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Abstract

The fractal dimension and multifractal spectrum are widely used to characterize the complexity of natural fractures. However,

a systematic investigation on the impact of different fracture properties (fracture lengths, orientations, center positions, system

sizes) on the fractal and multifractal characterization of complex fracture networks is missing. We utilize an in-house developed

DFN modeling software, HatchFrac, to construct stochastic fracture networks with prescribed distributions and systematically

study the impact of four geometrical properties of fractures on the fractal and multifractal characterization. We calculate the

single fractal dimension and multifractal spectrum with the box-counting method. The single fractal dimension, D, and the

difference of singularity exponent, [?]α, are used to represent the fractal and multifractal patterns, respectively. We find that

fracture lengths, orientations and system sizes have positive correlations with D and [?]α, while the system size has the most

significant impact among the four parameters. D is uncorrelated with fracture positions (FD), which means that a single fractal

dimension cannot capture the complexity caused by clustering effects. However, [?]α has a strong negative correlation with FD,

which implies that clustering effects make fracture networks more complex, and [?]α can capture the difference. We also digitize

60 outcrop maps with a novel fracture detection algorithm and calculate their fractal dimension and multifractal spectrum. We

find wide variations of D and [?]α on those outcrop maps, even for outcrops at similar scales. It means that a universal indicator

for characterizing fracture networks at different scales or the same scale is almost impossible.
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Abstract

The fractal dimension and multifractal spectrum are widely used to character-

ize the complexity of natural fractures. However, a systematic investigation

on the impact of different fracture properties (fracture lengths, orientations,

center positions, system sizes) on fractal and multifractal characterization of

complex fracture networks is missing. We utilize an in-house developed DFN

modeling software, HatchFrac, to construct stochastic fracture networks with

prescribed distributions and systematically study the impact of four geomet-

rical properties of fractures on the fractal and multifractal characterization.

We calculate the single fractal dimension and multifractal spectrum with the

box-counting method. The single fractal dimension, D, and the difference of

singularity exponent, ∆α, are used to represent the fractal and multifractal

patterns, respectively. We find that fracture lengths, orientations and system

sizes have positive correlations with D and ∆α, while the system size has the

most significant impact among the four parameters. D is uncorrelated with

fracture positions (FD), which means that a single fractal dimension cannot

capture the complexity caused by clustering effects. However, ∆α has a strong

negative correlation with FD, which implies that clustering effects make fracture

networks more complex, and ∆α can capture the difference. We also digitize
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60 outcrop maps with a novel fracture detection algorithm and calculate their

fractal dimension and multifractal spectrum. We find wide variations of D and

∆α on those outcrop maps, even for outcrops at similar scales. It means that

a universal indicator for characterizing fracture networks at different scales or

the same scale is almost impossible.

1. Introduction

Fractures such as joints, faults, pressure solution seams, and deformation

bands are ubiquitous in crustal rocks. Natural fractures usually comprise com-

plex networks, and they vary in size over scales ranging from microns to hun-

dreds of kilometres [1, 2]. Throughout this large scale range, fracture networks5

dominate the geomechanical and hydrological behavior of subsurface rocks and

play an essential role in many engineering fields, e.g., hydrology, waste disposal,

earthquakes, petroleum and geothermal reservoir exploitation [3, 4, 5, 6].

Mandelbrot [7] proposed the concept of fractals, which can be used to char-

acterize irregular sets, regardless of the scale at which these sets are exam-10

ined. Many researchers have investigated the fractal behaviors of natural frac-

tures from outcrop observations and experiments. Otsuki and Dilov [8], Shi

et al. [9] and Wu et al. [10] found the fractal pattern of fractures in millime-

ter scales through experiments and micro-CT images, while Okubo and Aki

[11],Matsumoto et al. [12],Aviles et al. [13], and Cello [14] investigated complex15

structures of large scale faults with fractal dimensions, e.g., San Andreas fault.

Barton [15] collected 17 outcrop maps from various tectonic settings, litholo-

gies and scales and analyzed their fractal dimension. However, a single fractal

dimension is insufficient to describe fracture systems with complex geometrical

patterns, including orientation distribution, size population and fracture trace20

geometry [16, 17]. Instead, multifractals describe sets comprising a union of

fractal subsets, each identified by specific measure and characterized by differ-

ent fractal dimension [18]. The first characterization of multifractals was intro-

duced by Mandelbrot [19]. Frisch and Parisi [20] and Halsey et al. [21] further
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developed the formalism. Cowie et al. [22] found strongly multifractal prop-25

erties through numerical models that simulated fracture growth in a tectonic

plate. Berkowitz and Hadad [18] introduced in detail the fractal and multi-

fractal descriptions of complex fracture networks and analyzed the multifractal

characterization of synthetic fracture networks. However, in their research, gen-

erated synthetic fracture networks did not cover a wide range of their geometry30

distributions, which leads to incomplete conclusions.

Fractals and multifractals are used to characterize the complexity of fracture

systems. However, a detailed investigation of the impact of different fracture

properties, e.g., fracture length, orientations, and center positions, on the fractal

characterizations of complex fracture networks is missing. One main possible35

reason is that obtaining enough geological data with systematically different

fracture patterns is almost impossible. The only practical alternative is the

discrete fracture network (DFN) modeling method, which preserves essential

geometric and topological structures of fractures. A "discrete fracture network"

(DFN) refers to a computational model that explicitly represents the geomet-40

rical properties of individual fracture, which mainly includes orientation, size,

position, shape, and aperture [23]. With the powerful in-house developed dis-

crete fracture network modeling software, HatchFrac [24, 25], we can generate

a large number of fracture networks with prescribed property distributions.

In this research, we systematically investigate the impact of essential fracture45

geometry descriptors, including fracture lengths, orientations, center positions

and system sizes, on the fractal and multifractal characterization of stochastic

fracture networks. Furthermore, we digitize 60 real outcrop maps using a novel

pixel-based fracture detection algorithm [26] and investigate their fractal and

multifractal patterns.50

The conventional method of fractal analysis of fracture networks is the box-

counting technique [15], based on the outcrop images. Roy et al. [27] proposed

an improved box-counting method and argued that there is a limiting box size

because fracture images have a finite resolution. In this research, DFN models

represent fractures with line segments, and the fracture detection algorithm can55
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automatically interpret fractures as line segments or polylines. Therefore, limits

on the image resolution are essentially relaxed.

This paper is organized as follows. In Section 2, techniques for construct-

ing two-dimensional (2D) stochastic fracture networks and calculating fractal

dimension and multifractal spectrum are introduced. In Section 3, impacts of60

different fracture geometrical properties on the fractal and multifractal patterns

are presented. We then conduct a sensitivity analysis in Section 3, which quanti-

fies the significance of each parameter on the fractal and multifractal patterns.

To our knowledge, this is the first systematic analysis of the impact of geo-

metrical properties of stochastic fractures – including fracture length, position,65

orientation and system size – on the fractal and multifractal characterization.

Finally, conclusions are summarized in Section 4.

2. Materials and methods

This section introduces the method to construct stochastic fracture networks

in 2D (two-dimensional) and calculate the single fractal dimension and multi-70

fractal spectrum with the box-counting method.

2.1. Construction of stochastic fracture networks

Real fracture networks are complex, and it is difficult to quantify their prop-

erties precisely. To reduce modeling complexity, line segments are used to rep-

resent fractures in 2D. The three geometrical parameters that describe each75

fracture are fracture lengths, orientations, and positions of the fracture centers.

Each parameter can be characterized with a different statistical distribution.

The fracture lengths are characterized by a power-law distribution [28]

n(l) = βl−a, (1)

where n(l)dl is the number of fractures with lengths ranging from [l, l + dl], β

is the coefficient of proportionality and a is the power-law exponent. Bour and80
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Davy [28] and Zhu et al. [24] showed that this exponent should range approxi-

mately from 2 to 3. The probability of generating very long fractures decreases

sharply as a increases.

The fracture orientations follow von Mises–Fisher distributions [29, 30, 31]

f(~x, ~µ, κ) = C(κ) exp(κ~µT~x), (2)

where C(κ) is the normalization constant. ~µ and κ are the mean direction and85

concentration parameter, respectively. In this research, we choose ~µ = [1, 0]

and κ of 0, 1, 5, 10. The parameter κ controls the concentration degree of

the distribution around the mean direction ~µ. When κ = 0, the von Mises–

Fisher distribution degenerates to a uniform distribution. When κ is large, the

distribution is approximate to a normal distribution and concentrates around90

the angle ~µ with 1/κ analogous to σ2.

The positions of fracture centers are sampled from a uniform or fractal dis-

tribution. The fractal spatial density distribution [32, 33] introduces clustering

effects in the network, which is characterized by a fractal dimension FD. Dar-

cel et al. [33] and Zhu et al. [24] showed that real fracture networks exhibit95

clustering effects.

Examples of different fracture networks in 2D are shown in Fig. 1. In this

research, the formation of a spanning cluster is set as the termination criterion,

not a prescribed fracture intensity [18]. A spanning cluster (red fractures in

Fig. 1) connects all four sides of the domain boundary, which is the only path-100

way of fluid flow across the low-permeability system and represents good global

connectivity. In contrast, fracture intensity is not a good indicator for connec-

tivity because it is sensitive to fracture geometries, such as fracture lengths,

orientations and clustering effects.

2.2. Fractal dimension and multifractal spectrum105

A box-counting method superimposes grids with boxes of different sizes, r,

on a fracture pattern and count the number of boxes containing fractures, Nr.
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Clustering

Fractal Uniform

Figure 1: 2D fracture networks. The red line segments form the connected spanning cluster.

The green line segments correspond to all other locally connected clusters. In both networks,

the fracture orientations follow a uniform distribution, and lengths obey a power-law distri-

bution. The left network has fracture center positions that follow a fractal spatial density

distribution with the fractal dimension of 1.5, and in the right network, the fracture centers

follow a uniform distribution.

For a fractal pattern, Nr and r fulfill the relation:

Nr = r−D, (3)

where D is the fractal dimension of the pattern. By fitting the ln(Nr) and ln(r)

with a linear function, the slope is the corresponding fractal dimension. Fig. 2110

demonstrates the process to cover the fracture network with boxes of different

sizes.

The conventional box-counting method uses outcrop images, and its mini-

mum box size is limited by the image resolution, which calculates inaccurate

fractal dimensions [27]. For stochastic fracture networks in this work, each frac-115

ture is represented by a line segment, so the box size can be infinitely small,

which is superior to the conventional method.

Fracture networks are usually composed of different sets of fractures. A

single fractal dimension is insufficient to characterize the complexity of fracture

6



r = L/2 r = L/4 r = L/8

Figure 2: Demonstration of calculating the fractal dimension of a stochastic fracture network

with the box-counting method.

networks. Instead, the multifractal spectrum is more suitable.120

The procedure to obtain a multifractal spectrum through the box-counting

method is as follows:

1. Define a probability distribution function for the fracture network:

pi(r) = li∑N
i=1 li

, (4)

where li is the length of fractures in the box i, r is the size of the box, N

is the number of fractures in the system.125

2. Define a partition function [21], which is the summation of qth power of

the probability distribution function:

χq(r) =
∑

pi(r)q = rτ(q), (5)

where q is the probability moment order, which varies between −∞ and

+∞ for a full spectrum. The negative q magnifies the importance of boxes

with small pi, while positive q stresses the importance of boxes with large130

pi. τ(q) is a mass exponent. In practice, we choose q varying between

[−18, 18] with a step of 1. If r is small enough, τ(q) can be calculated by:

τ(q) = lim
r→0

ln(χq(r))
ln(r) , (6)

3. Perform Legendre transform on τ(q) to get the multifractal spectrum f(α)

α = dτ(q)
dq

= lim
r→0

∑N
i=1 pi(r)q ln(pi(r))∑N
i=1 pi(r)q ln(r)

, (7)
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f(α) = αq − τ(q), (8)

where α is the Lipschitz-Hölder exponent, reflecting the singularity of135

fractal subsets. f(α) is the multifractal spectrum, which describes the

fractal dimension of subsets with different α values.

Applying numerical Legendre transom decreases the accuracy of the results.

Therefore, averaging over several samples is highly beneficial [34]. In this re-

search, we average results over ten independent realizations.140

3. Results and discussions

We systematically investigate those geometrical properties, which are char-

acterized by the essential parameter of their stochastic distributions. The power-

law exponent (a) characterizes fracture lengths. The fractal dimension (FD) of

the spatial density distribution characterizes fracture positions. The concen-145

tration parameter (κ) in the von Mises–Fisher distribution characterizes orien-

tations. We choose 11 values of the power-law exponent (a ∈ [2.0, 3.0] with a

step of 0.1), 9 of the fractal dimension (FD ∈ [1.2, 2.0] with a step of 0.1), 4

values of the concentration parameter (κ = 0, 1, 5, 10) and 3 values of the system

size (L = 10, 30, 50). Each case with a given set of parameters is stabilized by150

averaging over ten independent realizations.

Seven decreasing box sizes are used for the box-counting method:

bs = L

2i , i = 1, 2, 3, . . . , 7 (9)

where bs is the box size, and L is the system size.

Through a linear regression of ln(N(r)) and ln(1/r), we obtain the single

fractal dimension. The fractal dimension of the fracture network in Fig. 3(a)155

is 1.85, which is shown in Fig. 4(a). Parameters for the fracture network are

a = 2.5, FD = 1.5, κ = 0, and L = 50.

For multifractal spectrum, we test the linear relationship of Eq. 5 in a log-

log plot for each case. Fig. 3 (b) and (c) exhibit the double-log plot of χq(r)

8



and r and its correlation coefficient with different q values, respectively. Fig. 3160

(c) shows that the correlation coefficient is either approximately 1 or -1 for

different q. Therefore, the fracture network shows multifractal patterns and

makes the following calculation of the multifractal spectrum possible. In Fig. 3

(b), when q = 1, χq(r) = 1 for any box sizes and the slope is zero . When q = 0,

χq(r) = N(r), the slope yields the reverse value of the single fractal dimension165

D. Fig. 4 (b) exhibits the multifractal spectrum of the fracture networks in Fig. 3

(a). f(α) is the fractal dimension of different subsets with the same α value,

the largest value of f(α) is the single fractal dimension, referring to the fractal

dimension of the most probable singularity subset within the whole fracture

network. In this calculation, its value is 1.86, slightly larger than the 1.85170

calculated before because of the inaccuracy caused by the numerical transform

and the fact that fracture networks are not strict fractal sets but stochastic

ones. Different α values refer to subsets with different singular degrees, and its

variations, ∆α, is a good indicator of the system complexity. For the fracture

network in Fig. 3(a), ∆α equals 2.8.175

Fig. 5 exhibits the cumulative distribution function of the single fractal di-

mension and ∆α, where the P10, P50, P90 estimates are denoted. There is a

positive correlation between D and ∆α, shown in Fig. 5 (c), which means that

both indicators can describe the complexity of fracture networks. However, their

correlation is not strong enough to regard the two indicators as identical. The180

statistics of full datasets are summarized in Table. 1.

The following sections show the impact of different fracture geometry prop-

erties on the fractal and multifractal characterization. In particular, we choose

the single fractal dimension, D, and variation, ∆α, to represent characteristics

of the fractal and multifractal, respectively. We also select representative cases185

by controlling rest variables to stress the impact of each parameter. A summary

of parameters used in this paper is listed in Table. 2 for clarification.
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Table 1: Statistics of the single fractal dimension, D, and ∆α

Case D ∆α

Number of simulation 1,188 1,188

Max 1.974 3.146

Min 1.525 1.698

Mean 1.787 2.240

Median 1.798 2.191

Standard deviation 0.0924 0.257

P10 1.653 1.949

P50 1.798 2.191

P90 1.902 2.619

Table 2: Summary of parameters in this paper

Parameter Usage or Definition

a (power-law distribution) Describing fracture lengths

FD (fractal spatial density distribution) Describing fracture center positions

κ (von Mises–Fisher distribution) Describing fracture orientations

L (system size) Descrbing system sizes

D Single fractal dimension

∆α Difference of the Lipschitz-Hölder exponent α

10



Table 3: Three levels of each parameter

Parameter Low Intermediate High

a 2.0 2.5 3.0

FD 1.2 1.6 2.0

κ 0 5 10

L 10 30 50

3.1. Impact of fracture geometries on the single fractal dimension

Figs. 6, 7, 8 and 9 show the impact of fracture length (a), positions (FD),

orientations (κ) and system size (L) on the single fractal dimension (D), respec-190

tively. For each target parameter, nine scenarios with different combinations of

the rest three parameters are presented to demonstrate the correlation with the

single fractal dimension. We conduct a Taguchi design [35] and use a three-level

L9 orthogonal array to design the combinations of parameters, which can ef-

fectively eliminate the repetition of combinations. The correlation coefficient of195

each scenario is denoted in the figure. For each parameter, we select three levels

(Low, Intermediate, High) to present the results, which are listed in Table. 3.

The power-law exponent, a (Fig. 6), concentration parameter, κ (Fig. 8),

and system size, L (Fig. 9) have positive correlations with the single fractal

dimension, D. This indicates that a large fracture network composed of small200

fractures with concentrated orientations yields a large fractal dimension. The

mean values of the correlation coefficients for each parameter are 0.90, 0.94 and

0.97, respectively. Therefore, the system size is the most significant parameter

to the single fractal dimension. However, FD has a weak correlation with the

single fractal dimension, D, indicating that clustering effects do not significantly205

change the fractal dimension. In other words, the single fractal dimension cannot

capture the complexity caused by clustering effects.

3.2. Impact of fracture geometries on multifractal spectrum

Figs. 10, 11, 12 and 13 show the impact of fracture length (a), positions

(FD), orientations (κ) and system size (L) on ∆α of the multifractal spectrum,210
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respectively. For each target parameter, the same Taguchi design is implemented

and 9 scenarios are presented for the demonstration.

The power-law exponent, a (Fig. 10), concentration parameter, κ (Fig. 12),

and system size, L (Fig. 13), have positive correlations with ∆α. The mean

values of correlation coefficients for each parameter are 0.65, 0.58 and 0.87,215

respectively. Therefore, the system size has the most significant impact on

∆α. FD has a strong negative correlation with ∆α, indicating that clustering

effects change ∆α significantly. Clusters make fracture network more complex

and cause ∆α increase. Therefore, a multifractal spectrum can capture the

complexity caused by clustering effects. However, the correlations of a, κ and L220

are not as strong as the single fractal dimension cases because all four parameters

contribute to ∆α, and FD has a negative correlation, which counteracts the

positive correlation of these three parameters.

3.3. Sensitivity analysis

In this section, we perform a sensitivity analysis to explore the impact of225

each geometrical parameter on fractal and multifractal characterizations with

the complete datasets.

We adopt the input/output correlation method, in which the sensitivity of

model response Y to the components of the input random vector X is calculated

by determining the component-wise correlation coefficients between these two230

vectors. Consider n samples of the input random vectorX = {x(1), x(2), x(3), . . . , x(n)},

and the corresponding model responses Y = {y(1), y(2), y(3), . . . , y(N)}. The lin-

ear correlation coefficient ρi between the ith input and output is defined as

ρi = ρ(Xi, Y ) = E[(Xi − µi)(Y − µY )]
σiσY

, (10)

where µi and µY are the expected values of Xi and Y respectively, and σi and

σY are the corresponding standard deviations.235

The importance of each factor is ranked based on the correlation coefficient.

The response is the single fractal dimension and ∆α value of the multifrac-

tal spectrum. The input vector includes a, FD, L, and κ. Fig. 14 shows the
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sensitivity analysis between the geometrical parameters and the fractal and

multifractal responses. For the single fractal dimension, fracture positions (FD)240

shows a negligible correlation with the response, in agreement with the observa-

tions in the previous section. It indicates that a single fractal dimension cannot

distinguish differences caused by clustering effects. The exponent a exhibits a

positive correlation, which means that fracture networks with more small frac-

tures have larger fractal dimensions. The system size L has the largest positive245

correlation coefficient among the four parameters. Therefore, it has the greatest

impact on the fractal dimension, possibly attributing to the fact that a larger

system has more different fractures described by fracture lengths and orienta-

tions. This observation does not contradict the definition of fractal sets, where

their complexity should be independent of the scale. A larger system does not250

eliminate small fractures, and system sizes here are at the same scale with the

same order of magnitude. The concentration parameter κ has a large positive

correlation, indicating that fracture networks with more concentrated orienta-

tions have larger fractal dimensions. In this research, the termination criterion

of a fracture network is the formation of a spanning cluster. Therefore, for a255

fracture network with more concentrated orientations, more fractures are re-

quired to form a spanning cluster, making the fracture network more complex

and corresponds to a larger fractal dimension.

For ∆α value of the multifractal spectrum, clustering effects have a strong

negative correlation, which indicates that the clustering effect can enlarge ∆α’s260

value and increase the complexity of fracture networks. The system size L has

the most significant positive correlation coefficient, and the exponent a and con-

centration κ have positive correlation coefficients. The correlation coefficients

of a, κ and L are smaller than those of the single fractal dimension, consistent

with the observations in the previous section.265

3.4. Real fracture networks and their fractal and multifractal characterization

By applying the pixel-based fracture detection algorithm [26], we can digi-

tize published fracture outcrop maps quickly. The algorithm tracks all fracture

13



trace pixels and uses line segments or polylines to represent a fracture. There-

fore, the limit on the box size is relaxed. We have digitized 60 outcrop images270

from different publications. Their scales range from millimeters to thousands of

kilometers [36, 37, 38, 17, 39, 40, 41, 42].

From testing the linear relationship of Eq. 3 and Eq. 5 in a log-log plot, nat-

ural fracture outcrop maps show fractal and multifractal patterns. Fig. 15(a)

shows the fractal dimensions of these outcrops, which vary between 1.32 and275

1.93 with a mean value of 1.67. Fig. 15(b) shows values of ∆α in different out-

crops varying between 0.99 and 1.91 with a mean value of 1.52. The non-zero

value of ∆α suggests that natural fracture networks can never be a homoge-

neous monofractal set at any scales. Both D and ∆α values have smaller means

than stochastic fracture networks. This indicates that stochastic fracture net-280

works have more complex structures than natural outcrops, attributing to vari-

ous fracture lengths, orientations, clustering effects and usually higher fracture

intensities.

Furthermore, at a similar scale, different outcrops have significant variations

on D and ∆α, revealing that natural fracture networks are extremely complex285

depending on their geological history, environment and rock types. It is unlikely

to find a universal indicator, which can characterize the complexity of fracture

networks at different scales or the same scale. Both D and ∆α have weak

correlations with scales (-0.10 and -0.12, respectively). This indicates that the

complexity of fracture networks is indeed independent of scales, which supports290

the argument that natural fracture networks have self-similarity patterns.

Fig. 15(c) shows the correlation between the single fractal dimension and

∆α. The correlation coefficient is 0.04, indicating almost no correlation between

these two indicators. Therefore, in natural outcrops, the single fractal dimen-

sion and the multifractal spectrum are almost independent. This observation295

is different from the behavior of D and ∆α in stochastic fracture networks,

where they have positive correlations. One possible reason for the inconsistent

behavior is that stochastic fracture networks have over-simplifications on frac-

ture geometries. Although stochastic fractures have more complex structures

14



regarding fracture intensities, lengths, orientations and clustering effects, and300

they have larger values of fractal dimension and ∆α, they neglect several impor-

tant fracture geometries, such as the fracture tortuosity and T-type intersections

between fractures. Tortuosity may not be significant for the macro-scale connec-

tivity of fracture networks; however, T-type intersections are essential because

they reduce dead-ends in the system and enhance connectivity [43, 44]. The305

other possible reason is the clustering effects. Clustering effects are commonly

observed from outcrops [15, 24]. From the analysis in the previous section, the

single fractal dimension is insensitive to the clustering effects, while ∆α is sen-

sitive. Therefore, it is superior to describe the complexity of fracture networks

with ∆α instead of the single fractal dimension D. Natural fracture networks310

show nontrivial multifractal patterns, and the multifractal spectrum can better

describe the complex fracturing mechanisms and geological formation hetero-

geneity [45, 46].

4. Conclusions

In this research, we systematically analyze the impact of different geometrical315

properties (a, FD, κ, L) of fracture networks on their fractal and multifractal

characterizations. The key conclusions of this study are:

1. In stochastic fracture networks, a single fractal dimension and ∆α of the

multifractal spectrum can evaluate the complexity of fracture networks.

They are positively correlated with a correlation coefficient of 0.65.320

2. Fracture lengths (a), orientations (κ), and system sizes (L) have positive

correlations with the single fractal dimension and ∆α. The system size

has the most significant impact among these four parameters.

3. The single fractal dimension cannot capture the complexity caused by

clustering effects; therefore, FD has a weak correlation with D.325

4. ∆α is superior to D in characterizing the complexity of fracture networks.

It has a strong negative correlation with FD, which means that clustering

15



effects make fracture networks more complex, and ∆α can capture the

difference.

5. Our fracture detection algorithm digitizes 60 real outcrop maps with scales330

ranging from millimeters to kilometers. The single fractal dimension and

∆α have wide variations in those outcrops. However, both indicators have

smaller mean values than stochastic fracture networks, indicating a less

complex structure in natural outcrops.

6. Both indicators have wide variations in outcrops of similar scales, indi-335

cating real fracture networks are complex due to their geological history,

environment and rock types. It is almost impossible to find a univer-

sal indicator that can characterize the complexity of fracture networks at

different scales or the same scale, which also supports the self-similarity

patterns of natural fracture networks.340

7. Inconsistent behaviors of D and ∆α in stochastic fracture networks and

natural outcrop maps indicate that stochastic fracture networks may have

over-simplifications on fracture geometries. More realistic fracture net-

works incorporating fracture tortuosity and T-type intersections should

be developed for further investigations.345
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Figure 3: (a) A stochastic fracture network with a = 2.5, FD = 1.5, κ = 0, and L = 50 (b)

Log-log plot of χq(r) and r. Each line segment is a linear fit of the corresponding scatter

points of the same color. (c) Correlation coefficient of each linear fit in (b) with respect to a

different q 22
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Figure 4: (a) Single fractal dimension, D; (b) multifractal spectrum of the fracture network

in Fig. 3(a)
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∆α, and (c) the correlation between D and ∆α
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(a) (b)

Figure 14: Linear correlation coefficient between each factor and the response (a: Fractal

dimension, b: multifractal ∆α)
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Figure 15: (a) Fractal dimensions, (b) ∆α of fracture outcrops at different scales, and (c)

correlation between the fractal dimension and ∆α
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