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Abstract

Focusing on non-destructive and automated acquisition of plant phenotypic parameters,this extended abstract proposed an
end-to-end deep RNN based network structure for single perspective sparse raw point cloud regression task called DRN. It
has been proven to achieve accuracy improvements in PointNet++ and PonitCNN when it comes to regression of lettuce plant
height. We believe DRN structure is suitable for feature extraction from plant point cloud data and regression of spatial distance

related plant phenotypes like plant height.
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ABSTRACT

Focusing on non-destructive and automated acquisition of plant phenotypic parameters,this extended abstract
proposed an end-to-end deep RNN based network structure for single perspective sparse raw point cloud regres-
sion task called DRN. It has been proven to achieve accuracy improvements in PointNet++ and PonitCNN when
it comes to regression of lettuce plant height. We believe DRN structure is suitable for feature extraction from
plant point cloud data and regression of spatial distance related plant phenotypes like plant height.
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1. INTRODUCTION

Plant height is one of the most important phenotypic parameters of plants, which is often used for biomass
estimation,»? growth status monitoringcite’ and important germplasm traits® by reseachers.The point cloud
data contains real three-dimensional coordinate information of the object. Compared with ranging by two-
dimensional image, in theory, point cloud ranging needs no various perspective corrections or special shooting
conditions sampling due to the impact of shooting angle of view and shooting distance. Is it an excellent idea to
automatically obtain the three-dimensional phenotype of lettuce by processing the point cloud data of lettuce
through an end-to-end training network?

In recent years, researchers have achieved amazing achievements on point cloud data sets using deep learning
networks. These achievements are sufficient to prove the superiority of deep learning networks in point cloud
feature extraction. However, most of these breakthrough studies focused on single classification, multiple clas-
sification and segmentation tasks.* ® In addition to classification tasks, plant phenotype research also involves
a large number of regression tasks, such as plant height, biomass, and leaf area, etc.”® This research aims to
use lettuce point cloud data to regress its plant height, and has proposed an end-to-end deep learning network
structure named DRN that can predict lettuce plant height more effectively in Figure 1(b). This structure has
shown good results in the two classic point cloud feature extraction basic networks, PointNet++ and PointCNN.

2. PROPOSED METHOD

The DRN structure requires a basic network to extract features. Take DRNPointCNN as an example, the 1024
dimension sparse point cloud(batchsizex1024x3) were processed by 4-layer Xconv and a global average pooling
in the PointCNN network to obtain 384 dimension embeddings. After that, input these embedding into BiLSTM
with input size of 1 and output size of 1 to learn the relationship between embeddings. From BiLSTM we got
a new embedding with the dimension of 2x384, then we used pooling layer to deal with these new embeddings,
and sent the results to a regression network to predict plant height.

The experimental data came from the Third Greenhouse Growing Challenge.” The images were captured by
RealSense camera and contain data of individual lettuce plants of different species in different growth period.
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Each sample is connected with the ground truth plant height from manual measurement. We transformed these
1920x 1080 resolution images and corresponding depth value into cloud point efficiently using Matrix Operations
and CUDA acceleration, and then obtained the sparse cloud points through surface downsampling and filtering
in Figure 1(a).

v

Figure 1. Overview of our Method.(a)Data and Data preprocessing, transform the give images into point cloud data and
downsampling. (b) Regressing lettuce plant height from single pesperctive point cloud of 1024 dimension by proposed
DRN structure model.

3. RESULT AND DISCUSSION

A total of 341 lettuce point cloud samples of 4 types in different periods were used for the experiment, of which
301 samples were selected as training data and 40 samples were used as testing data. We used MSE as the loss
function of the model, simultaneously, the MSE value between the predicted value and ground truth were used
as the evaluation index of the accuracy, the lower the MSE, the more accurate the prediction of the lettuce plant
height by the model.
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Figure 2. MSE of DRNPointCNN and PointCNN on training Figure 3. MSE of DRNPointCNN and PointCNN on testing
data. data.
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Figure 4. MSE of DRNPointNet++ and PointNet++ on Figure 5. MSE of DRNPointCNN and PointCNN on testing
training data. data.

Figure 2 represents MSE result in different epoch on the training data from RPNPointCNN based Regression
model and PointCNN based Regression model. It can be clearly seen that DRNPointCNN has much lower MSE
compared to Point CNN on training data, which means DRNPointCNN has better fitting ability. Correspondingly,
the MSE curve of the testing data in Figure 3 can also reflect DRNPointCNN is supposed to give a more accurate
result of lettuce plant height. Figure 4 and Figure 5 show the performance of DRN in another classic point cloud
feature extraction network. Figure 4 shows that the MSE of DRNPointNet++ on training data does not reflect
its effectiveness, while the curve in Figure 5 shows DRNPointNet++ has better performance than PointNet++
on testing data. In order to further explore the performance difference of the above models on testing data, we
selected each trained model weight at 500th epoch to predict the lettuce plant height for 50 times and got the
average value to calculate MSE. The prediction results are shown in Table 1. Compared with PointCNN, the
DRNPointCNN base regression model yields a smaller MSE value on both testing data and training data, while
DRNPointNet++ decreases the MSE value on testing data.

Table 1. Performance Analysis of DRN Structure in PointCNN and PointNet++

Methods PointCNN  DRNPointCNN  PointNet++ DRNPointNet+-+
Train MSE (cm) 1.72 1.27 2.06 2.11
Test MSE (cm) 3.74 2.86 3.45 2.16

4. CONCLUSION

In this research, we present a Deep RNN Based Network Structure for point cloud regression task called DRN. It
has been proven to achieve accuracy improvements in PointNet++ and PonitCNN when it comes to regression of
lettuce plant height. On the testing data, the MSE of DRNPoinNet-++ is 37.39% lower than that of PoinNet++,
and the MSE of DRNPointCNN is 23.53% lower than PointCNN.

We believe DRN structure is suitable for feature extraction from single-view sparse plant point cloud data
along with regression of spatial distance related plant phenotypes like plant height. The operator we used to
build model are mainly from pytorch and pytorch-geometric. The source code and datasets of our research can be
found at https://github.com/LeJson/DRN, we hope it can encourage further development in plant phenotype
research based on point cloud data.
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