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Abstract

The commonly applied pedotransfer functions (PTFs), which predict soil hydraulic properties (SHPs) from easily measured

soil properties such as texture information, often account only for capillary forces. Recent advances in soil hydraulic modeling

suggest that, to improve the prediction of SHPs under dry conditions, the impact of adsorption forces has to be taken into

account. However, the lack of observations in particularly dry conditions, due to the difficult and time-consuming measurement,

hinders the development of PTFs that predict SHPs from saturation to oven dryness. In this paper, we first present a simple

method for predicting complete SHPs with limited measurements that cover only a relatively high matric potential range. With

this method, we extended a public dataset to cover dry conditions, and then applied it to develop PTFs that can predict SHPs

from saturation to oven dryness. This was achieved by applying the complete soil hydraulic model proposed by Wang et al.

(2021), which accounts for both capillary and adsorptions forces and overcomes the unrealistic decrease near saturation for

fine-textured soils. The impact of vapor diffusion was also considered. We further applied this method in extending an existing

capillary-based PTF to dry conditions. The results showed that: 1) the proposed method performs very well in describing

SHPs over the entire moisture range; 2) the PTFs developed with the extended observations and the complete model show a

superior prediction performance, especially for the hydraulic conductivity; and 3) the extended capillary-based PTF improves

the performance in describing SHPs under dry conditions.
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Abstract

The commonly applied pedotransfer functions (PTFs), which predict soil hy-
draulic properties (SHPs) from easily measured soil properties such as texture
information, often account only for capillary forces. Recent advances in soil
hydraulic modeling suggest that, to improve the prediction of SHPs under dry
conditions, the impact of adsorption forces has to be taken into account. How-
ever, the lack of observations in particularly dry conditions, due to the difficult
and time-consuming measurement, hinders the development of PTFs that pre-
dict SHPs from saturation to oven dryness. In this paper, we first present a
simple method for predicting complete SHPs with limited measurements that
cover only a relatively high matric potential range. With this method, we ex-
tended a public dataset to cover dry conditions, and then applied it to develop
PTFs that can predict SHPs from saturation to oven dryness. This was achieved
by applying the complete soil hydraulic model proposed by Wang et al. (2021),
which accounts for both capillary and adsorptions forces and overcomes the un-
realistic decrease near saturation for fine-textured soils. The impact of vapor
diffusion was also considered. We further applied this method in extending an
existing capillary-based PTF to dry conditions. The results showed that: 1) the
proposed method performs very well in describing SHPs over the entire moisture
range; 2) the PTFs developed with the extended observations and the complete
model show a superior prediction performance, especially for the hydraulic con-
ductivity; and 3) the extended capillary-based PTF improves the performance
in describing SHPs under dry conditions.

1. Introduction

Soil hydraulic properties (SHPs), including the soil water retention curve
(SWRC) and the hydraulic conductivity curve (HCC), are crucial parameters
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in water and solute transport simulation. However, the experimental determi-
nation of these parameters is expensive, time-consuming, and can be difficult,
especially under very dry conditions (Vereecken et al., 2010). For large-scale
applications, the experimental measurements can even be impractical, given
the requirement for a large number of measurements. As a result, pedotransfer
functions (PTFs), which relate SHPs to easily measured soil properties such
as soil texture, serve as a standard method for predicting SHPs, especially in
large-scale field-based applications (e.g., Zhang et al., 2018; Dai et al., 2019).

The general way of developing a PTF is fitting the measured SHPs in a dataset
with soil hydraulic models to obtain the parameters, and then developing the
relationships between the parameters and the easily measured soil properties
such as soil texture through the use of regression methods. Over the past few
decades, many PTFs have been developed, and great efforts have been made to
improve their performance, mainly through including large measured datasets
(e.g., Wösten et al., 1999; Nemes et al., 2001; Weynants et al., 2013; Tóth et al.,
2015), adding additional soil properties such as organic content or soil chemistry
information as the input (e.g., Rawls & Pachepsky, 2002; Pachepsky & Rawls,
2004; Børgesen & Schaap, 2005; Pachepsky et al., 2006; Børgesen et al., 2008;
Tóth et al., 2015; Szabó et al., 2021), and applying more powerful machine
learning methods such as nearest neighbor methods, support vector machine, or
random forest (RF) (e.g., Nemes et al., 2006; Lamorski et al., 2008; Araya &
Ghezzehei, 2019; Szabó et al., 2021). Useful reviews of PTF development can
be found in Wösten et al. (2001), Pachepsky and Rawls (2004), Vereecken et al.
(2010), and Van Looy et al. (2017), among others.

However, almost all the soil hydraulic models applied for developing PTFs are
capillary-based. For example, the most widely applied model is the well-known
van Genuchten (1980)-Mualem model (1976) (hereafter referred to as the VGM
model). While these models have a good ability to describe SHPs in the high
to medium moisture range, the failure of these capillary-based models has long
been recognized under low water content conditions (e.g., Nimmo, 1991; Rossi
& Nimmo, 1994; Tuller & Or, 2001; Wang et al., 2013). The reason for this is
that these models do not consider the impact of adsorption forces, which are
dominant in a low water content situation (e.g., Tuller & Or, 2001; Tokunaga,
2009; Wang et al., 2016; 2018; Chen et al., 2017). As drylands cover nearly
41.3% of the land surface (Robinson, 2015), understanding soil water dynamics,
especially in the dry moisture range, as well as their impact on evapotranspira-
tion and other related processes, is crucial for the understanding of the global
water and energy cycles and their response to climate change. For example, in
a recent study by Wang et al. (2019), they argued that adsorption forces have
a significant impact on soil evaporation estimation. The simulation and predic-
tion of these related processes requires the accurate determination of SHPs that
cover dry conditions, where the adsorption forces play a crucial role.

Early efforts were mainly focused on developing a complete SWRC over the
entire moisture range (e.g., Nimmo, 1991; Rossi & Nimmo, 1994; Fredlund &
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Xing, 1994; Fayer & Simmons, 1995; Webb, 2000; Lu et al., 2008). Tuller and Or
(2001) were the first to include non-capillary forces when developing a complete
HCC. Since then, a series of complete models have been proposed that consider
the coupled effects of capillary and adsorption forces, which have performed
well in describing SHPs from saturation to oven dryness (e.g., Lebeau & Kon-
rad, 2010; Zhang, 2011; Wang et al., 2016; Liao et al., 2018; Stanić et al., 2020
among others). However, to describe a complete HCC, an additional parameter
that represents the saturated film conductivity is often required, which is diffi-
cult to determine. Differing from these developed models that treat the total
conductivity as a sum of the capillary conductivity and the non-capillary con-
ductivity, Wang et al. (2018) proposed a new model to describe the HCC over
the entire moisture range, using a single equation. Compared to the commonly
used capillary-based models (such as the VGM model), this model requires no
extra parameters, and shows a very good ability in predicting the HCC. To-
gether with the SWRC described by the Fredlund and Xing (1994) model, this
represents an easy way to develop new PTFs that can predict SHPs over the
entire moisture range. For example, by applying this Fredlund and Xing (1994)-
Wang et al. (2018) model (referred to as the FXW model hereafter), Rudiyanto
et al. (2021) recently developed a new PTF and achieved a significant reduction
in root-mean-square error for both the SWRC and HCC, in comparison with
the VGM model based Rosetta3 PTF developed by Zhang and Schaap (2017)
and another complete PTF proposed by Weber et al. (2020). The original FXW
model, however, does have one limitation, i.e., the HCC drops dramatically near
saturation for soils with small n value, which is a parameter used in shaping the
SWRC (Wang et al., 2018; de Rooij et al., 2021). Wang et al. (2021) recently
improved the FXW model further to overcome this shortcoming by introducing
a non-zero air-entry value.

Besides the limitations of the model structure, another crucial limitation in de-
veloping PTFs that aim to predict SHPs from saturation to oven dryness comes
from the limited measurements. That is, the applied soil hydraulic data for
PTF development often do not include measurements from very dry conditions.
For example, most of the SWRC measurements in the UNsaturated SOil hy-
draulic DAtabase (UNSODA) adopted by Rudiyanto et al. (2021) are for a
matric potential of higher than about −1.0 × 103 cm. Lu et al. (2014) showed
that the observed data should cover a more negative potential range to achieve
an accurate description of the SWRC over the entire moisture range. When
it comes to the HCC, the measurements under dry conditions are even fewer.
Specifically, only 29 samples in the UNSODA database cover the conductivity
measurements at a matric potential of higher than −1.0 × 104 cm. Since the
number and the quality of the measured data are the key points for develop-
ing PTFs, the lack of measurements under low moisture conditions significantly
limits the reasonable development of PTFs that predict SHPs over the complete
moisture range. This limitation comes from the SHP observations, which, to
the best of our knowledge, is an aspect that has rarely been considered or dealt
with in the literature.
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Meanwhile, many of the existing PTFs that only consider capillary forces were
developed on different, usually non-public datasets (e.g., Tóth et al., 2015; Szabó
et al., 2021). Thus, it would be beneficial to develop a simple way to predict
SHPs from saturation to oven dryness with these existing PTFs.

Accordingly, the purpose of this study was: 1) to develop a method for predicting
SHPs over the entire moisture range with limited observations that cover only
a relatively high potential range; 2) to develop new PTFs that account for both
capillary and non-capillary effects with the application of this extended method;
and 3) to provide an easy way to extend the existing PTFs to dry conditions.

2. Methods and Materials

2.1. The soil hydraulic model that accounts for both capillary and
non-capillary effects

In this study, the FXW model and its modification proposed recently by Wang
et al. (2021) were applied to describe the SHPs over the entire moisture range.

2.1.1. The original FXW model

The original FXW model accounts for the impact of both capillary and adsorp-
tion forces, and requires no additional parameters, compared to the commonly
used capillary models, such as the well-known VGM model.

The SWRC of the FXW model comes from Fredlund and Xing (1994), and is
written as:

where S=� / �s is the saturation degree, with � (L3 L−3) being the volumetric
water content and �s (L3 L−3) the saturated water content; h (L) is the matric
potential; hr, with a typical value of −1.5 × 103 cm, is simply explained as
a shaping factor; and h0, which was set as −6.3 × 106 cm, according to the
suggestion of Schneider and Goss (2012), is the matric potential corresponding
to a water content value of 0. Γ(h) is expressed as:

where � (L−1), n, and m are all the fitted parameters, and e is the Euler’s number
(the e constant).

The HCC of the FXW model that accounts for liquid flow was developed by
Wang et al. (2018), and is expressed as:

where Kl (L T−1) and Ks (L T−1) are the liquid conductivity and the saturated
hydraulic conductivity, respectively; and l is the fitting parameter, which has a
typical value of 3.5, as suggested by Wang et al. (2018).

2.1.2. The modified FXW-M model

The HCC of the original FXW model, however, drops dramatically near satu-
ration for n values close to 1 (Wang et al., 2018; de Rooij et al., 2021). This
comes from the non-zero d�/dh at the matric potential of zero (van Genuchten
& Nielsen, 1985; Schaap & van Genuchten, 2006; de Rooij et al., 2021). To
overcome this limitation, Wang et al. (2021) recently proposed a modified HCC
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by introducing a non-zero air-entry value hs, following Vogel et al. (2000) and
Ippisch et al. (2006). The new HCC is written as:

where hs is −0.2 cm, as suggested by Wang et al. (2021).

The new HCC model described with equation (4), together with the SWRC
described in equation (1), are termed the FXW-M model. For a detailed de-
scription of the FXW-M model, we refer the reader to Wang et al. (2021).

2.1.4. The impact of vapor diffusion

In this study, since vapor diffusion also contributes to the total water flux under
very dry conditions, the isothermal vapor diffusion was also considered. Follow-
ing Saito et al. (2006), the isothermal conductivity of vapor flow can be written
as:

where �v (kg m−3) is the saturated vapor density, and Dv (m2 s-1) is the vapor
diffusivity in soil, which can be written as:

where �a is the air-filled porosity; � is the tortuosity factor calculated according
to Millington and Quirk (1961); and Da (m2 s−1) is the vapor diffusivity in air,
which can be expressed as:

where T (K) is the absolute temperature.

The total conductivity K (L T−1) is therefore written as:

2.2. Predicting SHPs over the entire moisture range with limited
observations

2.2.1. The SWRC

Measured soil hydraulic data are rare at a very low matric potential, limiting the
application of a complete model. Fortunately, it is well-known that the SWRC,
which is controlled mainly by the adsorption forces under dry conditions, can be
described by a semi-log scale linear relationship (Campbell & Shiozawa, 1992).
This is generally in the form of:

with SL being the dimensionless slope.

The soil water content and then SL are determined by the specific soil surface
area, which is, in turn, controlled mainly by the clay fraction. Several rela-
tionships between the clay fraction and SL can be found in the literature (e.g.,
Resurreccion et al., 2011; Schneider & Goss, 2012; Arthur et al., 2013). Jensen
et al. (2015) also included the impact of the silt fraction and organic matter in
deriving SL.

However, the referred relationships were usually built through simple regression
with the application of limited datasets. For example, Resurreccion et al. (2011)
developed an exponential relationship between 1/SL and the clay fraction based
on 41 soil samples, and Schneider and Goss (2012) provided a linear relationship
between these two parameters for 18 soil samples.
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In this study, by collecting a total of 275 soil samples from the literature (as
described in Section 2.7), we built a new relationship between SL and the soil
texture information, through the RF model, which is a powerful machine learn-
ing method.

With this developed method, the SWRC under dry conditions can thus be pre-
dicted from the soil texture information, including the sand, silt, and clay per-
centages, and the bulk density. It should be noted that, for the applied datasets,
the measurements were generally performed in very dry conditions, where the
van der Waals forces dominate (e.g., Resurreccion et al., 2011; Schneider & Goss,
2012). Therefore, an upper boundary of about −1.0 × 105 cm for the matric
potential was set when applying this method (Tuller & Or, 2005).

In this study, three additional water retention data points at the matric poten-
tial of −1.0 × 105 cm, −5.0 × 105 cm, and −1.0 × 106 cm, respectively, were
predicted with the derived method. Together with the observations at a rela-
tively high matric potential range, they were fitted with the SWRC, as described
in equation (1), to obtain the parameters.

2.2.2. The HCC

The hydraulic conductivity, which accounts for the adsorption forces, is deter-
mined by the specific surface area SA (L2 L−3) and the film thickness f (Bird,
1960). A detailed description of a method for predicting conductivity data from
the SWRC was presented in a recent study by Wang et al. (2021). This is
briefly introduced as follows.

The conductivity accounting for the adsorption forces can be expressed as (Wang
et al., 2017; Lebeau & Konrad, 2010):

where � is the water density (9.98 × 102 kg m−3), g is the acceleration of gravity
(9.81 m s−2), and � is the fluid viscosity (1.005 × 10−3 Pa s at 293 K). B(f ) is
the correction factor that accounts for the modified viscosity for a film thickness
of thinner than 10 nm (Or & Tuller, 2000; Lebeau & Konrad, 2010), which is
expressed as:

where a is 5.53 × 10−10 m at 293 K, and Ei(−𝑥) = − ∫∞
𝑥 [ exp(−𝑡)

𝑡 ]dt is the
exponential integral.

The film thickness f is controlled by both the electrostatic forces (Langmuir,
1938; Tokunaga, 2009; 2011) and the van der Waals forces (Iwamatsu & Horii,
1996), and is expressed as:

where � is the relative permittivity of water (78.54); �0 is the permittivity of free
space (8.85 × 10−12 C2 J−1 m−1); kB is the Boltzmann constant (1.381 × 10−23

J K−1); T is the temperature in kelvins; z is the ion valence, which was set
to 1 in this study; and ec is the electron charge (1.602 × 10−19 C). Asvl is the
Hamaker constant for solid-vapor interactions, which was set to −6.0 × 10−20

J, following Tuller and Or (2005).

6



The SA in equation (9) can be approximately estimated by dividing the soil
water content by the film thickness, as suggested by Tuller and Or (2005). By
taking a typical matric potential hm, the specific surface area can be estimated
as:

By substituting all the parameters, the calculated hydraulic conductivity by
equation (10) would be:

where b(hm) is 1.084 × 10−4 cm d−1, 8.678 × 10−6 cm d−1, and 2.693 × 10−6

cm d−1 at the three selected potentials of −1.0 × 104 cm, −5.0 × 104 cm, and
−1.0 × 105 cm, respectively.

2.3. Parameter optimization

With the extended SHP observations, the soil hydraulic model is optimized to
derive the parameters. The objective function to be minimized is defined as:

where n� and nK are the number of data pairs for the retention and the con-
ductivity function, respectively; �i and Ki are the measured water content and
hydraulic conductivity, respectively; and and are the model-estimated values,
respectively. We set w� = 1000 and wk = 4 as the weights of the water content
and conductivity data. Note that, for datasets with only the SWRC, wk should
be set to 0. b = [log10 (�), log10(n), log10 (m), �s, log10 (Ks)] is the parameter
vector used for the optimization, and l was set to 3.5, as suggested by Wang et
al. (2018).

For the parameter optimization, an upper boundary of 1.5 was set for m for
all of the models, as suggested by Wang et al. (2016). For parameter n, a low
boundary of 1.1 was set for the original FXW model (Rudiyanto et al., 2021),
while a value of 1.01 was set for the FXW-M model. The higher low boundary
limit of n for the FXW model was set to avoid the dramatic decrease of the HCC
(Wang et al., 2018). The optimization was achieved by applying the shuffled
complex evolution (SCE-UA) method developed at the University of Arizona,
as proposed by Duan et al. (1992).

2.4. Developing PTFs through the random forest model

With the known soil texture information and the optimized parameters, PTFs
that can predict SHPs from saturation to oven dryness can be developed.

In this study, we developed three PTFs in regard to the input information.
Model H1 represents the model input of the soil class, model H2 accounts for the
input of the sand, silt, and clay percentages, while model H3 has an additional
input of bulk density. For models H2 and H3, both the original data and the
extended data obtained with the method described in Section 2.2 were applied.
Because the observations were generally sufficient for describing the SHPs over
the entire moisture range, when the measurements reached the potential of
about -1.0 × 104 cm (Lu et al., 2014), only the datasets with measurements
above this potential were extended.
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For developing PTFs, the RF model was adopted. The RF model (Breiman,
2001) is regarded as one of the best machine learning techniques (e.g., Cutler
et al., 2007; Boulesteix et al., 2012). Predictions in RF are generated as an
ensemble estimate by constructing a lot of decision trees through bootstrap
samples (Hengl et al., 2018). RF is easy to adopt by the use of a package such
as the Ranger package (Wright & Wager, 2017) implemented in R software. The
RF model has been successfully applied in predicting soil properties (e.g., Hengl
et al., 2017; Araya & Ghezzehei, 2019; Szabó et al., 2021).

When applying the RF model, the number of trees was set to 500, which enabled
a stable root-mean value for the predictions. The minimum leaf size was derived
by optimization, and a low boundary of 5 was set for all the parameters.

2.5. Extending the existing capillary-based PTFs to predict SHPs
over the entire moisture range

With the extended method, as described in Section 2.2, the existing PTFs that
account for capillary forces can be easily extended to predict SHPs over the
entire moisture range.

In this study, we took the Rosetta3 PTF proposed by Zhang and Schaap (2017),
which was developed based on the VGM model that accounts for only capillary
forces, as an example. Firstly, the SHPs that were dominated by capillary forces
were predicted with Rosetta3. This low boundary for the capillary-dominant
zone is defined by a critical matric potential hc that marks the end of capillary
continuity, which can be expressed following Lehmann et al. (2008) as:

where �vG and mvG are the parameters of the VGM model (Appendix A).

Secondly, the predicted SHPs from 0 to hc, together with the extended SHPs, as
calculated by equations (9) and (14), were fitted with the FXW model to derive
the parameters, which can be applied to describe the SHPs from saturation to
oven dryness.

2.6. Model performance statistics

The root-mean-square error (RMSE), mean error (ME), and coefficient of de-
termination (R2) were applied for evaluating the model performance.

The RMSE is defined as:

where N represents the number of data pairs, and oi and ̂𝑜𝑖 are the measured
and estimated values, respectively.

The ME for quantifying systematic errors is defined as:

The R2 is defined as:

where o is the mean value of oi.

2.7. Data
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The UNSODA database (Nemes et al., 2001) was applied to develop the PTFs.
Only the measurements from drying experiments in the laboratory were chosen,
to avoid the impact of hysteresis. For the data selection, a low boundary of
1.0 g cm cm−3 was set for the bulk density, and an upper boundary of 0.65 cm3

cm−3 was set for the saturated water content. In addition, a low boundary
of −300 cm for the matric potential, which is a value close to the so-called
field capacity, was set for the SWRC data to ensure the representation of the
measurements. Considering all the limitations, a total of 422 soil samples were
selected, with a total of 4,887 retention points. Among the samples, 215 soil
samples also included HCC measurements, with a total of 3,966 points. The soil
texture distribution of the selected soil samples is shown in Figure 1. In order
to test the performance of the PTFs, the selected data were randomly divided
into two groups, i.e., a training set with 70% of the data and a test set with the
remaining 30% of the data.

Figure 1. Soil texture distribution of the 422 selected soil samples from the
UNSODA database

To build the relationship between SL in equation (9) and the soil texture infor-
mation, 62 samples from Resurreccion et al. (2011) and Jensen et al. (2015)
were selected. In addition, 213 soil samples from the UNSODA database with
a minimum water potential of less than −1.0 × 104 cm were selected to derive
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the SL through inverse modeling. This was achieved by optimizing the SWRC
with the FXW model to obtain the parameters, and then predicting the water
content values at a matric potential of −1.0 × 105 cm, −5.0 × 105 cm, and −1.0
× 106 cm. The SL was then derived by fitting equation (9) with these predicted
water retention points.

3. Results

3.1. Prediction of the complete SHPs with limited observations

3.1.1. Determination of SL from the soil texture information

Figure 2. Prediction of SL with the random forest method

Figure 2 presents the predicted SL obtained with the RF method. A total of 275
soil samples, with a variety of soil textures, were used for the testing. As shown,
the SL in equation (9) can be well predicted with the soil texture information
by applying the RF method, particularly for 1/SL values of less than 0.04. A
higher SL generally means a higher clay fraction in the soil sample. For more
fine-textured soils (with much higher 1/SL values), the method underestimates
the 1/SL value for some of the UNSODA database. It should be noted that,
for the UNSODA database, the 1/SL values were derived from inverse modeling
rather than direct measurement. As a result, there is higher uncertainty than in
the data from Resurreccion et al. (2011) and Jensen et al. (2015). The overall
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performance of the 1/SL estimation is very good, with an RMSE of 0.0086 and
an R2 of 0.93. The required inputs are the sand, silt, and clay percentages, as
well as the bulk density.

3.1.2. Prediction of a complete SWRC with limited observations

With the SL predicted from the soil texture information, three water retention
points at a matric potential of −1.0 × 105 cm, −5.0 × 105 cm, and −1.0 ×
106 cm could be estimated with equation (9). These three points, together with
the measurements at a relatively high matric potential range, were then fitted
with the FXW model. As shown in Figure 3, this extended method generally
yields a good performance in describing the SWRC from saturation to oven
dryness. The observations at the non-fitted range are captured well by the
proposed model, especially when the measurements reach the potential range of
about −1.0 × 103 cm. The RMSE is 0.017 cm3 cm−3, which is very close to the
0.013 cm3 cm−3 of the fitted results with all the measurements (Figure 3a). The
model performances with measurements higher than −100 cm and −300 cm are
also presented in Figure 3. These two situations also show good agreement with
the observations for a water content of less than about 0.2 cm3 cm−3, whereas
there is underestimation for some soil samples in the wet moisture range where
capillary forces dominate.
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Figure 3. Prediction of the complete SWRC with limited observations. The fit-
ting results in (a) represent the results obtained with all the observations, while
those in (b), (c), and (d) represent the fitted results obtained with only measure-
ments for a matric potential higher than −100 cm, −300 cm, and −1000 cm,
respectively, as well as the three additional water retention points predicted
with equation (9) in dry conditions.

In contrast, the fitted results obtained without the extended retention points
show significant overestimation of the water content in dry conditions, with
roughly double the RMSE compared to those results obtained with the extended
method (Figure S1 in the supplementary material).

3.1.3. Prediction of a complete HCC with limited observations

Figure 4. Prediction of a complete HCC with limited observations. The fitting
results in (a) represent the results obtained with all the observations, while those
in (b), (c), and (d) represents the fitted results obtained with only measurements
for a matric potential higher than −100 cm, −300 cm, and −1000 cm, respec-
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tively, as well as the three additional hydraulic conductivity points predicted
with equation (14) in dry conditions.

Figure 4 indicates that the extended method, as presented in Section 2.2.2,
performs well in predicting the hydraulic conductivity under dry conditions.
For observations with a low potential boundary of −100 cm and −300 cm, the
RMSElog10(K) is 0.67 and 0.50 cm d−1, respectively. When the observations
reach a potential range of −1.0 × 103 cm, the extended method yields a much
better performance (Figure 4d), with the RMSElog10(K) being 0.39 cm d−1,
which is much closer to the 0.31 cm d−1 of the fitted curve obtained with all the
observations. In contrast, the predictions obtained without the extended data
yield a much poorer performance under dry conditions, especially for the curve
with observations higher than −100 cm, with a lower R2 of 0.85 and a much
higher RMSElog10(K) of 0.80 cm d−1 (Figure S2 in the supplementary material).

3.2. Development of PTFs with the extended and original data

3.2.1. Model H1

Following the standard of the United States Department of Agriculture, 12 soil
classes were categorized based on the percentages of the sand, silt, and clay
content. For each soil class, we calculated the mean value and the standard
deviation of the five parameters of the FXW-M model (Table 1). Here, we only
provide the mean values derived with the extended data.

It should be noted that, because the particle size of some samples was located
at the boundary of two different classes, these samples accounted for both soil
classes, resulting in the total number of samples exceeding 422. As shown, some
soil classes only cover a few soil samples, so caution should be applied when
applying the mean values of these soil classes.

Table 1. The derived mean value and the standard deviation (SD) of the five
parameters of the FXW-M model for the 12 soil classes.

Soil texture Numa � (1/cm) n m �s (cm3cm-3) log10Ks
b

Mean SD Mean SD Mean SD Mean SD Mean SD
Clay 16(12) 0.10 0.09 2.05 1.49 0.18 0.09 0.53 0.07 1.07 0.62
Clay loam 15(4) 0.08 0.10 1.68 1.01 0.26 0.13 0.45 0.06 0.93 0.35
Loam 50(33) 0.08 0.09 1.73 1.63 0.37 0.15 0.47 0.09 1.25 0.79
Loamy sand 48(16) 0.04 0.02 3.32 2.12 0.72 0.32 0.39 0.07 1.74 0.57
Sand 99(48) 0.04 0.03 4.62 2.79 0.84 0.30 0.36 0.05 2.13 0.76
Sandy clay 3(0) 0.00 0.00 2.20 1.99 0.26 0.16 0.41 0.04 Nan Nan
Sandy clay loam 29(5) 0.05 0.07 2.08 2.21 0.34 0.16 0.39 0.05 0.58 0.28
Sandy loam 63(24) 0.03 0.04 2.20 1.97 0.58 0.22 0.37 0.07 0.92 0.56
Silt 3(3) 0.01 0.00 1.86 1.19 0.74 0.27 0.42 0.03 0.97 0.87
Silty loam 86(58) 0.04 0.07 1.41 1.02 0.56 0.26 0.44 0.05 0.73 0.59
Silty clay 8(8) 0.08 0.07 2.50 1.37 0.12 0.06 0.48 0.10 0.60 0.45
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Soil texture Numa � (1/cm) n m �s (cm3cm-3) log10Ks
b

Silty clay loam 9(4) 0.08 0.09 2.74 3.02 0.29 0.16 0.49 0.06 1.03 1.06

a. the number in brackets is for conductivity. b. Nan means no dataset

3.2.2. Models H2 and H3

For the original FXW model and its modified form, the training and test perfor-
mance of the parameters, represented by the R2, RMSE, and ME, are presented
in Tables 2–3, for both models H2 and H3.

In the training case, the FXW model, together with the RF method, performs
very well. Taking model H3 as an example, the PTFs developed with the original
data have R2 values of higher than 0.75, the RMSE varies from 0.04 for �s to
0.60 for log10(Ks), and the ME has a magnitude of about 1.0×10-3 for all five
parameters. The test case shows a comparable performance with the training
case in predicting the four parameters for describing the SWRC, with slightly
lower R2 and higher RMSE values (Tables 2 and 3). The worst performance is
for parameter log10(�), with the highest RMSE of 0.45 cm−1. When it comes to
parameter log10(Ks), the test case of the FXW model, however, yields a much
poorer performance. The R2 decreases from 0.79 to 0.22, the RMSE increases
from 0.60 to 0.87 cm d−1, and the ME increases from −0.003 to 0.015 cm d−1

when compared to the training case (model H3). In contrast, the FXW-M
model significantly improves the prediction of log10(Ks) in the test case, with
the statistical values close to those of the training case.

Compared to the PTFs developed with the original data, the PTFs developed
with the extended data show a similar performance in predicting the four pa-
rameters of the SWRC for both the training and test cases. The PTFs show
a slight improvement in predicting parameters log10(�) and log10(m), and a re-
duced performance for parameter log10(n). In contrast, for parameter log10(Ks),
the extended data yield a significant improvement, especially for the test case
of the FXW model. Specifically, the R2 increases from 0.22 (original) to 0.56
(extended) and the RMSE reduces from 0.87 to 0.68 cm d−1. It should be noted
that Ks in this study was treated as a free fitting parameter. However, if the
observations of conductivity only cover a limited potential range, the fitted Ks
would be biased. The FXW-M model also improves the prediction of log10(Ks)
with the extended data, but in a magnitude that is much less than for the FXW
model.

The comparison between models H2 and H3 shows that model H3, with the ad-
ditional input of the bulk density, achieves an overall improvement in predicting
the five model parameters.

Table 2. Model H2. The R2, RMSE, and ME between the fitted parameters
and the predicted ones with the developed PTFs, including both the training
and test cases.
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Model
H2

R2 RMSE ME

EXT Original EXT Original EXT Original
log10(�) Train −0.0003−0.0029

Test
log10(n)Train −0.0005

Test −0.0405−0.0222
log10(m)Train −0.0012

Test −0.0062
�s Train −0.0001

Test −0.0022−0.0039
log10(Ks)
-
FXW

Train −0.0072

Test
log10(Ks)
-
FXW-
M

Train −0.0037−0.0008

Test −0.0001−0.0096

Table 3. Model H3. The R2, RMSE, and ME between the fitted parameters
and the predicted ones with the developed PTFs, including both the training
and test cases.

Model
H3

R2 RMSE ME

EXT Original EXT Original EXT Original
log10(�) Train −0.0012

Test
log10(n)Train −0.0006

Test −0.0368−0.0169
log10(m)Train −0.0012−0.0010

Test −0.0092
�s Train −0.0001

Test −0.0036−0.0044
log10(Ks)
-
FXW

Train −0.0095−0.0035

Test
log10(Ks)
-
FXW-
M

Train −0.0010
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Model
H3

R2 RMSE ME

Test

3.3. Performance of the PTFs

3.3.1. Model H1

For the FXW-M model, the performance of the PTFs developed with the input
of the soil texture classes and the extended data is shown in Figure 5. A generally
good agreement with the observations is achieved for both the SWRC and HCC,
with RMSE values of 0.073 cm3 cm−3 and 0.87 cm d−1, and the R2 being 0.76
and 0.81, respectively.

Figure 5. Model H1 performance. The color bar indicates the data density,
which is also applied for the other figures.

3.3.2. Prediction of SHPs with the PTFs developed from the original
UNSODA data

Figures 6 and 7 present the prediction of SHPs with the different PTFs developed
with the original UNSODA data. In the main text, only model H3 with the input
of the sand, silt, and clay percentages, as well as the bulk density, is described,
while the performance of model H2 is provided in the supplementary material
(Figure S3). Three different soil hydraulic models were applied, i.e., the VGM
model that accounts for the capillary forces, the FXW model that considers the
additional impact of adsorption forces and vapor diffusion, and the modified
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FXW-M model that overcomes the abrupt drop near saturation found with the
FXW model for soils with n values close to 1.

For the SWRC prediction, the VGM model tends to overestimate the water
content in the dry moisture range, while showing underestimation in the wet
moisture range (Figure 6). The overall R2 is 0.87 and the RMSE is 0.050 cm3

cm−3. The FXW model, in contrast, significantly improves the prediction of
water content in both the dry and wet moisture ranges. The reported R2 is 0.89
and the RMSE is 0.043 cm3 cm−3 when evaluating with all the data. For the
test case, the improvement is even more significant. The R2 increases from 0.83
to 0.87 and the RMSE reduces from 0.054 to 0.045 cm3 cm−3. It should be
noted that both the FXW and FXW-M models have the same SWRC equation.

Figure
6. Prediction of the SWRC with the PTFs developed with the original UNSODA
data

When it comes to the prediction of the HCC, the PTF developed with the
VGM model shows the worst performance, with the R2 being 0.75 and the
RMSElog10(K) being 0.98 cm d−1 with the input of the sand, silt, and clay
percentages, and the bulk density (model H3). Significant underestimations are
apparent for conductivity observations of less than about 0.01 cm d−1. When
applying the FXW model that accounts for capillary and adsorption forces as
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well as vapor diffusion, the developed PTF improves the prediction in especially
dry conditions, yielded a higher R2 of 0.77 and a lower RMSElog10(K) of 0.83 cm
d−1. For the test case, however, the PTF developed with the FXW model
overestimates the conductivity, with the RMSElog10(K) being 0.92 cm d−1, which
is even higher than that predicted with the VGM model.

Compared to the FXW model, the FXW-M model provided in Wang et al.
(2021) overcomes the shortcoming of the abrupt drop near saturation for soils
with n values close to 1. With this modified FXW-M model, the developed
PTFs significantly improve the predictions. The reported R2 increases from
0.77 (FXW model) to 0.82, and the RMSElog10(K) decreases from 0.83 (FXW
model) to 0.67 cm d−1. Specifically, the FXW-M model greatly improves the
prediction of the conductivity in the test case, yielding no overestimation of
conductivity. The RMSElog10(K) is 0.72 cm d−1, which is much smaller than
the 0.92 cm d−1 of the FXW model.
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Figure 7. Prediction of the HCC with the PTFs developed with the original
UNSODA data

Figure S3 also provides the predictions of conductivity obtained with the PTFs
developed with the input of the sand, silt, and clay percentages (model H2).
Compared to model H3, the prediction of the water content and hydraulic con-
ductivity with model H2 shows a slightly worse performance for all three soil
hydraulic models. Taking the PTFs developed with the FXW-M model as an
example, the R2 decreases from 0.89 to 0.86 and the RMSE increases from 0.044
(model H3) to 0.049 cm3 cm−3 (model H2) when predicting the water content.
A close examination of the SWRC prediction shows that the difference occurs
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mainly within the range of water content from about 0.4 to 0.6 cm3 cm−3, i.e.,
close to the saturated condition, where model H2 shows significant underesti-
mation. For the HCC, model H2 also obtains a lower R2 of 0.80 and a higher
RMSElog10(K) of 0.70 cm d−1, compared to the 0.82 and 0.67 cm d−1 of model
H3.

3.3.3. Prediction of SHPs with the PTFs developed with the extended
UNSODA data

Figure 8. The performance of model H3 with the PTFs developed with the
extended UNSODA data
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With the extended UNSODA data, the developed PTFs show a significant im-
provement in predicting the HCC, as shown in Figure 8.

For the FXW model, the PTFs developed with the extended data for model H3
reduce the RMSElog10(K) from 0.82 for the original data to 0.73 cm d−1 when
evaluating with all the data. When it comes to the test case, the reduction is
even more significant, from 0.94 to 0.76 cm d−1.

The PTFs developed with the FXW-M model also yield improved prediction of
SHPs with the extended data. Compared to the PTFs developed with the origi-
nal data, the PTFs developed with the extended data reduce the RMSElog10(K)
from 0.67 to 0.65 cm d−1 when testing with all the data. The improvement is
more significant for the test data, with the RMSElog10(K) reduced from 0.72 to
0.68 cm d−1 and the R2 increased from 0.80 to 0.81.

When it comes to the prediction of the SWRC, however, the PTFs developed
with the extended data yield almost the same performance as those developed
with the original data.

The PTFs developed with model H2 yield a similar improvement as those with
model H3 as shown in Figure S4.

3.4. Extending the capillary-based PTFs to predict SHPs from satu-
ration to oven dryness

With the extended SWRC and HCC in dry conditions, the existing PTFs devel-
oped with the capillary-based soil hydraulic models can be easily extended to
the entire moisture range. An example applying the Rosetta3 PTF proposed
by Zhang and Schaap (2017) is shown in Figure 9.

The Rosetta3 PTF was developed with the capillary-based VGM soil hydraulic
model. Due to it not considering the impact of adsorption forces, the VGM
model fails to describe the SHPs under dry conditions (Wang et al., 2018).
Figure 9 demonstrates that the original Rosetta3 PTF results in obvious overes-
timation of the soil moisture and underestimation of the hydraulic conductivity
in dry conditions. Meanwhile, for most of the data in the medium potential
range, the Rosetta3 PTF overestimates the conductivity. The overall R2 is 0.81
and 0.60, and the RMSE is 0.058 cm3 cm−3 and 1.428 cm d−1 for � and log10(K),
respectively.

By applying the extended method, as described in Section 2.5. the extended
Rosetta3 PTF improves the prediction of soil moisture in dry conditions, with
the RMSE reduced from 0.058 to 0.056 cm3 cm−3. The improvement is even
more significant for conductivity, with the R2 increased from 0.60 to 0.66 and
the RMSElog10(K) decreased from 1.428 to 1.196 cm d−1.
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Figure 9. Model performance for the original and the extended Rosetta3 PTF
developed with the capillary-based VGM model.

4. Discussion

4.1. Predicting complete SHPs with limited observations

SHPs are determined by adsorption forces under dry conditions. As the specific
soil surface area is the key factor controlling the film flow that is held by adsorp-
tion forces, this enables us to develop a simple way for predicting SHPs under dry
conditions with the known specific soil surface area, which is in turn controlled
by easily measured soil texture information, such as the clay fraction and bulk
density. When combined with SHPs measured in the capillary-dominant zone,
the developed method shows an excellent performance in predicting complete
SHPs.

An early work by Jensen et al. (2015) presented a method for predicting the
SWRC under dry conditions by building a relationship between a specific water
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content (at the potential of −1.0 × 106 cm) with soil texture information through
simple linear regression. Only 21 soil samples were applied in this study by
Jensen et al. (2015). Here, by applying a more powerful machining learning
method (the RF method), a direct relationship between SL and soil texture
information was derived based on a total of 275 soil samples. Furthermore,
a physically based method was developed for predicting the HCC under dry
conditions with the estimated SWRC.

In practice, this method provides a simple and accurate way for deriving com-
plete SHPs with measurements covering only the wet moisture range; for in-
stance, for a matric potential of higher than −1.0 × 103 cm. This matric range
is covered and can be easily measured with the widely applied tensiometers. No-
tably, the exact boundary where capillarity dominates can be determined from
equation (13) for a given soil (Lehmann et al., 2008).

In the literature, to derive a complete SWRC, several different devices have often
been required. For example, tensiometers for the high matric potential range
(0 to −100 KPa), pressure plate apparatus for high to medium dry conditions
(0 to several MPa), and chilled-mirror dew point devices (WP4-T for example)
for very dry conditions (several to hundreds of MPa). Meanwhile, a long period
is required to reach equilibrium under very dry conditions (Wang et al., 2013).
Therefore, it is very difficult and time-consuming to measure a complete SWRC
directly. For the HCC, measurements in very dry conditions are even more
difficult because of the extremely slow water movement rate, and have rarely
been presented in the literature.

Accordingly, the method described in this paper represents a simple and ac-
curate method for deriving SHPs from saturation to oven dryness with only
measurements from a relatively wet moisture range.

4.2. Limitations of the model structure and SHP observations in PTF
development

Most PTFs provided in the literature show a relatively poor performance un-
der low moisture conditions. Taking the Rosetta3 PTF developed with the
most commonly applied VGM model as an example, it generally presents over-
estimation of moisture and obvious underestimation of conductivity under dry
conditions (Figure 9, and also reported by Zhang & Schaap, 2017 and Rudiyanto
et al., 2021), due to the limitation of the model structure. That is, this kind
of model only accounts for capillary forces while neglecting the impact of ad-
sorption forces that are dominant under dry conditions (e.g., Tuller & Or, 2001;
Tokunaga, 2009; Wang et al., 2016; 2018). When evaluating with the selected
212 soil samples, the VGM model based Rosetta3 PTF also yields significant
overestimation of conductivity for most data in the medium potential range (Fig-
ure 9). In Rosetta3, the PTF for predicting the parameter Ks was developed
with the measured data. As Schaap and Leij (2000) and Schaap et al. (2001),
among many others, have pointed out that applying observed Ks as matching
point can lead to overprediction of conductivities at most matric potentials, due
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to the Ks is sensitive to macropore flow while unsaturated flow occurs in the
soil matrix (van Genuchten & Nielsen, 1985). In contrast, the PTF developed
with the fitted Ks improved the predictions of HCC (Figure 7).

When applying the FXW model that considers both capillary and adsorption
forces, the developed PTFs improve the prediction of soil moisture and conduc-
tivity under dry conditions. However, the developed PTFs with the original
data overestimate the conductivity in the test case (Figure 7). This overes-
timation can be attributed to the abrupt drop near saturation of the FXW
model for soils with small n values (Wang et al., 2018; 2021; de Rooij et al.,
2021). This shortcoming of dramatic decrease is a result of the non-zero d�/dh
at the matric potential of zero (van Genuchten & Nielsen, 1985; Schaap & van
Genuchten, 2006; de Rooij et al., 2021). For these soils, a much higher Ks is
therefore expected when fitting with the observations. Accordingly, if the ap-
plied data include a relatively high proportion of soils with small n values, the
developed PTF tends to overestimate Ks and then overestimate the unsaturated
conductivity for soils with high n values.

In contrast, the PTFs developed with the FXW-M model, which solves the
unrealistic drop by introducing a non-zero air-entry value (Wang et al., 2021),
significantly improves the prediction of conductivity (Figures 7 and 8). We
can also include the impact of vapor diffusion, which only slightly improves
the model performance, mainly due to the limited observations of conductivity
in extremely dry conditions. The significantly improved performance obtained
when considering the impact of adsorption forces and dealing with the unrealistic
decrease near saturation indicates that the limitations coming from the model
structure have to be considered in PTF development, in addition to applying
broader datasets and more model inputs, as well as more powerful machining
learning or deep learning methods.

Furthermore, most measurements of SHPs only cover a relatively high matric
potential range, which is especially true for the HCC. This represents a great
limitation, but is often not considered or dealt with (e.g., Rudiyanto et al.,
2021) when developing PTFs that aim to predict SHPs over the entire moisture
range. Here, we showed that, by applying extended data that cover the dry
conditions, the derived PTFs show a significant improvement in HCC prediction,
in particular, compared with those PTFs developed with the original data. This
suggests that PTFs developed with limited observations can results in obvious
bias in the SHP prediction. For the SWRC, the improvement seen with extended
data is not so obvious. This might be due to the difference in training datasets.
That is, for the SWRC, about a half of the selected data have observations that
cover the potential range of about −1.0 × 104 cm, and might be sufficient for
PTF training. When it comes to the HCC, only 29 of the 215 soil samples have
measurements for a potential of less than −1.0 × 104 cm. Accordingly, the
trained PTF is biased when predicting the HCC in dry conditions. Moreover,
one should keep in mind that the lack of measurements in dry conditions also
hinders the complete evaluation of the proposed PTFs. With more observations
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covering dry conditions, the more physically based PTFs can be expected to
show a better performance.

For PTF development with different inputs, the developed PTF with the input
of bulk density outperforms that with only the input of soil texture percentages,
which is consistent with the findings in other studies of PTF development (e.g.,
Zhang & Schaap, 2017; Rudiyanto et al., 2021). The main improvements are for
prediction in the high water content range, where the H2 model shows obvious
underestimation. As confirmed in Tables 2 and 3, model H3 shows an obvious
improvement in predicting parameter �s when compared to model H2. This can
be attributed to the impact of organic matter and/or the model structure, which
can be reflected (partially) by the bulk density (e.g., Minasny & McBratney,
2018; Rawls et al., 2003).

Furthermore, by applying the extended method, we also showed that the existing
PTFs developed with the capillary-based soil hydraulic models can be easily
extended to achieve an improved performance in the dry moisture range.

In summary, the findings of this study suggest that the impact of the model
structure and limited observations has to be considered in PTF development.
However, to further improve the PTFs that predict SHPs over the entire mois-
ture range, a much broader dataset and the impact of the soil structure (such
as bimodal effects) need to be considered.

5. Concluding Remarks

In this paper, we have presented a simple and accurate method for predicting
complete SHPs with measurements taken only in a relatively high matric po-
tential range. Testing with a broad dataset showed that the method performs
very well in describing the SWRC (with 213 soil samples) and reasonably well
in matching the HCC (with 65 soil samples). This method will be of great
importance in practice, considering the difficult and time-consuming nature of
measuring SHPs under dry conditions.

Based on this method, the SHPs of 422 soil samples (including 215 samples
with HCC measurements) selected from the UNSODA database (Nemes et al.,
2001) were extended to the complete moisture range. These data were then
further applied in developing and testing the PTFs with the use of different
models. The results indicated that the FXW-M model, which accounts for both
capillary and adsorption forces and overcomes the unrealistic decrease of the
HCC near saturation for fine-textured soils, together with the extended data,
obtained the best prediction of SHPs from saturation to oven dryness. This
suggests that the model structure and limited observations play an important
role in PTF development.

The extended method was further applied together with the Rosetta3 PTF
presented by Zhang and Schaap (2017), which accounts for only capillary forces,
to predict the SHPs from saturation to oven dryness. The test results yielded
an obvious improvement in describing SHPs under dry conditions.
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The method presented in this paper and the developed PTFs will be beneficial
for the study of soil water flow and the associated processes in relatively dry
conditions.

Appendix A.

The van Genuchten (1980)-Mualem (1976) model (known as the VGM model)
is denoted as:

and

where S is the efficient water saturation degree in relation to capillary water; �s
and �r are the saturated water content and the residual water content, respec-
tively; K (L T−1) is the soil hydraulic conductivity; Ks (L T−1) is the saturated
hydraulic conductivity; and � (L−1), n, m=1−1/n, l (which generally have a
value of 0.5) are all fitting parameters.
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