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Abstract

The objective of this study is to explore the application of high-order numerical methods in ionosphere-plasmasphere modeling.

Specifically, the nodal discontinuous Galerkin (DG) method is chosen to solve the multifluid dynamical equations along the

magnetic field lines. A general curvilinear magnetic field-line-following coordinate system is also used in the model. Numerical

simulations with different combinations of number of elements (K) and polynomial orders (N) show the converging results,

indicating the robustness of the algorithms and implementation. The model also captures the dawn terminator effect very well

in the He+ field.
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Abstract12

The objective of this study is to explore the application of high-order numerical13

methods in ionosphere-plasmasphere modeling. Specifically, the nodal discontinuous Galerkin14

(DG) method is chosen to solve the multifluid dynamical equations along the magnetic15

field lines. A general curvilinear magnetic field-line-following coordinate system is also16

used in the model. Numerical simulations with different combinations of number of el-17

ements (K) and polynomial orders (N) show the converging results, indicating the ro-18

bustness of the algorithms and implementation. The model also captures the dawn ter-19

minator effect very well in the He+ field.20

1 Introduction21

The Earth’s ionosphere and plasmasphere is a multi-fluid system involving com-22

plex physical-chemical and electrodynamic processes that span many orders of magni-23

tude changes. This complexity presents a great challenge to numerical methods for ac-24

curate simulation of the ionosphere-plasmasphere system.25

Many ionospheric models use the finite-difference methods of at most second-order26

accuracy with the central difference scheme (e.g., R. W. Schunk, 1996). Some ionospheric27

models use only approximated equations, e.g., the time-dependent inertial terms are ig-28

nored in the momentum equation (e.g., Bailey & Balan, 1996). A good assessment on29

some of the ionospheric models used at that time was given by Huba et al. (2000). The30

SAMI2 model (Huba et al., 2000) uses the upwind differencing scheme, or the donor cell31

method, which is conservative but highly diffusive and only first-order accurate. Some32

newer ionospheric models (e.g., Zettergren & Semeter, 2012) are also using the low-order33

numerical methods. However, it should be noted that the SAMI3 model uses the high-34

order interpolation scheme in conjunction with partial donor cell method (Hain, 1987;35

Huba, 2003). The high-order schemes are used to avoid the excessive numerical diffu-36

sion of the low-order methods and to allow steeper density gradients to develop in irreg-37

ularity simulation (Huba & Liu, 2020).38

The advance of high-order numerical methods, such as the spectral element (SE)39

or discontinuous Galerkin (DG) methods, provides a great opportunity to meet the chal-40

lenge in modeling the complex multi-scale processes of the ionosphere-plasmasphere sys-41

tem. As defined in Gustafsson (2008), the high-order methods refer to those methods42

whose order of accuracy p ≥ 3. Here the order of accuracy p is defined in such a way43

that the truncation error is proportional to hp, with h as the discretization step size. The44

high-order methods are advantageous for solving the wave propagation problems and/or45

when more accurate solutions of problems are required (e.g, Gustafsson, 2008). High-46

order spectral methods also have significantly lower phase errors compared to the finite-47

difference methods (e.g., Canuto et al., 2006). As discussed in Hesthaven (2018), the mo-48

tivation for development of high-order accurate schemes is “to do more with less, i.e.,49

to develop schemes that are more accurate than first order accurate schemes without sub-50

stantially increasing the computational cost.”51

The main advantages of the DG methods over classical finite volume and finite dif-52

ference methods are (Cockburn et al., 2000):53

– Arbitrarily high formal order of accuracy can be obtained by suitably choosing54

the degree of the approximating polynomials55

– Highly parallelizable56

– Suitable to handle complicated geometries and simple in treating boundary con-57

ditions58

– Easy in handling adaptivity59

–2–



manuscript submitted to JGR: Space Physics

In this study, we explore the applications of the DG methods in ionosphere-plasmasphere60

modeling. We develop a new ionosphere-plasmasphere model using the DG methods to61

solve the dynamics and diffusion equations along the geomagnetic field lines. The split-62

ting method is used to solve the ionosphere-plasmasphere model equations sequentially.63

First, the Euler equations with gravity along the field lines are solved using the DG method64

for spatial discretization and the strong stability preserving Runge-Kutta method (SSP-65

RK) for time integration with adaptive time stepping. Then, the thermal diffusion equa-66

tions for ions and electrons along the field lines are solved using the DG method and Crank-67

Nicolson (CN) implicit time stepping. Various physical-chemical forcing, including pho-68

toionization, chemical productions and losses, collisions, and heating and cooling terms,69

are then added using a positive-definite ordinary differential equation (ODE) solver. The70

perpendicular ExB transport is done using a simple semi-Lagrangian (SL) transport scheme,71

with specified ExB drift velocity mimic empirical ExB drift model.72

In addition to the DG methods used in the model, several other new features are73

introduced in the model. The ragged array with variable array length/size along the field74

lines is used in the model. This approach is very suitable to the ionosphere-plasmasphere75

modeling considering the varying length of magnetic field lines. It does not involve com-76

plicated derived data types (DDT) and saves both computing memory and disk space77

storage. Another feature is that the native MPI-IO is used for model input and output.78

This approach is simple and efficient, which works very well with the simple decompo-79

sition that divides the model domain into meridional sections/slabs along the geomag-80

netic longitudes for the MPI tasks. And finally, a new general curvilinear field-line-following81

coordinate system (Wang, 2021) is also used in the model.82

This paper is organized as follows. In the next section, we describe various aspects83

of the DG model: the nodal DG method for the field-aligned dynamics and diffusion, the84

physical-chemical forcing ODE solver, the perpendicular ExB transport, and some as-85

pects of the model code. In section 3, we present results of model simulations using dif-86

ferent combinations of number of elements (K) and polynomial orders (N), showing the87

converging results of the total electron content (TEC) and model’s ability to capture the88

terminator effect. And a summary is given in section 4. Some mathematical details re-89

lated to the DG methods, such as limiter and filter, and computation of physical forc-90

ing terms are given in the Appendix.91

2 The discontinuous Galerkin (DG) ionosphere-plasmasphere model92

2.1 The model equations along the field line and overview of the model93

The ionosphere and plasmasphere are modeled as a multi-fluid system. In the gen-94

eral curvilinear magnetic field-line-following coordinate system (µ, χ, ϕ) ⇒ (µm, χm, ϕm)95

(Wang, 2021), the one-dimensional Euler equations with gravity can be written as96

∂ρi
∂t

+
1

hµhχhϕ

∂

∂µ
[hχhϕ(ρiui)] = 0, (1a)97

∂ρiui

∂t
+

1

hµhχhϕ

∂

∂µ
[hχhϕ(pi + ρiu

2
i )] = −ρigq, (1b)98

∂Ei

∂t
+

1

hµhχhϕ

∂

∂µ
[hχhϕ(Ei + pi)ui] = −ρiuigq, (1c)99

100

where ρi is density, ρiui is the momentum, Ei is the energy (internal and kinetic) per101

unit volume, with the subscript i denoting the different ion species; hµ, hχ, hϕ are the102

scale factors; and gq is gravity parallel to the field line. The pressure is related to the en-103

ergy through the ideal gas law as104

pi = (γi − 1)

(
Ei −

1

2
ρiui

)
, ci =

√
γipi
ρi

,105
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where ci is the local speed of sound and γi is the specific heat ratio. The advantage of106

using the set of equations in this conservative form is shown by Giraldo & Restelli (2008).107

Using the spectral element (SE) and discontinuous Galerkin (DG) methods, they demon-108

strated that numerical solutions are less dissipative when the equation set is written in109

this form than in other forms discussed in their paper.110

The set of equations of (1) excludes the diffusion and physical-chemical forcing terms,111

which will be described in section 2.3 and 2.4, respectively. The perpendicular ExB drift112

is discussed in section 2.5113

Ideally, various physical-chemical source terms should be added to the dynamical114

solver and treated seamlessly together in just one setting. Currently, we split the com-115

putation into dynamics/advection, diffusion and physical-chemical forcing steps. As will116

be discussed shortly, the dynamics/advection step is solved explicitly using the DG method117

for spatial discretization and the strong stability preserving Runge-Kutta method (SSP-118

RK) for time integration; the diffusion step is solved implicitly using the DG method for119

spatial discretization and the Crank-Nicolson (CN) scheme for time integration; and the120

physical-chemical forcing part is solved using an unconditionally stable positive-definite121

scheme. Using the so-called Strang operator splitting (Strang, 1968), the advection-diffusion-122

chemical (ADC) operators are treated sequentially as follows (e.g, Fazio & Jannelli (2010)):123

∂q

∂t
= A(δt/2)D(δt/2)C(δt)D(δt/2)A(δt/2)q,124

which results in a second-order splitting error. However, this can be expensive. To save125

time, we can simply use126

∂q

∂t
= C(δt)D(δt)A(δt)q,127

which is used in the simulations discussed in this paper.128

2.2 The nodal discontinuous Galerkin methods for field-aligned dynam-129

ics130

We rewrite the set of equations (1) in the vector form as131

∂q

∂t
+

∂F

∂x
= G, (2)132

where133

q =

 ρi
ρiui

Ei

 , F =

 hχhϕ(ρiui)
hχhϕ(pi + ρiu

2
i )

hχhϕ(Ei + pi)ui

 , G =

 0
−ρigq
−ρiuigq

 .134

The equation system is solved using the nodal discontinuous Galerkin (DG) methods (e.g.,135

Hesthaven & Warburton, 2008).136

Approximate the 1D domain Ω = [xL, xR] by K non-overlapping elements Dk =137

[xk
l , x

k
r ]. On each element, we introduce Np local grid points, xk

i ∈ Dk, usually the Legendre-138

Gauss-Lobatto (LGL) quadrature points (e.g., Deville et al., 2002; Canuto et al., 2006).139

In the nodal representation, we express the local solution and the local flux as a poly-140

nomial of order N = Np − 1, through the associated interpolating Lagrange polyno-141

mial, ℓki (x), as follows:142

qk
h(x, t) =

Np∑
i=1

qk
h(x

k
i , t)ℓ

k
i (x), F k

h (q
k
h(x, t)) =

Np∑
i=1

F k
h (x

k
i , t)ℓ

k
i (x),143

and similarly for the right-hand side term. The nodal values qk
h(x

k
i , t) are the unknowns.144

Then on each element, we require that the residual is orthogonal to the test function,145

which is the same as the basis function for the Galerkin method,146 ∫
Dk

(
∂qk

h

∂t
+

∂F k
h

∂x
−Gk

h

)
ℓkj (x)dx = 0.147
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Interpolation by parts yields148 ∫
Dk

(
∂qk

h

∂t
ℓkj − F k

h

dℓkj
dx

−Gk
hℓ

k
j

)
dx = −[F k

h ℓ
k
j ]

xk
r

xk
l

.149

The main purpose of the right-hand side is to connect the neighboring elements. A nu-150

merical flux F ∗ is introduced as a unique value to be used at the element interface. The151

numerical flux is obtained by combining information from neighboring elements and should152

appropriately reflect the underling dynamics of the problem.153

With this we obtain the DG scheme for the conservation laws in weak form as154 ∫
Dk

(
∂qk

h

∂t
ℓkj − F k

h

dℓkj
dx

−Gk
hℓ

k
j

)
dx = −[F ∗ℓkj ]

xk
r

xk
l

.155

Integration by parts once more, we get the DG scheme in strong form as156 ∫
Dk

(
∂qk

h

∂t
+

∂F k
h

∂x
−Gk

h

)
ℓkj (x)dx = [(F k

h − F ∗)ℓkj ]
xk
r

xk
l

.157

In matrix form this can be written as158

Mk d

dt
qk
h + S F k

h −MkGk
h =

[
ℓk(x)(F k

h − F ∗)
]xk

r

xk
l

,159

where we have introduced the local mass and stiffness matrices:160

Mk
ij =

∫
Dk

ℓki (x)ℓ
k
j (x)dx, Sk

ij =

∫
Dk

ℓki (x)
dℓkj
dx

dx.161

For the numerical flux F ∗, we use the monotone Lax-Friedrichs flux:162

F ∗(q−
h , q

+
h ) = {{Fh(qh)}}+

C

2
[[qh]],163

where C = max |Fq| is an upper bound on the (local) wave speed. The average {{·}}164

and the jump [[·]] (along a cell interface with normal n) are defined as165

{{u}} = (u− + u+)/2, [[u]] = n−u− + n+u+,166

where the superscripts “−” and “+” refer to the interior and exterior values at the cell167

interface, respectively.168

For time integration we use the strong stability preserving Runge-Kutta method169

(SSP-RK) (e.g., Gottlieb et al., 2001; Hesthaven & Warburton, 2008), such that no in-170

stability would be introduced by time integration if the Courant-Friedrichs-Lewy (CFL)171

criteria (Courant et al., 1967) are satisfied. The semidiscrete equation172

duh

dt
= Lh(uh, t)173

is solved using the optimal third-order three-stage SSP-RK scheme as follows174

v(1) = un
h +∆tLh(u

n
h, t

n),175

v(2) =
1

4

(
3un

h + v(1) +∆tLh(v
(1), tn +∆t)

)
,176

un+1
h = v(3) =

1

3

(
un
h + 2v(2) + 2∆tLh

(
v(2), tn +

1

2
∆t

))
.177

178

The slope limiter is applied on the characteristic variables after each time step, see Ap-179

pendix A for details.180

–5–
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2.3 Discontinuous Galerkin for diffusion181

The one-dimensional thermal diffusion equation for ions and electrons along the182

magnetic field line can be written, with the scale factors, as183

∂T

∂t
=

2

3

1

nkB

1

hχhϕ

∂

hµ∂µ

(
hχhϕκ

∂T

hµ∂µ

)
, (3)184

where T = Ti,e is the temperature, n = ni,e is the number density and κ = κi,e is the185

diffusion coefficient, with the subscripts i and e denoting ion and electron, respectively;186

and kB is the Boltzmann constant. Expressions for computing thermal conductivities187

are given in Appendix B1. Write the diffusion equation (3) in the form188

∂T

∂t
= b

∂

∂x

(
a
∂T

∂x

)
,189

and then rewrite it as a system of the first-order equations190

∂T

∂t
= b

∂

∂x

(√
aq
)
, q =

√
a
∂T

∂x
, (4)191

which is what to be solved using the DG methods.192

The DG discretization of the system of equations (4) can be written in matrix form193

as194

Mk dT
k
h

dt
= BkSkAkqk

h −
[
ℓk(x)((b

√
aqkh)− (b

√
aqkh)

∗)
]xk

r

xk
l

, (5a)195

Mkqk
h = AkSkTk

h −
[
ℓk(x)((

√
aT k

h )− (
√
aT k

h )
∗)
]xk

r

xk
l

, (5b)196

197

where Ak
ii =

√
a(xk

i ) and Bk
ii = b(xk

i ) The numerical flux are chosen as follows:198

(b
√
aqkh)

∗ = {{b
√
aqkh}} − τ [[abuk

h]], (
√
aT k

h )
∗ = {{

√
aT k

h }},199

with an interior penalty τ term to disallow large jumps at the element interface and to200

stabilize the solution. The penalty parameter, or the stabilization parameter, τ , is cho-201

sen such that (Shahbazi, 2005; Hesthaven & Warburton, 2008)202

τ ≥ cτN
2
p/h, cτ ≥ 1/2,203

where h is the element size. We use cτ = 3/2 in all simulations discussed in this paper.204

For the time integration of the diffusion equation, we write the diffusion equation205

after the DG discretization (5) in the semidiscrete form as206

dTh

dt
= HTh,207

and then use the second-order implicit Crank-Nicolson (CN) scheme for time discretiza-208

tion as209

Tn+1
h − Tn

h

∆t
=

1

2
(HTn+1

h +HTn
h ),210

or211 (
I− 1

2
∆tH

)
Tn+1
h =

(
I+

1

2
∆tH

)
Tn
h ,212

which is to be solved using the LAPACK’s linear solver ‘dgbsv’ for the system of linear213

equations with the general banded matrix (Anderson et al., 1999). The exponential fil-214

ter is then used. It should be noted that the DG for diffusion with large varying diffu-215

sivity is indeed a challenging problem (e.g., Proft & Rivière, 2009). The combination of216

the DG discretization with the interior penalty term and filtering seems to work well.217

–6–
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2.4 Adding the physical-chemical forcing terms218

Various physical-chemical source terms appear in the equations of the ionosphere-219

plasmasphere model. As discussed above, we use the operator splitting scheme in this220

study. The physical-chemical source terms are added to the model by solving the follow-221

ing set of ordinary differential equations (ODEs):222

dni

dt
= Pi − niLi, (6a)223

dui

dt
= −νin(ui − un)−

∑
j

νij(ui − uj), (6b)224

dTi

dt
= Qin +Qii +Qie, (6c)225

dTe

dt
= Qen +Qei +Qphe, (6d)226

227

where Pi and Li are the ion production and ion loss terms; νin and νij are ion-neutral228

and ion-ion collision frequencies; and Qphe is the photoelectron heating rate. Other col-229

lisional heating terms are given by:230

Qin =
2

3

∑
q

mimq

(mi +mq)2
νiq

[
3(Tq − Ti) +

mq

kB
(uq − ui)

2

]
, (7a)231

Qii =
2

3

∑
j

3.3× 10−4nj

AiAj(Ti/Ai + Tj/Aj)3/2
(Tj − Ti), (7b)232

Qie =
2

3

7.7× 10−6ne

AiT
3/2
e

(Te − Ti), (7c)233

Qen =
2

3

∑
q

memq

(me +mq)2
νeq[3(Tq − Te)], (7d)234

Qei =
2

3

∑
j

7.7× 10−6nj

AjT
3/2
e

(Tj − Te), (7e)235

236

where q denotes summation over neutrals and j summation over ions. The Appendix B237

gives more details on computation of collision frequency and heating rate and a brief de-238

scription of a simple photoelectron heating model, but see Huba et al. (2000) for the de-239

scription of photoionization and chemistry model. The computation of the physical-chemical240

forcing terms are based on SAMI2 open source code modified for the current model.241

The set of ODEs for the physical-chemical forcing can be written in the form of production-242

destruction equation as follows:243

dci
dt

= Pi(c)−Di(c),244

where Pi(c) ≥ 0 and Di(c) ≥ 0 represent the production and destruction rates of the245

ith constituent, respectively. The set of production-destruction equations is solved with246

the Patankar-Euler integration scheme (Burchard et al., 2003) as247

cn+1
i = cni +∆t

(
Pi(c

n)−Di(c
n)

cn+1
i

cni

)
,248

using the so-called Patankar trick (Patankar, 1980). This is a (unconditionally) positive249

scheme, i.e., cn+1 > 0 for any cn > 0 with any time step size ∆t ≥ 0.250

2.5 The perpendicular transport: ExB drift251

Simple vertical and zonal ExB drift velocity profiles that mimic the empirical ExB252

model (e.g., Scherliess & Fejer, 1999; Fejer et al., 2005) are used in this study, similar253

–7–
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to what is used in the SAMI2 model. The vertical and zonal ExB drift velocities at the254

magnetic equator are given by255

vexb = v0 sin(2π(hlt − 6)/24) + vpre exp[−(hlt − 19)/δpre)
2], (8)256

where v0 = 25, vpre = 50 for vertical drift and v0 = −40, vpre = 120 for zonal drift,257

δpre = 2, with the subscript ‘pre’ denoting the ‘pre-reversal enhancement’. The sim-258

ple ExB drift velocity model gives more flexibilities in model development and testing259

in terms of adjusting the model parameters.260

The algorithm for the ExB drift is implemented in the sense that plasma along each261

flux tube moves as a whole, taking into account of the effect of flux tube volume change262

on plasma density and adiabatic effect on temperature. Currently the low-order, non-263

conservative semi-Lagrangian (SL) scheme is used in the model. In the future, conser-264

vative high-order transport schemes, such as the semi-Lagrangian discontinuous Galerkin265

(SLDG) scheme (e.g., Cai et al., 2017), will be implemented.266

2.6 Some aspects of the model code267

We should point out a few features of the model’s source code. The model uses stan-268

dard Fortran 90 or later features, without sophisticated data structure or derived data269

types (DDT). However, the ragged array with variable length is used. This is found to270

be very useful in representing the data of variable length along the geomagnetic field lines,271

which can save data storage space and/or runtime memories. It can also improve over-272

all model efficiency. Here is an example on using the ragged array:273

! define an allocatable data type for variable length274

type vc1d275

real(dp), allocatable :: vc1d(:)276

end type vc1d277

278

! use the data type to define a ragged array279

type(vc1d), dimension(:,:), allocatable :: b280

281

! allocate the ragged array with variable length,282

! i.e., klm(l,m) depending on (l,m)283

allocate ( b(nlp,nmp) )284

do m = 1, nmp285

do l = 1, nlp286

allocate ( b(l,m)%vc1d( klm(l,m) ) )287

enddo288

enddo289

Another feature of the model is that MPI-IO (Gropp et al., 2014) is used for model290

input and output, which improves model I/O efficiency. This approach appears to be sim-291

pler than using other parallel I/O libraries, such as HDF-5 (https://en.wikipedia.org/292

wiki/Hierarchical Data Format) or PnetCDF (https://parallel-netcdf.github293

.io/).294

3 Numerical simulations and results295

We demonstrate the model with three-dimensional simulations using different com-296

binations of number of elements (K) and polynomial orders (N). The first set of simu-297

lations uses the same number of elements, but varies the polynomial orders (from N =298

2 to 4). The second set of simulations varies both K and N such that the overall reso-299

lutions are similar between the simulations.300

–8–
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Table 1. The total number of elements.

K101 K135 K201

Number of elements 1 147 886 1 545 019 2 315 954

3.1 Model configurations301

The number of grid points in the zonal and meridional direction, or the magnetic302

longitudes and latitudes, is the same for all simulations. We use 225 grid points between303

magnetic co-latitudes 45◦ and 82◦, and 90 grid points in magnetic longitudes. The grid304

resolution along the flux tube is determined by the number of points along the outer-305

most flux tube between the two foot points where they cross the Earth’s surface. Note306

that the model uses only nodal points whose altitudes are higher than 90 km; see Wang307

(2021) for details on grid generation and metric coefficients computation.308

In this study, three set of model resolutions along the flux tube are used. The num-309

bers of nodal points along the outermost flux tube between the two foot points are 101,310

135 and 201, which will be denoted by K101, K135 and K201, respectively, in the fol-311

lowing discussion. The corresponding total number of elements for each K-resolution is312

shown in Table 1,313

To demonstrate the implementation of the algorithms described in section 2, we314

examine simulation results using three different polynomial orders, N = 2, 3, 4, which315

have the corresponding formal order of accuracy of Np = N +1 = 3, 4, 5. In the first316

set of runs, the number of elements along the flux tubes is kept the same, K101. In the317

second set of runs, the number of elements and polynomial order are chosen such that318

the overall resolutions are about the same along the flux tubes. We have used combi-319

nations of K201/N2, K135/N3 and K101/N4 in this set of runs; see Table 2.320

The model solves for the ion density, temperature, and the field-aligned velocity321

and electron temperature. Seven ion species (H+, He+, O+, N+, NO+, O+
2 , N

+
2 ) and seven322

neutral species (H, He, O, N, NO, O2, N2) are used in the model in the numerical ex-323

periments of this study.324

Neutral temperature and composition are specified by the Mass Spectrometer and325

Incoherent Scatter radar (MSIS) model (Hedin, 1987), except nitric oxide, which is not326

included in the MSIS model. A simple expression of the NO density is used (Mitra, 1968;327

Bailey & Balan, 1996):328

n[NO] = 0.4 exp
(
−3700/Tn

)
n[O2] + 5× 10−7n[O] [cm−3].329

The neutral winds are from the Horizontal Wind Model (HWM) (Hedin et al., 1991).330

The initial conditions for plasmas are generated from the International Reference Iono-331

sphere (IRI) model (Bilitza, 2018). Fixed F10.7 = 181 and Ap = 1 are used.332

As discussed previously, the dynamics, diffusion and physical-chemical forcing are333

solved sequentially. The time step for diffusion and physics-chemistry is 15 seconds. The334

time step for the parallel dynamics solver is adaptive or sub-time-stepping according to335

the Courant-Friedrichs-Lewy (CFL) criteria.336

The slope limiter is applied to the characteristic variables in the dynamics step and337

to the primitive variables in the physics-chemistry step. The exponential filter is only338

used for the ion and electron temperatures in the diffusion step. In all the cases, the smooth-339

ness indicator (SI) is used to choose where to applied the limiter or filter; the same CR =340

1.0×10−6 is used in the smoothness threshold; and the same filter order s = 6 is used341
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Table 2. The relative wallclock time for the simulations.

K101 K135 K201

N2 0.38 1.37
N3 0.62 1.09
N4 1.00

Figure 1. The TEC simulations, using the same number of elements (K101), but varying

polynomial orders N : the first row is with N2, the second row with N3, and the third row with

N4. Four UT times (06, 12, 18, and 00 UT) are shown, respectively for 6, 12, 18 and 24 hour

simulations, initialized at 00 UT on 21 March 2000.

in the exponential filter; see Appendix A for details. These parameters, as well as the342

polynomial order N, are specified at the run time from the Fortran namelist input.343

Table 2 shows the relative run/wall-clock time for each simulation. The run time344

for the second set of simulations (with similar resolutions) show that the higher order345

simulation uses less time.346

3.2 Simulating the total electron content (TEC)347

We compare the simulations with different combinations of number of elements (K)348

and polynomial orders (N). Figure 1 shows the vertically-integrated TEC from the first349

set of runs which keeps the same number of elements (K101) and varying the polyno-350

mial orders (N = 2, 3, 4). Figure 2 shows the vertically-integrated TEC from the sec-351

ond set of runs which varies both the number of elements and the polynomial orders such352
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Figure 2. The TEC simulations, using varying number of elements K and varying polynomial

orders N : the first row is with K201 and N2, the second row with K135 and N3, and the third

row with K101 and N4. Four UT times (06, 12, 18, and 00 UT) are shown, respectively for 6, 12,

18 and 24 hour simulations, initialized at 00 UT on 21 March 2000.

that the overall resolutions are similar. The overall TEC pattern such as the equatorial353

fountain effect (e.g., R. Schunk & Nagy, 2009) and the east-west movement of TEC are354

all well simulated. Comparable TECs are obtained with different K/N combinations; the355

differences of the TEC maxima are less than 5%. The converging results of the simula-356

tions using different combinations of K/N indicate the robustness of the algorithms and357

implementation.358

The maxima of TEC are slightly higher for runs with higher polynomial order, ex-359

cept for simulations with N3 at 06 UT, possibly because the dynamical DG model has360

not yet fully spun up from the cold start initialized from the empirical International Ref-361

erence Ionosphere (IRI) data model. Runs with the higher polynomial order also have362

slightly higher minima values. These results indicate that the higher order of accuracy363

(using higher polynomial order) also imply a higher resolving power (resolutions) for model364

simulations.365

3.3 Capturing the terminator effect366

An interesting feature of the model is that it can capture very well the termina-367

tor effect, i.e., the distinction between before and after the sunrise. The is clearly shown368

in the He+ density field (Fig. 3), most noticeably at 14 UT and 15 UT, or at 2 AM and369

3 AM local time. The production and loss of He+ are directly through photoionization370

with the sunrise and chemical loss during the nighttime (e.g., Denton et al., 2002). This371
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Figure 3. The meridional plane plot of the He+ density, log10 nHe+ [m−3], at the magnetic

longitude 180◦, showing the dawn terminator effect. The simulation results from the K101/N2

run are shown every hour from 13 to 20 UT, initialized at 00 UT on 21 March 2000. The geocen-

tric x- and y-coordinates in [103 km] are used in the plot, with x from north to south.

dawn terminator effect can also potentially affect the formation of the He+ layer in ob-372

servations and in modeling (e.g., Wilford et al., 2003).373

The model’s ability to capture the terminator effect indicates that the effectiveness374

of the model algorithms in capturing the sharp gradients, which is needed in modeling375

small scale phenomena such as ionospheric irregularities.376

The field-aligned velocity of He+ (Fig. 4) shows the significant dynamic response377

of wind to the pressure changes resulting from the ion density changes with the sunrise.378

However, we don not see such large gradient and dramatic changes in the He+ ion tem-379

perature field, as they are shown in the density and field-line-aligned velocity fields. This380

may be due to the large thermal diffusivity along the field lines. The terminal effect and381

the response of wind are captured in all other simulations.382

4 Summary and conclusions383

In this study, we explore the application of the high-order numerical methods for384

ionosphere-plasmasphere modeling. Specifically, the nodal discontinuous Galerkin (DG)385

method is used to solve the dynamic equations (conservation laws with gravity and dif-386

fusion) along the magnetic field lines. A positive-definite integration scheme, the Patankar-387

Euler scheme, is used to solve the physical-chemical ODEs. A simple ExB drift model388

and semi-Lagrangian transport scheme are used for the perpendicular dynamics. The389

model uses the ragged array of variable length to better handle the varying number of390

points along different field lines. It also uses the MPI-IO for efficient parallel I/O.391
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Figure 4. The meridional plane plot of the He+ velocity [m s−1] along the field line at the

magnetic longitude 180◦. The simulation results from the K101/N2 run are shown every hour

from 13 to 20 UT, initialized at 00 UT on 21 March 2000. The geocentric x- and y-coordinates in

[103 km] are used in the plot, with x from north to south.

The numerical simulations with different combinations of number of elements (K)392

and polynomial orders (N) show remarkable similarity. These converging results indicate393

the robustness of the algorithms and their implementation. The model also captures the394

dawn terminator effect very well as shown in the He+ density field.395

There are several areas that need to be explored for application of high-order nu-396

merical methods in ionosphere-plasmasphere modeling. The DG solver for ionospheric397

dynamo equation and conservative high-order transport schemes for ExB drift, such as398

the semi-Lagrangian discontinuous Galerkin (SLDG) scheme, will be the next step.399

Appendix A Limiter, exponential filter and smoothness indicator400

The choice and application of the limiters or filters are important to the success401

of the high-order DG methods. And the smoothness indicator can be used to decide where402

to apply the limiter or filter.403

A1 The slope limiter404

Limiter or reconstruction is one of the most important components for any success-405

ful implementation of high-order numerical methods. We discuss one of the limiters, the406

minmod slope limiter. First, define the minmod function407

minmod(a1, . . . , am) =

{
smin1≤i≤m|ai| if |s| = 1,

0 otherwise,
s =

1

m

m∑
i=1

sign(ai). (A1)408
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The minmod function returns the smallest of its arguments if all arguments have the same409

sign, otherwise it returns zero. Now define the interface fluxes as410

vkl = ūk
h −minmod(ūk

h − uk
l , ū

k
h − ūk−1

h , ūk
h − ūk+1

h ),411

vkr = ūk
h +minmod(uk

r − ūk
h, ū

k
h − ūk−1

h , ūk
h − ūk+1

h ),412
413

where ūk
h is the cell average. Then, the slope limited solution is given by414

Π 1uk
h(x) = ūk

h + (x− xk
0)minmod

(
(uk

h)x,
ūk
h − ūk+1

h

h/2
,
ūk
h − ūk−1

h

h/2

)
,415

where xk
0 is the center coordinate of Dk. In this study, the smoothness indicator is used416

to decide where to apply the limiter.417

A2 Limiting the characteristic variables418

When solving the hyperbolic system of conservation laws, more accurate results can419

be obtained if limiter is applied to the characteristic variables, instead of the conserva-420

tive variables (e.g., Hesthaven, 2018). The characteristic variables can be derived as fol-421

lows. The one-dimensional Euler equations can be written in quasilinear form as422

∂q

∂t
+A(q)

∂q

∂x
= 0,423

where q represents the conservative variables and A(q) = ∇qf is the Jacobian of the424

flux:425

q =

 ρ
ρu
E

 , A(q) =

 0 1 0

− 3−γ
2 u2 (3− γ)u γ − 1

−γEu
ρ + (γ − 1)u3 γE

ρ − 3(γ−1)u2

2 γu

 .426

Matrix A can be diagonalized as427

S−1AS = Λ =

u+ c 0 0
0 u 0
0 0 u− c

 ,428

using429

S =

 α 1 α
α(u+ c) u α(u− c)
α(H + cu) 1

2u
2 α(H − cu)

 ,430

and431

S−1 =

2α( 12 (γ − 1)u2 − cu) −2α((γ − 1)u− c) 2α(γ − 1)

1− 1
2 (γ − 1)u

2

c2
γ−1
c2 u −γ−1

c2

2α( 12 (γ − 1)u2 + cu) −2α((γ − 1)u+ c) 2α(γ − 1)

 ,432

where we have introduced433

α =
1

2c
, c =

√
γp

ρ
, H =

E + p

ρ
434

as a scaling constant, the speed of sound and the enthalpy, respectively.435

To apply a limiter, the conservative variables q are transformed to the character-436

istics variables R by437

R = S−1q,438

to which the limiter is applied. Then the limited characteristic variables R̃ are trans-439

formed back to the conservative variables q̃ by440

q̃ = SR̃,441

which are the model state variables for the next time step. Since this needs to be done442

in every time step, it can be expensive to use.443
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A3 The exponential filter444

The filter matrix of is defined by (e.g., Hesthaven & Warburton, 2008):445

F = VΛV−1,446

where V is the Vandermonde matrix and Λ is a diagonal matrix with entries447

Λii = σ

(
i− 1

N

)
, i = 1, . . . , Np,448

and the exponential filter defined by449

σ(η) =

{
1, 0 ≤ η ≤ ηc =

Nc

N ,

exp(−α((η − ηc)/(1− ηc))
s), ηc < η ≤ 1.

450

In this study, we choose the cutoff Nc = 0 and the maximum damping parameter α =451

36. The filter order s is even; increasing s would reduce filtering.452

A4 The smoothness indicator453

The smoothness indicator is defined by (Persson & Peraire, 2006; Ferrero & Larocca,454

2016):455

Sm =

∫
Dk(u

k
h − ũk

h)
2dx∫

Dk(u
k
h)

2dx
,456

where457

uk
h(x, t) =

Np∑
i=1

uk
h(x

k
i , t)ℓ

k
i (x), ũk

h(x, t) =

Np−1∑
i=1

uk
h(x

k
i , t)ℓ

k
i (x).458

In practice, the logarithm of the smoothness indicator is used (Ferrero & Larocca, 2016):459

SI = log10(Sm).460

Expecting Sm will scale like 1/N4, the smoothness threshold (SR) of the following form461

is used:462

SR = log10(CR/N
4) = log10(CR)− 4 log10(N),463

where N = Np − 1 is the order of polynomials used in the solutions, thus leaving the464

constant CR as the only parameter to be adjusted according to the problem at hand.465

Appendix B Thermal conductivity and collisional frequency466

We summarize computation of thermal conductivity and collisional frequency as467

used in the SAMI2 model (Huba et al., 2000). Fortran code for computing the physical468

and chemical forcing terms is extracted from SAMI2 open source code (https://github469

.com/NRL-Plasma-Physics-Division/SAMI2) and modified for the current model.470

B1 Thermal conductivity471

The thermal conductivities κi and κe [eV cm−1 s−1 K−1] of the ith ion and elec-472

trons are given by (Banks & Kockarts, 1973; Bailey & Balan, 1996)473

κi = 4.6× 104
niT

5/2
i

neA
1/2
i

,474

where Ai is the ion mass in [a.m.u.], and475

κe =
7.7× 105T

5/2
e

1 + 3.22× 104T 2
eNq/ne

,476
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where477

Nq = 1.10× 10−16n[O](1 + 5.7× 10−4Te) +

2.82× 10−17n[N2](1− 1.2× 10−4Te)T
1/2
e +

2.20× 10−16n[O2](1 + 3.6× 10−2T 1/2
e ).

478

B2 The ion-ion collision frequency479

The ion-ion collision frequency νij in [s−1] is given by480

νij = 9.2× 10−2njλij

A
1/2
j

Ai

(
1 +

Aj

Ai

)−1/2
1

T 3/2
,481

λij = 23− ln

[
Ai +Aj

AiTj +AjTi

(
ni

Ti
+

nj

Tj

)1/2]
.482

483

where Ai and Aj are the atomic ion mass in [a.m.u.], T is in [eV], and nj in [cm−3]. Tem-484

perature is converted from [K] to [eV] by485

TeV = 8.6174× 10−5TK .486

B3 The ion-neutral collision frequency487

The ion-neutral collision frequency νin in [s−1] is given by488

νin =
m+ n

mi +mn
ν̄in, (B1)489

ν̄in = 2.69× 10−9α0nn

µ
1/2
A

,490

µA =
AiAn

Ai +An
,491

492

where α0 is the polarizability. Several temperature-dependent ion-neutral collision fre-493

quencies (Bailey & Balan, 1996) are used in place of (B1):494

νH+O = 6.61× 10−11n[O]T 1/2(1.00− 0.047 log10 T )
2, T = TH+ ,495

νO+O = 4.45× 10−11n[O]T 1/2(1.04− 0.067 log10 T )
2, T = (TO+ + Tn)/2,496

νO+
2 O2

= 2.59× 10−11n[O2]T
1/2(1.00− 0.073 log10 T )

2, T = (TO+
2
+ Tn)/2,497

νN+
2 N2

= 5.14× 10−11n[N2]T
1/2(1.00− 0.069 log10 T )

2, T = (TN+
2
+ Tn)/2,498

499

where the temperature is in [K] and the number density of the neutrals is in [cm−3].500

B4 The electron-neutral collisional heating501

The electron-neutral heating term (7d) can be written as502

Qen =
2

3

∑
q

memq

(me +mq)2
νeq[3(Tq − Te)],

=
2

3

∑
q

ν̄eq(Tq − Te),
503

where ν̄eq denotes the effective heating rate. The elastic electron-neutral collisional heat-504

ing rates are given by (Banks & Kockarts, 1973):505

ν̄eN2
= 1.2× 10−19n[N2](1− 1.2× 10−4Te)Te,506

ν̄eO2 = 7.9× 10−19n[O2](1− 3.6× 10−2T 1/2
e )T 1/2

e ,507

ν̄eO = 7.2× 10−18n[O]T 1/2
e ,508

ν̄eH = 6.3× 10−16n[H](1− 1.35× 10−4Te)T
1/2
e .509

510
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The units are collisional heating rates [eVK−1 s−1], the temperature [K] and the num-511

ber density [cm−3].512

B5 The photoelectron heating513

At altitudes lower than 300 km, the photoelectron heating rate [eV s−1] is computed514

from515

Qphe =
2

3

1

ne
ϵPphoto,516

ϵ = exp[−p(x)],517

p(x) = 12.75 + 6.94x+ 1.66x2 + 0.08034x3 + 0.001996x4,518

x = ln

(
ne

n[O2] + n[N2] + 0.1n[O]

)
,519

520

where Pphoto is the total photoionization rate. At altitudes higher than 300 km, the pho-521

toelectron heating rate is computed as522

Qphe(ℓ) =
2

3

B(ℓ)

B(ℓ300)
Qphe(ℓ300) exp

(
−Cqe

∫ ℓ

ℓ300

nedℓ

)
,523

where B is the magnetic field strength, the constant Cqe is taken to be 7.0×10−14 cm2,524

and the integration along the flux tube is from both hemispheres.525
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