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Abstract

High-throughput plant phenotyping is increasingly implemented in a wide array of experimentation and presents challenges both

logistically and analytically. Phenotype data are often longitudinal and proper modeling of plant growth requires sophisticated

modeling techniques to account for the intra-plant correlations and changing variation over time (heteroskedasticity). For this

reason, plant growth is often analyzed by comparing only single time points or the start and end points for inference with no

regard for the trends themselves. Single time point analysis can be sufficient for simple biological comparisons, but modeling has

the potential to unlock additional insights by utilizing all the information at hand. Current plant growth modeling strategies do

account for intra-plant correlations but are still limited to constant variance assumptions and therefore perform sub-optimally.

Here we propose a Bayesian hierarchical approach as an alternative method for plant growth modeling by demonstrating the

utility of heteroskedastic sub-model parameterizations. We show that accounting for heteroskedasticity greatly improves model

accuracy and subsequent inference. Additionally, Bayesian methodologies inherently lend themselves to near real-time model

updating and we propose integration with Clowder to facilitate adaptive experimental designs. We show by example the utility

of Bayesian updating and how it relates to experimental decision making.

1



Bayesian hierarchical approach to longitudinal
high-throughput plant phenotyping

Josh Sumnera,b, Noah Fahlgrena, and Jeffrey C. Berrya

aDonald Danforth Plant Science Center, 975 N Warson Rd, St. Louis MO, USA 63132
bWashington University School of Medicine, 660 S Euclid Ave, St. Louis MO, USA 63110

ABSTRACT

High-throughput plant phenotyping is increasingly implemented in a wide array of experimentation and presents
challenges both logistically and analytically. Phenotype data are often longitudinal and proper modeling of
plant growth requires sophisticated modeling techniques to account for the intra-plant correlations and changing
variation over time (heteroskedasticity). For this reason, plant growth is often analyzed by comparing only
single time points or the start and end points for inference with no regard for the trends themselves. Single
time point analysis can be sufficient for simple biological comparisons, but modeling has the potential to un-
lock additional insights by utilizing all the information at hand. Current plant growth modeling strategies do
account for intra-plant correlations but are still limited to constant variance assumptions and therefore perform
sub-optimally. Here we propose a Bayesian hierarchical approach as an alternative method for plant growth
modeling by demonstrating the utility of heteroskedastic sub-model parameterizations. We show that account-
ing for heteroskedasticity greatly improves model accuracy and subsequent inference. Additionally, Bayesian
methodologies inherently lend themselves to near real-time model updating and we propose integration with
Clowder to facilitate adaptive experimental designs. We show by example the utility of Bayesian updating and
how it relates to experimental decision making.
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1. INTRODUCTION

New technologies have propelled advancements in every facet of the life sciences. High-throughput image-based
phenotyping is one advancement that has the potential to accelerate progress in plant science and agriculture,
in basic research, breeding, and production.1 High-throughput image-based phenotyping is paving the way for
significant advancements by producing massive amounts of highly quantifiable data.2 Amongst a large number
of challenges this presents, one challenge is statistical modeling of highly multivariate and longitudinal data that
often results from these technologies. Plant growth modeling strategies have successfully shown differences in
plant growth under stress conditions and recovery by parameterizing growth in different ways and comparing
coefficients across experimental conditions.3–8

Plant growth modeling requires sophisticated approaches to handle the correlation structure that accompanies
repeated measures data. This often is handled by mixed-effect modeling using a random slope and intercept
term for each individual which accounts for individual variability on the population-level estimations. The
major challenge with plant growth modeling is that plant growth patterns are often non-linear. Common non-
linear parameterizations include 3- and 4-component logistic and Gompertz growth models.9 Moreover, random
effects are underestimated when modeled as random slopes and intercepts due to the non-linear growth patterns.
Alternatively, modeling can be avoided by limiting analysis to select days where the experimental design effects
are the largest to use for statistical inference, which is sufficient in many circumstances but misses the opportunity
to detect additional insights and ultimately undermines the potential of these technologies.
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Here, we investigated the use of Bayesian hierarchical models (BHMs) in both simulated and real high-
throughput image-based phenotyping datasets from the Bellwether Phenotyping Facility at Donald Danforth
Plant Science Center. Using a Bayesian approach, prior distributions naturally reflect the uncertainly in estimates
before the experiment begins, and the posterior predictive distributions reflect the same uncertainly at the end.
BHMs provide a natural environment to include any parameterization of population-level and family-specific
effects, including heteroskedastic sub-models, by specifying prior distributions on all parameters and estimating
the posteriors using Monte-Carlo Markov Chain (MCMC) computational methods. This work shows how different
sub-models of heteroskedasticity affect the posterior predictions and subsequent inference. Additionally, this work
explores Bayesian updating as a utility function of high-throughput phenotyping that can provide near real-time
decision making in an ongoing experiment.

2. METHODS

2.1 Software and Data Availability

All analyses were conducted in R,10 models were created and implemented using R package brms,11 and graphics
were created using ggplot212 and patchwork.13 All code and data to recreate figures and results can be found
at our GitHub repository14 that has GPLv3 licensing.

2.2 Creating Simulated Data

3-parameter logistic growth data was simulated for plant size (area) in two treatments (a and b) each containing
twenty individuals over the course of 25 days. The logistic growth model, the three parameters (asymptote,
inflection point, and inflection rate) for each treatment with their respective simulated noise, and graphical
representation are as follows:

3-Parameter Logistic Growth
Area ∼ φ1/(1 + e(φ2−Time)/φ3)

Treatment a
Asymptote := φ1 ∼ N(µ = 200, σ2 = 25)
Inflection Point := φ2 ∼ N(µ = 13, σ2 = 1)
Inflection Rate := φ3 ∼ N(µ = 3, σ2 = 0.2)

Treatment b
Asymptote := φ1 ∼ N(µ = 160, σ2 = 25)
Inflection Point := φ2 ∼ N(µ = 13, σ2 = 1)
Inflection Rate := φ3 ∼ N(µ = 3.5, σ2 = 0.2)

Figure 1: 3-Parameter logistic growth simulation and trend lines.

2.3 Source of Real High-throughput Phenotyping Data

Data was generated using the Bellwether Phenotyping Facility at Donald Danforth Plant Science Center.15 In
short, the experiment was on a single variety of sorghum designed to test the interaction of added microbes and
different watering regimes on overall plant growth and development. The dataset was subset to include only
the drought treatment and only two microbe inoculates (SynCom A and SynCom B). Full details about the
experiment that produced the dataset, including outlier removal, were described previously.15

2.4 Bayesian Hierarchical Models

Robust estimation of the logistic growth model parameters were done using the heavy-tailed t-distribution.16

Priors for φ1, φ2, φ3, and ν are all weak and strictly positive and individual variation was accounted for with auto-
regressive moving average (ARMA) covariance. Complete parameterizations of the considered heteroskedastic
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sub-models and their respective weak t-distributed hyperpriors are shown here in tabular form. All modeling is
performed using the following logistic growth model, priors, heteroskedastic sub-models, and hyperpriors:

Plant Growth Model: ∀i ∈ Treatmenti
Area ∼ T (φ1,i/(1 + e(φ2,i−Time)/φ3,i) +
spaaaaaceZk,i, σ + σi, ν)
Zk,i ∼ ARMAk(1, 1) ∀k ∈ {1, 2, 3, ..., 20}

Priors: ∀i ∈ Treatmenti
φ1,i ∼ Lognormal(µ = 130, ε = 2.5)
φ2,i ∼ Lognormal(µ = 12, ε = 2.5)
φ3,i ∼ Lognormal(µ = 3, ε = 2.5)
σ ∼ T (µ = 0, ε = 3, ω = 5)
ν ∼ Gamma(α = 2, β = 0.1)

Heteroskedastic Sub-models: ∀i ∈ Treatmenti
Homoskedastic σi ∼ β0
Linear σi ∼ β0 + β1time+ β2,itreatmenti : time

Exponential σi ∼ β0 + α ∗ eβ1time + β2,itreatmenti : time

Splines σi ∼ 1
n

∑n
j=1 (Yj − f(xj)i)

2 + λ
∫

(f ′′(x)i)
2dx

Quadratic σi ∼ β0 + β1time + β2time
2 + β3,itreatmenti :

time+ β4,itreatmenti : time2

Hyperpriors: ∀i ∈ Treatmenti
∀β∗ ∈ σi(β∗) ∼ T (µ = 0, ε = 3, ω = 5)

Figure 2: Parameterization of logistic growth, priors of estimates, and heteroskedastic sub-models.

3. RESULTS

3.1 Heteroskedastic sub-model parameterization influences posterior predictions

Logistic growth data was simulated for two treatment groups (Figure 1, See methods: Creating Simulated Data).
Multiple Bayesian hierarchical models were fit to recapitulate the simulated model parameters using different
heteroskedastic sub-models (Figure 2, See methods: Bayesian Hierarchical Models), and Bayesian credible inter-
vals were estimated to visualize model predictions. Finally, the different sub-models were evaluated for model fit
using leave-one-out information criterion (LOO IC). For efficiency, LOO is approximated via Pareto-smoothed
importance sampling (PSIS)17 in brms, then the expected log pointwise predictive density (elpd) is calculated
and multiplied by negative two to yield a model’s LOO IC.18

Figure 3: Bayesian credible intervals of different heteroskedastic sub-models and LOO IC model comparison.

A homoskedastic (constant variance) model and four heteroskedastic models were created: linear, exponential,
spline fit, and quadratic relationship with time (See Methods: Bayesian Hierarchical Models). Shown in each



sub-model panel are the trend lines of each individual in a solid black line, which are on top of Bayesian credible
intervals as predicted from the model. The outermost edges represent the [1,99]% interval and colors gradually
converge to red which is the mean trend line. In the homoskedastic model, the credible interval drastically
overestimates the beginning and middle of development, whereas linear and exponential both overestimate the
variance at the end of development. In contrast, splines and quadratic heteroskedastic models appear to fully
contain the simulated data and do not appear to over or under estimate the variance at any time point. The
splines and quadratic models also had the lowest LOO IC, which indicates they are the best fit models to the
data. Given that the posterior credible intervals are highly influenced by model choice, it is obvious that choosing
one that most reflects the data will more accurately reflect the true nature of the data and boost statistical power
by not over estimating the variance. Spline heteroskedasticity is not constrained to a family of functions as with
the others evaluated here and is therefore the most flexible type of heteroskedastic sub-model.

3.2 Adaptive designs are accessible through Bayesian hierarchical frameworks

Figure 4: Pseudo Bayesian interim analysis for effect
estimation and data-driven decision making.

Using a Bayesian hierarchical framework, conventional
problems arising in continuous monitoring and op-
tional stopping under a null hypothesis significance
testing design can be alleviated.19,20 Additionally, re-
sults of Bayesian hypothesis testing can be interpreted
intuitively and implemented with excellent flexibility
with brms. Adaptive designs are a data-driven deci-
sion making process wherein hypothesis tests are con-
ducted on set days to decide whether or not there is
sufficient evidence to trigger an event which commonly
is to cease the experiment, this is known as interim
analysis. The overarching goal of adaptive designs is
to maximize efficiency through continuous monitoring.

Using published high-throughput phenotyping
data,15 logistic growth was modeled using a spline het-
eroskedastic sub-model for each of the two microbe
inoculates. Pseudo-interim analysis shows that com-
paring the asymptotes of the two logistic curves with
the hypothesis P [φ1a/φ1b > 1] every two days starting
on the 13th day indicates an increasing difference between the two microbe inoculates over time (Figure 4). This
experiment was concluded after 25 days but there is sufficient evidence to support that there is an effect as early
as day 17. Evaluating inoculate effects is one of many hypotheses that could be used for interim analysis in this
dataset and future work will be done to determine optimal interim analysis strategies in this setting.

4. CONCLUSIONS

A Bayesian hierarchical framework offers several advantages for plant growth modeling and analysis over common
linear and non-linear modeling approaches. The BHM framework is flexible, works with a variety of models, and
can account for uneven variance, a common feature of growth curves, which results in better model fit. The BHM
framework also produces models that can be updated when new observations are available, lending this approach
to real-time monitoring of plant phenotypes and evidence-based decision making. In future work, we plan to
integrate the BHM framework with the Clowder Framework.21 Clowder can be used to manage the intake of
image data from phenotyping instruments and analyze data in real-time using a catalog of data and metadata
extractors. Interim analysis using Bayesian hypothesis testing could be done automatically and provide reports
on experimental progress.
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