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Abstract

This article is composed of one integrated commentary about the state of ICON principles (Goldman et al., 2021) in natural

hazards and a discussion on the opportunities and challenges of adopting them. Natural hazards pose risks to society, infras-

tructure, and the environment. Hazard interactions and their cascading phenomena in space and time can further intensify the

impacts. Natural hazards’ risks are expected to increase in the future due to environmental, demographic, and socioeconomic

changes. It is important to quantify and effectively communicate risks to inform the design and implementation of risk miti-

gation and adaptation strategies. Multihazard multisector risk management poses several nontrivial challenges, including: i)

integrated risk assessment, ii) Earth system data-model fusion, iii) uncertainty quantification and communication, and iv) cross-

ing traditional disciplinary boundaries. Here, we review these challenges, highlight current research and operational endeavors,

and underscore diverse research opportunities. We emphasize the need for integrated approaches, coordinated processes, open

science, and networked efforts (ICON) for multihazard multisector risk management.
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Key Points: 

● Natural hazards pose risks that span across multiple sectors and spatiotemporal scales 

● Effective risk management requires integrated approaches, coordinated processes, open 

science, and networked efforts 

● The ICON approach brings the scientific community, stakeholders, and decision-makers 

together in developing equitable and inclusive risk management strategies 

  

Abstract 

This article is composed of one integrated commentary about the state of ICON principles (Goldman 

et al., 2021) in natural hazards and a discussion on the opportunities and challenges of adopting them.  

Natural hazards pose risks to society, infrastructure, and the environment. Hazard interactions and their 

cascading phenomena in space and time can further intensify the impacts. Natural hazards’ risks are 

expected to increase in the future due to environmental, demographic, and socioeconomic changes. It 

is important to quantify and effectively communicate risks to inform the design and implementation of 

risk mitigation and adaptation strategies. Multihazard multisector risk management poses several 

nontrivial challenges, including: i) integrated risk assessment, ii) Earth system data-model fusion, iii) 

uncertainty quantification and communication, and iv) crossing traditional disciplinary boundaries. 

Here, we review these challenges, highlight current research and operational endeavors, and underscore 

diverse research opportunities. We emphasize the need for integrated approaches, coordinated 

processes, open science, and networked efforts (ICON) for multihazard multisector risk management.   

 

Plain Language Summary 

Natural hazards pose huge risk to life and property. These risks are dynamic and deeply uncertain. A 

comprehensive understanding of natural hazards and proper tools to account for dynamic risk are 

crucial to informing risk management. Integrated approaches, coordinated processes, open science, and 

networked efforts help address multihazard multisector risk management challenges in a 

comprehensive framework.  
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1 Introduction 

Natural hazards drive major damages to communities, infrastructure, and ecosystems across the 

globe. Recent European floods (Cornwall, 2021), droughts in South Africa (Pascale et al., 2020), and 

wildfires (for example in the United States (Swain, 2021) and Euro-Mediterranean region (Giannatos 

et al., 2021)) highlight how human and natural systems are exposed and vulnerable to natural hazards. 

Between 2000 to 2019, natural hazard-related disasters caused over  1 million deaths worldwide and 

over 2 trillion U.S. dollars in global economic losses (United Nations Office for Disaster Risk 

Reduction, 2020). These impacts are expected to rise in the future with coevolving natural and human 

systems subject to the impacts of multiple hazards, including extreme weather events, sea-level rise, 

anthropogenic disturbances, and climate change. There is growing recognition of the critical need to 

improve the understanding and prediction of natural hazards, characterize multihazard multisector risk, 

and enhance the communication of risk and its associated uncertainties to inform the design of effective 

risk management strategies (IPCC, 2021). 

Multihazard multisector risk management requires a comprehensive understanding of different 

interacting systems and processes, including the feedback between human and natural systems (Byers 

et al., 2018; Mora et al., 2018; Piontek et al., 2014). A growing number of scientific studies (e.g., Bates 

et al., 2021; Cook et al., 2018; Hirabayashi et al., 2013; Strömberg, 2007) provide valuable new insights 

on the potential impacts of a single hazard on a specific sector and in a specific region. However, there 

is a lack of integrated frameworks, coordinated processes, open science, and networked efforts that can 

account for the complex interactions across natural and human systems in the context of multiple 

interacting stresses and over a wide range of spatiotemporal scales (Figure 1).  

This commentary highlights the challenges and opportunities for multihazard multisector risk 

management, acknowledging the pressing need for integrated (I) approaches, coordinated (C) 

processes, open (O) science, and networked (N) efforts. We discuss the challenges and research 

opportunities related to i) integrated risk assessment, ii) Earth system data-model fusion, iii) crossing 

traditional disciplinary boundaries, and iv) uncertainty quantification and communication, and further 

emphasize the immediate need for ICON science (Goldman et al., 2021). 

 

2 Challenges and Research Opportunities 

2.1 Integrated Risk Assessment 

A sound understanding of risk drivers and their dynamic interactions is critical to inform the design 

of risk management strategies. Quantifying multihazard multisector risk is challenging as it requires 

the integrated assessment of complex interactions between hazard probabilities, exposure, and the 

vulnerability of the affected human or ecological system to the hazards (IPCC, 2021). In addition, 

multihazard risks are dynamic and are modulated by several factors, including environmental 

degradations, demographic changes, and socioeconomic conditions. Understanding the interactions 

among the risk drivers is crucial to achieving a comprehensive view of the integrated system. 

Developing an integrated system requires a priori planning to integrate different components while 

ensuring open access and interoperability across data types and models.  

Earth system modeling efforts are generally focused on understanding the impacts of a single 

hazard in isolation, emphasizing risk assessment in limited sectors. However, these individual hazards 

often demonstrate compounding and cascading behaviors, where the resulting multihazard multisector 

risk becomes increasingly difficult to assess using conventional techniques. Furthermore, the 

conventional risk assessment techniques are mostly concentrated on predicting hazards instead of the 

actual risk or impacts. Risk predictability is often limited to decision-making across a range of 

spatiotemporal scales due to the lack of coordinated databases (Fuchs et al., 2012; Rakhal et al., 2021). 

https://paperpile.com/c/NK5J1U/k77q
http://paperpile.com/b/NK5J1U/k77q
http://paperpile.com/b/NK5J1U/k77q
https://paperpile.com/c/NK5J1U/rTkl+gcio+743O
https://paperpile.com/c/NK5J1U/rTkl+gcio+743O
https://paperpile.com/c/NK5J1U/OUg4+gcmm+t69x+rkDH
https://paperpile.com/c/NK5J1U/OUg4+gcmm+t69x+rkDH
https://paperpile.com/c/NK5J1U/d9GP+TCfM
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Improving the risk prediction capabilities of Earth system models demands networked efforts among 

the scientific community, stakeholders, and agencies for database development and management with 

implications to inform mutually beneficial risk mitigation and adaptation strategies. For instance, 

tropical cyclones, flooding, and landslide risk prediction ahead of sufficient lead time allow risk 

managers enough time to take necessary steps for preparedness and damage mitigation (Burston et al., 

2015; Dale et al., 2014), whereas the lack of predictability in earthquakes complicates the disaster 

mitigation and preparedness activities (Sobolev, 2011). Understanding the natural hazard phenomena 

and driving processes is critical to improving hazard and risk predictability.  

The availability of high-resolution datasets and modeling resources have opened opportunities for 

integrated multihazard multisector risk assessment across a wide range of spatial and temporal scales. 

There is also an increasing acknowledgment of the need to systematically integrate risk management 

efforts into policy, plans, and programs for sustainable development. Strategic and integrated efforts to 

promote community resilience to disasters have been initiated through the Hyogo Framework for 

Action 2005-2015 (HFA, 2021) and the Millennium Development Goals (United Nations, 2021). The 

Sendai Framework for Disaster Risk Reduction (Trogrlić et al., 2017) and the 2030 United Nations 

Sustainable Development Goals (Desa et al., 2016) underscore the pressing need for inclusive and 

integrated multihazard risk management approaches. These networked efforts are designed to be 

mutually beneficial across multiple stakeholders.  

Community risks to natural hazards are often quantified using an index such as the US National 

Risk Index (FEMA, 2021), and Global Climate Risk Index (Eckstein et al., 2021). Scientific 

communities have made substantial progress in understanding the potential impacts of multihazard on 

multiple sectors and from local to global scales (Chester et al., 2019, 2020; Koks et al., 2019; Wright 

et al., 2019). Furthermore, World Meteorological Organization’s guidelines have emphasized the need 

for multi-hazard impact-based forecast and warning services to disseminate accurate and 

understandable weather and climate information (Zhongming et al., 2015). Satellite remote sensing, 

citizen science, and low-tech sensing could be instrumental in supporting local-level risk management, 

particularly in the data-scare region (Talchabhadel et al., 2021; Paul et al., 2018). Additional networked 

initiatives such as community-based modeling and data collection that integrate traditional wisdom, 

indigenous knowledge, and experts’ opinion have been effective for multihazard risk management 

(Miles, 2018; Rakhal et al., 2021; Sanders et al., 2020). An integrated framework promotes synthesis, 

cross-disciplinary integration, and open science across the Earth science communities that can facilitate 

the development of new modeling tools to systematically analyze hazard processes, stressors, and 

responses in a problem-driven solution-oriented framework. 

 

2.2 Earth System Data-Model Fusion 

Recent advances in big data, high-performance computing systems, cloud computing, and 

community-based modeling, among others, have opened the doors for more integrated and coordinated 

efforts on modeling, prediction, and risk assessment of natural hazards (Emerton et al., 2016; 

Farahmand & AghaKouchak, 2013; Yousefi et al., 2020). There are, however, salient challenges that 

the modeling communities across disciplines of natural hazards have recognized. Natural hazards often 

have a diverse impact at various spatial and temporal scales, and hence require a scalable modeling 

effort. The spatial and temporal scales associated with hazards vary with their types, which are often 

incompatible and inconsistent with hazard models, available datasets, and decision-making scales. Data 

collection for localized hazards (e.g., flash-flooding and landslides) is often challenging than for 

hurricanes/cyclones and droughts that generally affect a wider area. The integration of such datasets in 

multihazard models poses a particular challenge in resolving local-scale processes. Also, developing 

https://paperpile.com/c/NK5J1U/00dJ
https://paperpile.com/c/NK5J1U/jmpB
https://hazards.fema.gov/nri/
https://paperpile.com/c/NK5J1U/2noe
https://paperpile.com/c/NK5J1U/HhnD+s7UZ+41uZ+frPy
https://paperpile.com/c/NK5J1U/HhnD+s7UZ+41uZ+frPy
https://paperpile.com/c/NK5J1U/eewE+d9GP+ywUE
https://paperpile.com/c/NK5J1U/AX2v+rAqa+F540
https://paperpile.com/c/NK5J1U/AX2v+rAqa+F540
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FAIR (Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al., 2016) datasets with 

coordinated and networked approaches through interagency and intergovernmental efforts is still a 

challenge. FAIR data and model-based practices in publication and policy reports, for instance, provide 

pathways for advancing discoveries in multihazard research and decision-making through open science. 

Whether datasets are in-situ or remotely sensed, they are not without uncertainties, which adds further 

challenge to integrate with hazard models. The integration of human systems is often challenging in 

such hazard models (Howley, 2021; Sima, 2021), hence the lack of a comprehensive assessment of 

exposure and vulnerability of people and properties to hazards. Also, note that the development and 

maintenance of databases and integrated hazard models demand continuous computational and 

financial resources and networked efforts from researchers in the community and monitoring agencies 

for open access to data. 

The availability of novel observational datasets presents ample opportunities for improving our 

understanding, modeling, and predictions of natural hazards. Data collection has started to become 

coordinated through large research community networks, including the Long-Term Ecological 

Research (https://lternet.edu/), the Great Lake Ecological Observatory Network (https://gleon.org/), the 

United States Geological Survey(https://www.usgs.gov/), the National Ecological Observatory 

Network(https://www.neonscience.org/), and the French network of Critical Zone 

Observatories(https://www.ozcar-ri.org/), among others. However, there is a need for greater 

coordination within each data system to ensure internal consistency and develop crosswalk tools to 

enable the interoperability of data products among these efforts. Recent advances in data assimilation 

and machine learning techniques provide opportunities to integrate high-resolution in-situ and remote-

sensing observations into hazard models. Free and open-source data and code sharing platforms like 

GitHub (https://github.com/) and Google Colaboratory (Carneiro et al., 2018) have been effective tools 

for open science. Open data initiatives, including OpenDRI (https://www.opendri.org/) and 

DesInventar (https://www.desinventar.net/) provide systematic, homogeneous, and compatible 

databases of natural hazards. Recent advances in high-performance computing systems such as the 

National Center for Atmospheric Research Cheyenne 

(https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne) allow the wider research 

community to run computationally intensive numerical models. In addition, cloud-based tools such as 

Google Earth Engine (Amani et al., 2020), Amazon Web Services (Neela et al., 2021) and EOfactory 

(https://eofactory.ai/) have been crucial to forging collaborations among diverse research communities 

worldwide. 

Coordinated modeling efforts across disciplines can promote the Earth system modeling by 

developing, supporting, and disseminating open-source codes, documentation, and integrated software 

modules.  Some examples include National Center for Atmospheric Research (NCAR) community 

models (Neale et al., 2010), International Institute for Applied System Analysis’ community water 

model (Burek et al., 2020), Community Surface Dynamics Modeling System (CSDMS) (Tucket et al., 

2021), European Flood Awareness System (EFAS) (Smith et al., 2016), and Global Landslide Hazard 

Assessment Model (LHASA) with Global Landslide Catalog (GLC) (Kirschbaum & Stanley, 2018). 

These modeling resources can help improve the understanding of complex connections that drive the 

Earth system and predict high-impact hazard events to potentially inform decisions about policy and 

resource allocation for hazard mitigation and adaptation strategies. 

 

2.3 Uncertainty Quantification and Communication 

Risk communication requires a sound understanding of future risks with quantification of 

associated uncertainties, and a coordinated approach among disciplines (Scolobig, 2015). Natural 

https://paperpile.com/c/NK5J1U/Hs6s
https://paperpile.com/c/NK5J1U/zM4q+Nu3u
https://paperpile.com/c/NK5J1U/fXNa
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hazard risks are dynamic and deeply uncertain. Deep uncertainty refers to a situation “where the system 

model and its input parameters are not known or widely agreed on by the stakeholders to the decision” 

(Lempert, 2002). For instance, deep uncertainty in flood risk projections arises from different system 

components, and propagates along the modeling chain that consists of emission scenarios, general 

circulation models, downscaling techniques, hydrological models, hydraulic models, and exposure and 

vulnerability components (Sharma et al., 2021). All components of the ICON science permeate through 

this modeling chain of uncertainty quantification. In addition, these uncertainties often propagate 

through multisector systems. For example, agricultural planning and management efficacy are subject 

to uncertainties stemming from an integrated agricultural, atmospheric, and hydrologic modeling 

systems. However, current approaches to estimate hazards sample only a relatively small subset of the 

known unknowns such as model structures and parameters while neglecting the cross-sectoral feedback 

mechanisms. Such assumptions ignore the impacts of key uncertainties on hazards and dynamics. This 

can drastically underestimate the tails of the hazard probability distribution (Wong et al., 2018). In 

addition, natural hazards’ warnings/alerts are communicated generally through the discrete single-

valued warning products. Most often, such products do not openly provide associated uncertainty 

measures and make them publicly available. It could be partly because different studies have 

highlighted “uncertainty” as a major challenge in risk communication, including the challenges 

associated with establishing reliable sources of warning, consistency in the communication strategies, 

the credibility of the source, and accuracy of the information (Carr et al., 2016). Failing to effectively 

communicate risk and uncertainty could lead to overconfidence in risk perception and result in poor 

decisions and outcomes (Zarekarizi et al., 2020). Uncertainty characterization is, therefore, critical to 

improving the credibility of natural hazards and risk information. 

 

2.4 Crossing Traditional Disciplinary Boundaries  

Multihazard multisector risk management requires integrating multiple areas of expertise that 

bring together different disciplines in multi-, inter-, and/or trans-disciplinary research (Wehrden et al., 

2019). Such integration can span across Earth science, engineering, social science, data science, and 

decision science, among others. For instance, the development of flood prediction and information 

dissemination systems require reliable weather predictions (atmospheric science), land surface 

modeling (Earth science), big data analysis (data science), high-performance computing system 

(computer engineering), a user-friendly web-based information portal (information science), risk 

communication (social science), and a continuous automated monitoring network (electrical/electronic 

engineering). It further demands coordinated approaches and networked efforts that are designed for 

mutual benefit among governmental/non-governmental institutions, industries, policymakers, decision-

makers, and practitioners. However, designing, implementing, and evaluating cross-disciplinary, 

mutually beneficial research remains challenging. Researchers, research institutions, and funding 

organizations still lack a concrete framework for promoting and implementing mechanisms to foster 

ICON-based research collaborations. In addition, differing research methods, languages, and 

knowledge barriers among disciplines compound the complexity of ICON science implementation 

(Barringer et al., 2020; Pischke et al., 2017).   

The key question is: How can we promote and strengthen ICON-based cross-disciplinary research? 

Scientific communities have recognized the need for cross-disciplinary research. Nonetheless, the full 

use of ICON principles remains nascent. The National Research Council Committee on Facilitating 

Interdisciplinary Research (NRC, 2005) identified key driving forces to promote interdisciplinary 

research: i) the inherent complexity of nature and society, ii) the desire to explore problems and 

questions that are not confined to a single discipline, iii) the need to solve societal problems, and iv) 

https://paperpile.com/c/NK5J1U/lxF8
https://paperpile.com/c/NK5J1U/ZbtA
https://paperpile.com/c/NK5J1U/tFyr
https://paperpile.com/c/NK5J1U/WITB
https://paperpile.com/c/NK5J1U/2hP8
https://paperpile.com/c/NK5J1U/2hP8
https://paperpile.com/c/NK5J1U/fYrw+m8pa
https://paperpile.com/c/NK5J1U/34Am
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the power of new technologies. In addition, collaborative research proposals have been gaining 

increasing emphasis from funding organizations. For example, the United States National Science 

Foundation (NSF) adopts convergence as one of the Ten Big Ideas for future NSF investments (NSF, 

2021). NSF identifies convergence research as having two primary characteristics: i) research driven 

by a specific and compelling problem, and ii) deep integration across disciplines.  

 

3 Call to Action 

Scientific efforts, policies, and decision-making on multihazard multisector risk management 

require mechanistic understanding of hazards as well as their interactions and propagations. This 

includes understanding how hazard and risk may change across a wide range of spatiotemporal scales 

and how that risk may be reduced through disaster risk reduction efforts. Such efforts may be through 

both structural (large scale infrastructures) and nonstructural (e.g., early warning system, hazard zoning 

and land use planning) measures (Kundzewicz et al., 2018). As we highlight in this commentary, ICON 

provides a unique opportunity to bring scientific communities, policymakers, decision-makers, and the 

public together, facilitating the development of equitable and inclusive risk management strategies. The 

need for ICON-efforts permeates through multihazard risk assessment and management in terms of 

integrated risk assessment, data-model fusion, uncertainty quantification and communication, crossing 

traditional disciplinary boundaries, and gears toward developing mutually beneficial efforts, and 

beyond.  
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Figure 1: Multihazard multisector risk management under the Integrated, Coordinated, Open, and 

Networked (ICON) science framework. Natural hazards can be geophysical (e.g., earthquakes, 

landslides, and volcano), hydrometeorological (e.g., flood and avalanches), biological (disease 

epidemics and animal/insect plagues) and climatological (e.g., droughts and wildfires), among others. 

Natural hazards pose multisectoral impacts, including urban system, energy, transportation, water, land 

and vegetation, health, and ecosystem, among others.  
 


