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Abstract

(250 words) Micronutrients, such as iron, zinc, and sulfur, play a vital role in both plant and human development. Understanding

how plants sense and allocate nutrients within their tissues may offer different venues to develop plants with high nutritional

value. Despite decades of intensive research, more than 40% of genes in Arabidopsis remain uncharacterized or have no assigned

function. While several resources such as mutant populations or diversity panels offer the possibility to identify genes critical

for plant nutrition, the ability to consistently track and assess plant growth in an automated, unbiased way is still a major

limitation. High-throughput phenotyping (HTP) is the new standard in plant biology but few HTP systems are open source

and user friendly. Therefore, we developed OPEN Leaf, an open source HTP for hydroponic experiments. OPEN Leaf is

capable of tracking changes in both size and color of the whole plant and specific regions of the rosette. We have also integrated

communication platforms (Slack) and cloud services (CyVerse) to facilitate user communication, collaboration, data storage, and

analysis in real time. As a proof-of-concept, we report the ability of OPEN Leaf to track changes in size and color when plants

are growing hydroponically with different levels of nutrients. We expect that the availability of open source HTP platforms,

together with standardized experimental conditions agreed by the scientific community, will advance the identification of genes

and networks mediating nutrient uptake and allocation in plants.
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ABSTRACT (250 words)

Micronutrients, such as iron, zinc, and sulfur, play a vital role in both plant and human development.
Understanding how plants sense and allocate nutrients within their tissues may offer different venues to
develop plants with high nutritional value. Despite decades of intensive research, more than 40% of genes in
Arabidopsis remain uncharacterized or have no assigned function. While several resources such as mutant
populations or diversity panels offer the possibility to identify genes critical for plant nutrition, the ability to
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consistently track and assess plant growth in an automated, unbiased way is still a major limitation. High-
throughput phenotyping (HTP) is the new standard in plant biology but few HTP systems are open source
and user friendly. Therefore, we developed OPEN Leaf, an open source HTP for hydroponic experiments.
OPEN Leaf is capable of tracking changes in both size and color of the whole plant and specific regions of the
rosette. We have also integrated communication platforms (Slack) and cloud services (CyVerse) to facilitate
user communication, collaboration, data storage, and analysis in real time. As a proof-of-concept, we report
the ability of OPEN Leaf to track changes in size and color when plants are growing hydroponically with
different levels of nutrients. We expect that the availability of open source HTP platforms, together with
standardized experimental conditions agreed by the scientific community, will advance the identification of
genes and networks mediating nutrient uptake and allocation in plants.

Keywords: High-throughput phenotyping, Cloud-based, CyVerse, Plant Nutrition

INTRODUCTION

Predictive biology, or predicting biological outcomes from a known input, is central to understanding the
genome-to-phenome relationship1. However, the phenome is a complex combination of the result of environ-
mental conditions and the ability of the organism to adapt to environmental changes2,3. In the case of plants,
predictive biology requires a deep understanding of its genetics and its response to environmental cues, such
as light intensity, water availability, and other organisms4,5. Therefore, the prediction of plant responses to
changes in environmental conditions has lagged compared to other advances in the understanding of other
plant behaviors. The consistent collection of reproducible data at the “-omic” and environmental level are
vital towards addressing this issue.

A drastic decline in cost has allowed for large amounts of genomic and environmental data to be collected,
yet major bottlenecks still stand in integrating, sharing, and analyzing these datasets. For example, meth-
ods characterizing genomes, such as DNA sequencing, have advanced far more quickly than methods for
phenomes6,7. Plant phenotyping at scale is costly and inaccessible to the majority of plant researchers8,9.10.
However, many components for high-throughput phenotyping, such as sensors and computer vision, have
become cheaper and more accessible for development of phenotyping platforms. These platforms can collect
information on roots11,12 and shoots13,14 in greenhouses15,16 to whole fields17,18. However data manage-
ment and cost still stand as major limitations in reproducing abiotic stresses from water and nutrient
deficiency7,10,19,20.

In response, we propose OPEN Leaf [Open PhENotyper]. OPEN Leaf is designed to be an open-source plant
phenotyping system that tracks rosette growth in Arabidopsis by color and area. This system was built using
commercially available materials and uses a high resolution RGB camera and a track system with user-defined
positions to capture dynamic changes in Arabidopsis rosette growth over time. Furthermore, complications
due to the COVID-19 pandemic, spurred the integration of remote communication to observe data collection
in real time with OPEN Leaf. Overall, OPEN Leaf is a modular, scalable, and cloud-based system that will
enable researchers across the globe to share and process reproducible experiments in predictive biology.

MATERIALS AND METHODS

2.1 OPEN Leaf

OPEN Leaf’s hardware is inexpensive and can be acquired from several commercial sources. The frame
was built using the open-source T-slot aluminum beams (80/20 LLC., Columbia City, IN, USA) and can be
bought pre-cut or bought in bulk then cut down to size. The lead-screw track system is a commercial product
called C-Beam Linear Actuator (openbuilds.com). The system includes the C-beam track, the gantry plate,
and a NEMA23 stepper motor. The bundle comes with detailed instructions from OpenBuilds and designed
for extended heavy-duty use. A bracket used to convert from the 80/20 beams to the OpenBuild’s track was
3D printed on a Prusa i3 MK3 (Prusa Research, Partyzánská, Czech Republic). The camera used was the
Allied Vision Mako G-503 (Allied Vision, Stadtroda, Germany), a gigabit ethernet RGB camera that can
capture high-resolution images.
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An open-source C# desktop application is used to control the machine. The program has the ability to control
several systems in parallel; however, since each system requires an ethernet port, this can be a bottleneck.
The track system uses the open-source GRBL CNC mill g-code parser to drive the lead screw system. The
desktop application sends manual g-code through an Arduino (arduino.cc), a hobbyist microcontroller, to
travel to capture images.

2.2 CyVerse and Slack Integration

CyVerse (CyVerse.org) is an NSF-funded cloud-based system designed to revolutionize science with data-
driven discovery for Life Sciences research with training for scientists in mind. We provide the choice of
integrating the image processing with CyVerse or allowing researchers to use another method. CyVerse offers
many benefits for cloud storage, including data management and sharing. A desktop application named
CyberDuck uses a command-line interface for communicating with CyVerse. A python script is set with user
credentials to send command-line commands to automate the process of synchronization data in the remote
directories of CyVerse.

Slack is a prominent communications platform that provides tool for connecting workspaces across the globe.
We use a “bot” account to instantly communicate with the OPEN Leaf system. We can remotely determine
if the system is functioning and see the most recently collected series of images.

2.3 Image Analysis

The image analysis is hosted on CyVerse to allow for automated processing. All images captured on the OPEN
Leaf system are consistent. Therefore, the image processing script requires no human inputs, eliminating the
possibility for human bias. The image processing script produces an excel sheet of results that include traits
of whole rosette and leaves such as: area, major axis, minor axis, and color distribution clusters. The area is
measured in pixels. Major and minor axis are the vertical and horizontal height of the plant in pixels. The
four most dominant hex value colors extracted from the plant are provided as a percentage out of 100%.

RESULTS AND DISCUSSION

3.1 Overview

A multi-faceted approach for acquiring and processing data in a low-cost and accessible manner is paramount
towards predictive biology. Understanding the phenome to genome relationship requires discovering new genes
through uncharacterized phenotypes (Figure 1a). Using several open source and commercial products, such
as Allied Vision cameras and the hobbyist microcontroller Arduino, OPEN Leaf characterizes phenotypes
at a macro and micro scale by quantifying growth by area and color of the whole plant and specific leaves.
OPEN Leaf was designed to be affordable, accessible, and open source from the beginning. Images can be
synced to the cloud service CyVerse to perform image processing. The communication platform Slack has
integration for remote communication with the machine (Figure 1b).

3
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Figure 1. (a) Uncharacterized phenotypes can be characterized with OPEN Leaf through a high-resolution
camera. (b) Slack integration allows for remote work with the system

3.2 Whole leaf analysis

OPEN Leaf captures whole images of plant to track the overall development of the plant dynamically through
time. The two most important characteristics to observe in plant development, specifically for nutrient
uptake, is the change in area and color14(Figure 2). These approaches provide many valuable insights into
plant development and the characterization of phenotypes. However, dynamic detail that occur on leaf level
are often overlooked by only observing plant as a whole. For example, iron deficiency displays itself primary
in younger leaves, and therefore, when observing the whole plant, area changes very little since older leaves
are consistent in growth and color is minimally impacted21. Ergo, it is important to observe growth of leaves
independently of the entire plant.
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Figure 2. Whole plant analysis shows important macro trends of growth across the whole plant by area and
color

3.3 Leaf specific analysis

Leaf development varies wildly throughout plant development depending on set of true leaves the leaf is
(Figure 3). OPEN Leaf allows for the manual tracking of these leaves to observe the dynamic changes in
leaves under nutrient stress across all age ranges. Moreover, color changes, such as the emergence of chlorosis,
are much more pronounced at a leaf level. This resolution allows for a deep understanding of the complex
relationship of mobile nutrients and growth.
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Figure 3. Leaf specific analysis provide new insights to nutrient deficiency phenotypes by observing the
changes of area and color one leaf at a time

CONCLUSION

OPEN Leaf addresses many of the current limitations and inconveniences of HTP systems in predictive
biology. OPEN Leaf is open-source and accessible, characterizes abiotic stress responses within hydroponics,
integrated data management throughCyVerse , and automated image processing. Many high-resolution HTP
systems are commercial and outside of budgets for most labs. OPEN Leaf is $1000 and entirely open source.
OPEN Leaf characterizes abiotic stress responses at a whole plant and leaf-specific to aid in understanding
the genetically complex systems involved in stress response. Many other open-source HTP systems have no
method for data management and processing. OPEN Leaf utilizes CyVerse to both manage and process
data; allowing labs across the globe to participate in collaborative research. Future projects in the OPEN
series includes increasing throughput of OPEN Leaf and a root phenotyper with similar OPEN principles.
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ABSTRACT (250 words)

Micronutrients, such as iron, zinc, and sulfur, play a vital role in both plant and
human development. Understanding how plants sense and allocate nutrients
within their tissues may offer different venues to develop plants with high nutri-
tional value. Despite decades of intensive research, more than 40% of genes in
Arabidopsis remain uncharacterized or have no assigned function. While several
resources such as mutant populations or diversity panels offer the possibility to
identify genes critical for plant nutrition, the ability to consistently track and
assess plant growth in an automated, unbiased way is still a major limitation.
High-throughput phenotyping (HTP) is the new standard in plant biology but
few HTP systems are open source and user friendly. Therefore, we developed
OPEN Leaf, an open source HTP for hydroponic experiments. OPEN Leaf
is capable of tracking changes in both size and color of the whole plant and
specific regions of the rosette. We have also integrated communication plat-
forms (Slack) and cloud services (CyVerse) to facilitate user communication,
collaboration, data storage, and analysis in real time. As a proof-of-concept,
we report the ability of OPEN Leaf to track changes in size and color when
plants are growing hydroponically with different levels of nutrients. We expect
that the availability of open source HTP platforms, together with standardized
experimental conditions agreed by the scientific community, will advance the
identification of genes and networks mediating nutrient uptake and allocation
in plants.

Keywords: High-throughput phenotyping, Cloud-based, CyVerse, Plant Nu-
trition

1. INTRODUCTION

Predictive biology, or predicting biological outcomes from a known input, is
central to understanding the genome-to-phenome relationship1. However, the
phenome is a complex combination of the result of environmental conditions and
the ability of the organism to adapt to environmental changes2,3. In the case
of plants, predictive biology requires a deep understanding of its genetics and
its response to environmental cues, such as light intensity, water availability,
and other organisms4,5. Therefore, the prediction of plant responses to changes
in environmental conditions has lagged compared to other advances in the un-
derstanding of other plant behaviors. The consistent collection of reproducible
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data at the “-omic” and environmental level are vital towards addressing this
issue.

A drastic decline in cost has allowed for large amounts of genomic and en-
vironmental data to be collected, yet major bottlenecks still stand in inte-
grating, sharing, and analyzing these datasets. For example, methods char-
acterizing genomes, such as DNA sequencing, have advanced far more quickly
than methods for phenomes6,7. Plant phenotyping at scale is costly and in-
accessible to the majority of plant researchers8,9.10. However, many compo-
nents for high-throughput phenotyping, such as sensors and computer vision,
have become cheaper and more accessible for development of phenotyping plat-
forms. These platforms can collect information on roots11,12 and shoots13,14

in greenhouses15,16 to whole fields17,18. However data management and cost
still stand as major limitations in reproducing abiotic stresses from water and
nutrient deficiency7,10,19,20.

In response, we propose OPEN Leaf [Open PhENotyper]. OPEN Leaf is de-
signed to be an open-source plant phenotyping system that tracks rosette growth
in Arabidopsis by color and area. This system was built using commercially
available materials and uses a high resolution RGB camera and a track system
with user-defined positions to capture dynamic changes in Arabidopsis rosette
growth over time. Furthermore, complications due to the COVID-19 pandemic,
spurred the integration of remote communication to observe data collection in
real time with OPEN Leaf. Overall, OPEN Leaf is a modular, scalable, and
cloud-based system that will enable researchers across the globe to share and
process reproducible experiments in predictive biology.

1. MATERIALS AND METHODS

2.1 OPEN Leaf

OPEN Leaf’s hardware is inexpensive and can be acquired from several commer-
cial sources. The frame was built using the open-source T-slot aluminum beams
(80/20 LLC., Columbia City, IN, USA) and can be bought pre-cut or bought in
bulk then cut down to size. The lead-screw track system is a commercial prod-
uct called C-Beam™ Linear Actuator (openbuilds.com). The system includes
the C-beam track, the gantry plate, and a NEMA23 stepper motor. The bundle
comes with detailed instructions from OpenBuilds and designed for extended
heavy-duty use. A bracket used to convert from the 80/20 beams to the Open-
Build’s track was 3D printed on a Prusa i3 MK3 (Prusa Research, Partyzánská,
Czech Republic). The camera used was the Allied Vision Mako G-503 (Allied
Vision, Stadtroda, Germany), a gigabit ethernet RGB camera that can capture
high-resolution images.

An open-source C# desktop application is used to control the machine. The
program has the ability to control several systems in parallel; however, since
each system requires an ethernet port, this can be a bottleneck. The track
system uses the open-source GRBL CNC mill g-code parser to drive the lead

2



screw system. The desktop application sends manual g-code through an Arduino
(arduino.cc), a hobbyist microcontroller, to travel to capture images.

2.2 CyVerse and Slack Integration

CyVerse (CyVerse.org) is an NSF-funded cloud-based system designed to revolu-
tionize science with data-driven discovery for Life Sciences research with training
for scientists in mind. We provide the choice of integrating the image process-
ing with CyVerse or allowing researchers to use another method. CyVerse offers
many benefits for cloud storage, including data management and sharing. A
desktop application named CyberDuck uses a command-line interface for com-
municating with CyVerse. A python script is set with user credentials to send
command-line commands to automate the process of synchronization data in
the remote directories of CyVerse.

Slack is a prominent communications platform that provides tool for connecting
workspaces across the globe. We use a “bot” account to instantly communicate
with the OPEN Leaf system. We can remotely determine if the system is func-
tioning and see the most recently collected series of images.

2.3 Image Analysis

The image analysis is hosted on CyVerse to allow for automated processing.
All images captured on the OPEN Leaf system are consistent. Therefore, the
image processing script requires no human inputs, eliminating the possibility
for human bias. The image processing script produces an excel sheet of results
that include traits of whole rosette and leaves such as: area, major axis, minor
axis, and color distribution clusters. The area is measured in pixels. Major and
minor axis are the vertical and horizontal height of the plant in pixels. The
four most dominant hex value colors extracted from the plant are provided as
a percentage out of 100%.

1. RESULTS AND DISCUSSION

3.1 Overview

A multi-faceted approach for acquiring and processing data in a low-cost and
accessible manner is paramount towards predictive biology. Understanding the
phenome to genome relationship requires discovering new genes through unchar-
acterized phenotypes (Figure 1a). Using several open source and commercial
products, such as Allied Vision cameras and the hobbyist microcontroller Ar-
duino, OPEN Leaf characterizes phenotypes at a macro and micro scale by
quantifying growth by area and color of the whole plant and specific leaves.
OPEN Leaf was designed to be affordable, accessible, and open source from the
beginning. Images can be synced to the cloud service CyVerse to perform im-
age processing. The communication platform Slack has integration for remote
communication with the machine (Figure 1b).
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Figure 1. (a) Uncharacterized phenotypes can be characterized with
OPEN Leaf through a high-resolution camera. (b) Slack integration
allows for remote work with the system

3.2 Whole leaf analysis

OPEN Leaf captures whole images of plant to track the overall development of
the plant dynamically through time. The two most important characteristics
to observe in plant development, specifically for nutrient uptake, is the change
in area and color14 (Figure 2). These approaches provide many valuable in-
sights into plant development and the characterization of phenotypes. However,
dynamic detail that occur on leaf level are often overlooked by only observing
plant as a whole. For example, iron deficiency displays itself primary in younger
leaves, and therefore, when observing the whole plant, area changes very little
since older leaves are consistent in growth and color is minimally impacted21.
Ergo, it is important to observe growth of leaves independently of the entire
plant.
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Figure 2. Whole plant analysis shows important macro trends of
growth across the whole plant by area and color

3.3 Leaf specific analysis

Leaf development varies wildly throughout plant development depending on
set of true leaves the leaf is (Figure 3). OPEN Leaf allows for the manual
tracking of these leaves to observe the dynamic changes in leaves under nutrient
stress across all age ranges. Moreover, color changes, such as the emergence of
chlorosis, are much more pronounced at a leaf level. This resolution allows for a
deep understanding of the complex relationship of mobile nutrients and growth.

Figure 3. Leaf specific analysis provide new insights to nutrient
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deficiency phenotypes by observing the changes of area and color
one leaf at a time

1. CONCLUSION

OPEN Leaf addresses many of the current limitations and inconveniences of
HTP systems in predictive biology. OPEN Leaf is open-source and accessi-
ble, characterizes abiotic stress responses within hydroponics, integrated data
management through CyVerse, and automated image processing. Many high-
resolution HTP systems are commercial and outside of budgets for most labs.
OPEN Leaf is $1000 and entirely open source. OPEN Leaf characterizes abiotic
stress responses at a whole plant and leaf-specific to aid in understanding the ge-
netically complex systems involved in stress response. Many other open-source
HTP systems have no method for data management and processing. OPEN
Leaf utilizes CyVerse to both manage and process data; allowing labs across
the globe to participate in collaborative research. Future projects in the OPEN
series includes increasing throughput of OPEN Leaf and a root phenotyper with
similar OPEN principles.
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