010 

 1011 

  1012 
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 1015 

 1016 

 1017 

Figure 7. Two-dimensional maps showing a) the depth to the Corcoran Clay and b) Clay 1018 

thickness from the targeted inversion approach. The difference between results in a) and b) and 1019 

the depth and thickness in the groundwater model (GW) are shown in (c) and (d), respectively. In 1020 

displaying locations where the Clay is absent or present, every 10th sounding location (~200-300 1021 

m spacing) is shown. Regions outside the GW boundary are white in color.  1022 

 1023 

 1024 
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 1025 

Figure 8. Location of wells used to generate the existing groundwater model, indicating those 1026 

where “blue clay” was identified in the depth interval 50 to 150 m (black crosses). 1027 

 1028 

 1029 

 1030 

 1031 
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 1034 

Figure 9. (a) A three-dimensional view of the final resistivity model from the targeted inversion 1035 

approach. A cross-section view of the final resistivity model at vertical sections: (b) D-D’ and (c) 1036 

C-C’; lateral locations of the sections are shown in Figure 1a. The white gaps indicate locations 1037 

where the AEM data were not collected due to our design of the AEM survey to maximize 1038 

coverage while avoiding urban areas. 1039 

 1040 

  1041 
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Table 1. Seven sets of inversion parameters used for the targeted inversion approach and the 1042 

structurally-constrained inversion; the parameters are defined in equation 1. Superscripts: 30 and 1043 

20 for reference models indicate a homogeneous resistivity value, 𝜌ref
clay

, described in Section 1044 

4.2.2. 1045 

 1046 

Inversion 

number 
(𝑝𝑠, 𝑝𝑟 , 𝑝𝑧) 𝑚ref (𝛼𝑠, 𝛼𝑟 , 𝛼𝑧) 

Inversion  

domain 
Note 

1 (N/A, 2, 2) N/A (0, 1, 1/5) 

All soundings 
Step 1: 

L2-norm inversion 
2 (2, 2, 2) 17 Ωm (1, 1, 1/5) 

3 (2, 2, 2) 25 Ωm (1, 1, 1/5) 

4 (N/A, 2, 2) N/A (0, 1, 1/5) 𝐷bedrock 

Step 2:  

Lp-norm inversion 
5 (0, 0, 0) 𝑚ref

30  (1, 1, 1/5) 𝐷clay 

6 (0, 0, 0) 𝑚ref
20  (1, 1, 1/5) 𝐷clay 

7 (2, 2, 2) 𝑚ref
final (1, 1, 1/5) All soundings 

Structurally-

constrained 

inversion 

 1047 

 1048 

 1049 


