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Abstract

Rupture processes of global large earthquakes have been observed to exhibit great variability, whereas recent studies suggest

that the average rupture behavior could be unexpectedly simple. To what extent do large earthquakes share common rupture

characteristics? Here we use a machine learning algorithm to derive a generic model of global earthquake source time functions.

The model indicates that simple and homogeneous ruptures are pervasive whereas complex and irregular ruptures are relatively

rare. Despite the standard long-tail and near-symmetric moment release processes, the model reveals two special rupture types:

runaway earthquakes with weak growing phases and relatively abrupt termination, and complex earthquakes with all faulting

mechanisms but mostly shallow origins (<40 km). The diversity of temporal moment release patterns imposes a limit on

magnitude predictability in earthquake early warning. Our results present a panoptic view on the collective similarity and

diversity in the rupture processes of global large earthquakes.
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Highlights:

1. A generic model of characteristic source time functions is derived from global earthquake observations
using machine learning.

2. The model presents a panoptic view of the similarity and the diversity in the rupture processes of large
earthquakes.

3. The diversity of moment release patterns, together with absolute duration variability, imposes a limit
on magnitude predictability in early warning.

Abstract

Rupture processes of global large earthquakes have been observed to exhibit great variability, whereas recent
studies suggest that the average rupture behavior could be unexpectedly simple. To what extent do large
earthquakes share common rupture characteristics? Here we use a machine learning algorithm to derive a
generic model of global earthquake source time functions. The model indicates that simple and homogeneous
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ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Despite the standard long-
tail and near-symmetric moment release processes, the model reveals two special rupture types: runaway
earthquakes with weak growing phases and relatively abrupt termination, and complex earthquakes with
all faulting mechanisms but mostly shallow origins (<40 km). The diversity of temporal moment release
patterns imposes a limit on magnitude predictability in earthquake early warning. Our results present a
panoptic view on the collective similarity and diversity in the rupture processes of global large earthquakes.

Plain language summary

Over the past decades, seismologists have observed great variability in the rupture processes of many large
earthquakes. However, some recent studies suggest that the average rupture behavior could be unexpectedly
simple. Can the average behavior be representative of most earthquakes? To what extent do large earth-
quakes share common rupture characteristics? Here we use machine learning to derive a panoptic picture,
i.e. a generic model of source time functions, for global earthquakes. The model shows that simple and
homogeneous ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Besides, it
reveals two special rupture types: runaway earthquakes with weak initial phases, and complex earthquakes
with all faulting mechanisms but mostly shallow origins (<40 km). Our results present a panoptic view on
the collective similarity and diversity in the rupture processes of global large earthquakes, which affects how
well we can predict earthquake magnitude in earthquake early warning.

Introduction

Large earthquakes start, propagate, and terminate in diverse manners owing to complex interplay between
rupture dynamics and fault properties. Over the past decades, observations of large earthquake rupture
processes have shown various degrees of peculiarity (Ammon, 2005; Ammon et al. , 2006; Meng et al. ,
2012; Ross et al. , 2019), suggesting that each large earthquake probably has its own unique characteristics.
However, understanding the general physical laws that govern earthquake phenomena requires derivation of
the underlying patterns from the seemingly diverse behaviors (Houston and Vidale, 1994; Vallée, 2013; Meier
et al. , 2017; Denolle, 2019). The average behaviors, often obtained by stacking a large set of seismological
data, tend to show relatively simple characteristics, implying common similarity hidden behind the diverse
ruptures (Houston and Vidale, 1994; Meier et al. , 2017). The distinct emphases on collective rupture pecu-
liarity and similarity raises a critical question: to what extent do large earthquakes share common rupture
characteristics? Answering this question calls for a panoptic view of the variability in the rupture processes
of global earthquakes.

Earthquake source time functions (STFs) describes the history of seismic moment release during rupture.
As an important observation constraining on the source processes, STFs have been routinely extracted
from seismograms for large earthquakes. However, because of the high-dimensionality and great variations
of amplitude and duration (Tanioka and Ruff, 1997; Duputel et al. , 2013; Vallée, 2013), STFs cannot be
compared directly. Hence, comparison is often performed on individual STF properties such as duration,
peak amplitude, peaks and skewness (Houston, 2001; Persh and Houston, 2004), as well as other derived
parameters, such as scaled energy (Denolle, 2019) and relative radiated energy efficiency (Ye et al. , 2018).
Although these individual properties constrain specific aspects of earthquake ruptures, it remains challenging
to examine the variability of overall moment release processes.

Here we employ a machine learning algorithm, called variational autoencoder (VAE), to illuminate the
systematic variability of STF shapes among global earthquakes (Figure 1). We train a VAE with normalized
STFs of 3675 M>5.5 global earthquakes from 1992 to 2019 (SCARDEC database, Vallée & Douet, 2016). This
trained VAE is applied to another independent database of 112 STF of M>7.0 megathrust earthquakes (Ye et
al. , 2016; referred to as YE2016), to validate its generalization capability. With the VAE, we derive a standard
STF model that contains a systematic set of characteristic shapes accompanied by corresponding earthquake
population density. The model exhibits a broad range of rupture characteristics for global earthquakes and
sheds light on special classes of earthquakes that have not received sufficient attention before. Moreover,
the deviation of individual earthquakes from the standard model is measured by the reconstruction misfit.
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Hence, large reconstruction misfits naturally detect earthquakes outside the norm, i.e. earthquakes with
unusual rupture processes.

VAE for STFs

VAE is widely used in signal and image processing to uncover the intrinsic structure of a large data set
(Kingma and Welling, 2014). It consists of an encoder to compress the high-dimensional data into a low-
dimensional latent representation and a decoder to reconstruct the high-dimensional data from the latent
representation (Figure 1). The bottleneck architecture forces the algorithm to learn the key data characte-
ristics and discards the noise in individual samples. After training, the VAE can take input of virtual latent
values (a set of parameters in the bottleneck that encode original data) from a random normal distribution
to generate synthetic data constrained by real observations, and therefore belongs to generative learning
methods. In geophysics, VAE has been recently used to speed up geophysical inversion (Cheng and Jiang,
2020; Liu et al. , 2021; Lopez-Alvis et al. , 2021), explore the dimensionality of geophysical data (Dokht
Dolatabadi Esfahani et al. , 2021), and predict subsurface geological properties (Li and Misra, 2017).

Following Yin et al. (2021), the STFs of SCARDEC and YE2016 are resampled to 128 points as input size.
Given that the longest STFs are approximately 100 s, the resulting sampling rates would be greater than
1 Hz. This reserves the frequency contents below 1 Hz for the STFs, which are relatively reliable by the
SCARDEC method (Vallée and Douet, 2016; Yin et al., 2021). The amplitude of STFs is then normalized
with the seismic moment to retain the shapes only (Meier et al., 2017; Yin et al., 2021). In this way, the
normalized STF shapes likely do not contain direct information of earthquake size, and essentially only
reflect the relative moment release with respect to the entire rupture process. However, there might be other
features of the normalized shapes that are magnitude dependent and could be detected by the VAE approach.
Unlike other STF normalization methods, such as stretching the amplitude and duration by M0

−1/3 and
M0
−2/3 respectively (Houston, 2001; Vallée, 2013), the normalization adopted in this study leads to the

loss of absolute time scale. Hence, interpretation of the results will be focused on temporal distribution of
moment release relative to the earthquake’s rupture process.

The VAE is constructed as follows: an input layer of 128 neurons, an encoder of two layers of 512 neurons
each, a bottleneck of two neurons (latent representation), a decoder of two 512 neurons, and an output
layer of 128 neurons (Figure 1). The use of two latent variables is key for the architecture as it determines
the dimensionality of the latent space. Although using more latent variables can lead to better fit (refer
to supporting infomation), two variables are used to capture the most essential features of STFs and allow
direct visualization of the STF model in the latent space.

The loss function to train the VAE is defined as:

loss =
∥∥∥STF

′
− STF

∥∥∥ +KL [N (µz, σz)−N (0, 1 )]

where the first term is the root mean square between the reconstructed and original STFs, and the second
is the Kullback-Leibler divergence which measures the difference in probability density between the latent
variable vector Z with mean µ and variance σ, and normal distribution. The Kullback-Leibler divergence
essentially acts a regularizer of the latent space (Kingma and Welling, 2014). We use the Adam solver for
network parameter optimization (Kingma and Ba, 2017).

The SCARDEC STFs are split in 80% for training and 20% for validation. The convergence of train and
validation loss (Figure S1) ensures the model generalizability and warrants analysis of the entire data set
altogether. An important sign for a well-trained VAE is the successful reconstruction of STFs for both
SCARDEC and YE2016 (Figures 1b and 1c). Except for some complex events (e.g. 2000 Mw 8.1 New
Ireland earthquake, 2006 Mw 8.3 Kuril earthquake, 2007 Mw 8.1 Peru earthquake), the reconstructed STFs
capture the primary characteristics of most observed STFs, such as skewness and peakedness variations,
demonstrating the learned low-dimensional latent variables are good representations of the high-dimensional
STFs.
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The standard STF model

The VAE allows us to visualize the STFs orderly in both low- and high- dimensional spaces, which is
important for evaluating their systematic variability. The encoder projects the STFs into a 2D latent space
(Figure 2), whose affinity property ensures that similar STFs are located closely in the latent space (Figure
S2). Because of the imposed regularizer on the latent variables, earthquake population in the latent space
generally follows a normal distribution, i.e. approximately ˜68% of earthquakes within the radius of 1 and
95% of earthquakes within the radius of 2. Based on these two properties, the most common STF shapes are
mapped near the center, whereas the rare ones are mapped outwards.

To visualize the overall STF variations, we input virtual latent parameters at every 0.5 interval from -3.0
to 3.0 into the decoder to construct a set of synthetic STFs (Figure 2b). Because each of these STFs is
constrained by real STFs near its locality in the latent space, they represent the generic variations of global
earthquakes. Therefore, we call this synthetic collection as the standard STF model. It is noteworthy that
the synthetic STFs are constrained with a different number of STFs, according to the population distribution
of real STFs. Overall, the standard model exhibits three outstanding characteristics that vary continuously:
number of peaks, skewness, and peakedness (Figures 2b and S3). For convenience of discussion, the model
is divided into four quadrants based on the changes of characteristics:

Q1: Z1>-0.5, Z2>0.5, Q2: Z1<-0.5, Z2>0

Q3: Z1<-0.5, Z2<0, Q4: Z1>-0.5, Z2<0.5

Where Z1 and Z2 are the first and second latent variable, respectively.Q1 represents the complex type with
two or more subevents with varying relative size and timings. In comparison, events in Q2 , Q3 , andQ4 are
single peaked but negative-skewed (runaway), symmetric, and positive-skewed (long-tail) types, respectively.
Overall, the one-peak typesQ2 -Q4 account for 83% of global events (16% runaway, 15% symmetric, 52%
long-tail), whereas the complex type in Q1 accounts for 17%.

Skewness measures the relative duration of moment acceleration and deceleration phases. The long-tailed
shapes suggest the rupture breaks away energetically but die away slowly. They have the largest population
among all the types, consistent with pervasive energetic onsets of large earthquakes (Denolle, 2019). However,
part of them, especially those with very long tails, could be due to artifacts from imperfect modeling of P wave
coda (Vallée and Douet, 2016). The symmetric type suggests near equivalent acceleration and deceleration
duration, which is often considered a generic STF shape in standard models (e.g. Tanioka and Ruff, 1997).
Finally, the runaway type has a relatively weak onset, representing ruptures that culminate in the late
rupture stage. This type of events is of particular interest, because they are misguided as small events at the
beginning but their final magnitude is largely determined by the later phase. The runaway type is comparably
populated as the symmetric type. Notice that while long-tailed shapes appear to be more typical over all,
there seems to be a pattern shift to the negativeZ1 direction (runaway and symmetric) with increasing
magnitude. This phenomenon will be discussed in the last section.

Peakedness, another characteristic revealed in the model, measures the temporal homogeneity of moment
release. From the center to periphery, peak width decreases. The rounded peaks near the center suggests
relatively homogenous moment release during the rupture, whereas the spiky peaks in the periphery suggest
that a predominant amount of energy is released within a compact prime time relative to the entire rupture
duration. One should note that the compactness is not in the sense of physical time scale, which is lost in
normalization, but is relative to the earthquake’s rupture process itself. For example, earthquakes with dif-
ferent moment release rates may have the same temporal homogeneity. The population distribution suggests
that earthquakes with homogenous moment release is much more populated than the highly concentrated
ones, reflecting the prevalence of homogenous faulting in nature.

Earthquakes outside the norm

The model describes a comprehensive set of standard shapes that represent a majority of global earthquakes.
However, some earthquakes cannot be adequately described by the model. The excursion is quantified by the
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misfit between the reconstructed and original STFs‖STFrec−STFraw‖
‖STFraw‖ . While the majority of the SCARDEC

events have predominantly small misfits (Figure 3a), some have unusually high misfits, such as the 2006 M
7.7 Java tsunami earthquake, 2006 M 8.3 Kuril earthquake and 2007 M 8.1 Solomon tsunami earthquake
(Figure S4). These events have complex STFs and are documented with unusual rupture characteristics
(Ammonet al. , 2006, 2008; Furlong et al. , 2009). Hence, the events with high misfits represent a special
class of unusual earthquakes outside the norm.

The complex events can be categorized according to their latent locality, i.e. the systematic ones in Q1 and
the individual ones in other quadrants. The high misfits observed inQ1 indicate the actual shapes there
are even more complicated than depicted in the model. These events have temporally separated subevents,
representing ruptures of relatively distant asperities/faults or inter-event triggering. In comparison, the high-
misfit events outside Q1 are fit with simple one-peak shapes, yet exhibiting complex characteristics. They
appear to be temporally more compact and generally “rougher”. This could be interpreted as ruptures of
spatially concentrated asperities and/or heterogeneous frictional properties along faults (Ye et al. , 2018).

Figure 3 shows that the complex events exhibits three intriguing characteristics: 1) they are shallower than
40 km; 2) they exist in all faulting environments; 3) many are located along the northern boundaries of
the Australian plate and in Southeast Asia. Houston (2001) found that the complexity of events is general-
ly higher in the top 40 km in global subduction zones. She attributed this phenomenon to heterogeneous
interplate boundary regions. However, in our results, the complex events are found to exist in all different
mechanisms, suggesting more universal depth-dependent rupture complexity. Applying cluster analysis to
the SCARDEC data, Yin et al. (2021) also identified depth dependence of earthquake complexity. They
proposed that variations of frictional properties with depth, such as slip weakening distance or other equi-
valent rupture parameters could play an important role in controlling rupture complexity. One should note
that some complex shallow events might be caused by the artifacts of unmodelled seismic phases, such as
depth phases (Vallée and Douet, 2016). However, Yin et al. (2021) observed that co-located shallow events
have various degrees of complexity, indicating inaccuracy in the Green’s function does not impact the overall
observations. Moreover, to mitigate the structural effect, the SCARDEC method cuts the STFs after the
last local maximum 40% of the absolute maximum.

Alternatively, we hypothesize that there could be more geometric and stress irregularities (e.g. faults and
asperities) at shallow depths owing to low confining pressure and temperature. In a statistical perspective,
the larger population of geometric and stress irregularities allows higher chance of triggering and accidental
activation during rupture. This hypothesis is partly supported by the pervasiveness of complex events in
the apparently complex fault systems, such as in the northern boundaries of the Australian plate and in
Southeast Asia (Figure 3), although the causes for specific complex events could be case dependent.

Discussion

Implications for earthquake rupture diversity

The VAE condenses a large number of global earthquake observations into the standard STF model along
with the information of population density, which unravels more diverse rupture characteristics than the
mean shape from commonly used stacking methods. Complementary to the model, the reconstruction misfit
quantifies the deviation of individual earthquakes and naturally measures the rupture uniqueness. These
components taken together provide a panoramic view of earthquake rupture variability and showcase the
extent that large earthquakes share common rupture characteristics.

Our observations, first of all, confirm that earthquakes with apparent simple rupture processes are pre-
dominant and that the extremely skewed or complex ones are rare. Around the model center with highest
population density, the shapes are weakly skewed and gently peaked, representing relatively homogenous and
apparent one-patch-like rupture processes. This is generally consistent with the simple mean shape reported
by Meier et al. (2017). However, the model offers a much richer collection of standard shapes other than the
simple mean. Beyond one standard deviation, for example, the shapes start to exhibit significant skewness
and more complexity, reflecting increasingly irregular rupture processes. These irregular types comprise a

5



P
os

te
d

on
1

D
ec

20
22

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
50

82
75

/v
2

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

non-negligible proportion of the entire earthquake population (e.g. 32% if counting those outside radius 1),
which should be interpreted by more sophisticated rupture models.

The STF model derived by the VAE approach aims to quantify the first and second order features of global
earthquakes’ STFs, which is similar to the STF model by Meier et al (2017). However, the two models differ
in some important aspects. For example, in addition to the median STF, Meier et al (2017) quantified the
statistical fluctuations, which is found to be multiplicative and Gaussian-like. Their model considers a real
STF as the median STF perturbed by random fluctuations at all frequencies. In comparison, our model
produces smoother STFs and the high-frequency roughness of real STFs is assimilated in the misfit and
viewed as part of earthquake complexity (Figures 1-3). Moreover, our model has two controlling parameters
to reconstruct the STFs and take a misfit metric to measure the excursion, whereas the model of Meier et al.
(2017) has controlling parameters as many as the fluctuation phases at all frequencies. These differences are
essentially sourced from different decomposition schemes of real STFs resulted from the respective methods.

Implications for earthquake early warning

The diversity of temporal moment release patterns imposes a limit on magnitude determinism, i.e. the
predictability of earthquake size before the rupture is complete. A near isosceles triangular shape averaged
from all STFs suggests that approximately half the duration is required to predict final magnitude (Meier
et al., 2017). In addition, many symmetric events observed in the model exhibit a low-amplitude onset
acceleration, which may also lead to magnitude underestimate in early warning. For the runaway events, the
early amplitude is particularly small and long and the peak moment rate arrives much later. This runaway
behavior could be caused by dynamic weakening mechanisms during the rupture development , such as flash
heating and thermal pressurization, resulting in the break of strong asperities in the later rupture stage
(Denolle et al., 2015). Alternatively, it could be also caused by triggering a later large asperity by an early
small asperity. In this case, both ruptures are so close in time that the moment release appears to be one peak.
More generally, triggering among asperities with different sizes and spatial separations can result in other
types of events as well. Recent discoveries of similar initial waveforms between large and small earthquakes
imply that whether or not a small event can develop into a big one could be in part a stochastic result
(Okuda and Ide, 2018; Ide, 2019). Hence, this type of events poses a greater challenge for early warning.

Although STFs predicted by the Brune and Haskell models (Haskell, 1964; Brune, 1970) as well as those
empirically derived tend to emphasize the importance of symmetric and long-tail STFs (Tanioka and Ruff,
1997), our results show that the population of the runaway type is actually comparable to that of the
symmetric type. The examples of large runaway events include the 1996 Mw 7.7 and 2001 Mw 7.6 Peru,
2010 Mw 8.8 Chile, and 2011 Mw 7.3 Honshu earthquakes (Figure S4). In addition to the runaway type,
complex events represented in Q1have subevents with unknown relative size and timing, which can further
confuse early warning systems. It seems that there is no effective way to diagnose the event type when the
rupture is developing, making early magnitude estimation more challenging. Recent studies also show that
that the absolute duration can vary significantly even for earthquakes with similar magnitudes (Vallée, 2013;
Sallarès and Ranero, 2019), which further decreases magnitude predictability beyond the discussed STF
shape diversity. Therefore, early estimates of earthquake magnitude would expectedly often excurse, even
though it could be partly inferred (Melgar and Hayes, 2019).

Potentials for revealing earthquake mechanics

An important question in earthquake science is whether or not rupture processes are magnitude-dependent
(Meier et al., 2017; Ye et al., 2018; Melgar and Hayes, 2019; Renou et al., 2019). Figure 2a shows stark
contrast in the numbers of M>8 events in Z1>0 and Z1<0 quadrants, implying a plausible preferential
rupture mode for M>8 events. In fact, we observe that the largest earthquakes seem to shift systematically
to the negative Z1 direction (Figure 4). We estimate the statistical significance of this trend by bootstrap tests.
To reduce the impact of scarcity of large-magnitude events, in each test, 100 events are randomly drawn in
each magnitude bin (Figure 4a and b) for calculation of Spearman correlation and p value. For bins with less
than 100 events, all the events in the bins are used. This procedure is repeated 1,000 times. The results show
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that Z1 has correlation0.20 ± 0.03 with magnitude and p value 10−8±2, suggesting a statistically significant
pattern shift along the Z1 direction (Figure 4). In contrast, Z2has correlation 0.067 ± 0.03 with magnitude
and p value10−1.3±0.8, suggesting negligible change along the Z2 direction. This magnitude-dependent Z1

distribution implies that the largest earthquakes seemingly prefer to begin with small events (symmetric or
run-away types) rather than release most of the energy in the early stage (long-tail type). An admissible
explanation is that a relatively high level of rupture momentum and dynamic weakening is likely needed to
activate and break unusually large and/or strong asperities.

More generally, the encoder-decoder system provides an effective tool to investigate potential pattern varia-
tions with source parameters and thus could offer useful insights into the physics of rupture processes. It also
provides a convenient tool to evaluate the generality and peculiarity of particular events in the context of
historical observations in a uniform framework. Our study illustrates that generative unsupervised machine
learning could be powerful in uncovering underlying collective patterns of high-dimensional seismic data.
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Figure 1. Variational autoencoder (VAE) for earthquake source time functions (STFs). a. VAE
architecture. Both of the decoder and encoder consist of two fully connected layers with 512 neurons each.
The bottleneck consists of two latent variables constrained to follow normal distribution. b. Original STFs
(blue) and VAE reconstructed STFs (red) from SCARDEC. The numbers in the top right mark the misfits.
c. Same as b but for the STF database of Ye et al. (2016) (referred to as YE2016 thereinafter).
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Figure 2. The latent representation and the standard model of STFs. a. Low-dimensional latent
representations of SCARDEC (dots) and YE2016 (squares) STFs. The population density in bothZ1 and
Z2 follows normal distribution. b. The standard STF model reconstructed from virtual latent values. The
model shows systematic variations of STFs: complex type in Q1 , runaway type inQ2 , symmetric type in
Q3 , and long-tail type in Q4 .

Figure 3. Reconstruction misfit as a proxy of unusual earthquakes. a. Reconstruction misfits
of all the SCARDEC (dots) and YE2016 (squares) events in latent space. Note that most high-misfits are
located in Q1 and some are in other quadrants. b. Reconstruction misfit as a function of earthquake depth
and focal mechanisms. The definition of fault type follows Shearer et al. (2006). On the right is the median
misfit across depth. The depth at 40 km marks the change point of earthquake complexity. c. Geographic
distribution of reconstruction misfit of global earthquakes. Note that the high-misfits are predominantly
located in the northern boundaries of the Australian plate and Southeast Asia.
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Figure 4. Dependencies of latent variables Z1and Z2 on magnitude. a. Blue dots represent Z1 of
individual earthquakes. Red dots and bars represent the mean and standard deviation in each magnitude
bin bracketed by dashed gray lines. b. Similar symbol representation as in a but for Z2. c. Histograms of
Spearman correlations between Z1, Z2 and magnitude from bootstrapping tests. d. Histograms of p values
for hypothesis test in which null hypothesis is that Z1, Z2 are uncorrelated with magnitude. In each test,
100 events are randomly selected in each magnitude bin (for bins with less than 100 events, all within the
bins are used) to calculate the correlation and p-value, which is repeated 1,000 times.
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Highlights: 15 

1. A generic model of characteristic source time functions is derived from global 16 

earthquake observations using machine learning. 17 

2. The model presents a panoptic view of the similarity and the diversity in the rupture 18 

processes of large earthquakes. 19 

3. The diversity of moment release patterns, together with absolute duration variability, 20 

imposes a limit on magnitude predictability in early warning.   21 



 2 

Abstract 22 

Rupture processes of global large earthquakes have been observed to exhibit great 23 

variability, whereas recent studies suggest that the average rupture behavior could be 24 

unexpectedly simple. To what extent do large earthquakes share common rupture 25 

characteristics? Here we use a machine learning algorithm to derive a generic model of global 26 

earthquake source time functions. The model indicates that simple and homogeneous ruptures 27 

are pervasive whereas complex and irregular ruptures are relatively rare. Despite the standard 28 

long-tail and near-symmetric moment release processes, the model reveals two special rupture 29 

types: runaway earthquakes with weak growing phases and relatively abrupt termination, and 30 

complex earthquakes with all faulting mechanisms but mostly shallow origins (<40 km). The 31 

diversity of temporal moment release patterns imposes a limit on magnitude predictability in 32 

earthquake early warning. Our results present a panoptic view on the collective similarity and 33 

diversity in the rupture processes of global large earthquakes. 34 

 35 

Plain language summary 36 

Over the past decades, seismologists have observed great variability in the rupture 37 

processes of many large earthquakes. However, some recent studies suggest that the average 38 

rupture behavior could be unexpectedly simple. Can the average behavior be representative of 39 

most earthquakes? To what extent do large earthquakes share common rupture characteristics? 40 

Here we use machine learning to derive a panoptic picture, i.e. a generic model of source time 41 

functions, for global earthquakes. The model shows that simple and homogeneous ruptures are 42 

pervasive whereas complex and irregular ruptures are relatively rare. Besides, it reveals two 43 

special rupture types: runaway earthquakes with weak initial phases, and complex earthquakes 44 

with all faulting mechanisms but mostly shallow origins (<40 km). Our results present a 45 

panoptic view on the collective similarity and diversity in the rupture processes of global large 46 

earthquakes, which affects how well we can predict earthquake magnitude in earthquake early 47 

warning.  48 



 3 

Introduction 49 

Large earthquakes start, propagate, and terminate in diverse manners owing to complex 50 

interplay between rupture dynamics and fault properties. Over the past decades, observations 51 

of large earthquake rupture processes have shown various degrees of peculiarity (Ammon, 52 

2005; Ammon et al., 2006; Meng et al., 2012; Ross et al., 2019), suggesting that each large 53 

earthquake probably has its own unique characteristics. However, understanding the general 54 

physical laws that govern earthquake phenomena requires derivation of the underlying patterns 55 

from the seemingly diverse behaviors (Houston and Vidale, 1994; Vallée, 2013; Meier et al., 56 

2017; Denolle, 2019). The average behaviors, often obtained by stacking a large set of 57 

seismological data, tend to show relatively simple characteristics, implying common similarity 58 

hidden behind the diverse ruptures (Houston and Vidale, 1994; Meier et al., 2017). The distinct 59 

emphases on collective rupture peculiarity and similarity raises a critical question: to what 60 

extent do large earthquakes share common rupture characteristics? Answering this question 61 

calls for a panoptic view of the variability in the rupture processes of global earthquakes.  62 

Earthquake source time functions (STFs) describes the history of seismic moment release 63 

during rupture. As an important observation constraining on the source processes, STFs have 64 

been routinely extracted from seismograms for large earthquakes. However, because of the 65 

high-dimensionality and great variations of amplitude and duration (Tanioka and Ruff, 1997; 66 

Duputel et al., 2013; Vallée, 2013), STFs cannot be compared directly. Hence, comparison is 67 

often performed on individual STF properties such as duration, peak amplitude, peaks and 68 

skewness (Houston, 2001; Persh and Houston, 2004), as well as other derived parameters, such 69 

as scaled energy (Denolle, 2019) and relative radiated energy efficiency (Ye et al., 2018). 70 

Although these individual properties constrain specific aspects of earthquake ruptures, it 71 

remains challenging to examine the variability of overall moment release processes. 72 

Here we employ a machine learning algorithm, called variational autoencoder (VAE), to 73 

illuminate the systematic variability of STF shapes among global earthquakes (Figure 1). We 74 

train a VAE with normalized STFs of 3675 M>5.5 global earthquakes from 1992 to 2019 75 

(SCARDEC database, Vallée & Douet, 2016). This trained VAE is applied to another 76 



 4 

independent database of 112 STF of M>7.0 megathrust earthquakes (Ye et al., 2016; referred 77 

to as YE2016), to validate its generalization capability. With the VAE, we derive a standard 78 

STF model that contains a systematic set of characteristic shapes accompanied by 79 

corresponding earthquake population density. The model exhibits a broad range of rupture 80 

characteristics for global earthquakes and sheds light on special classes of earthquakes that 81 

have not received sufficient attention before. Moreover, the deviation of individual earthquakes 82 

from the standard model is measured by the reconstruction misfit. Hence, large reconstruction 83 

misfits naturally detect earthquakes outside the norm, i.e. earthquakes with unusual rupture 84 

processes.  85 

 86 

VAE for STFs 87 

VAE is widely used in signal and image processing to uncover the intrinsic structure of a 88 

large data set (Kingma and Welling, 2014). It consists of an encoder to compress the high-89 

dimensional data into a low-dimensional latent representation and a decoder to reconstruct the 90 

high-dimensional data from the latent representation (Figure 1). The bottleneck architecture 91 

forces the algorithm to learn the key data characteristics and discards the noise in individual 92 

samples. After training, the VAE can take input of virtual latent values (a set of parameters in 93 

the bottleneck that encode original data) from a random normal distribution to generate 94 

synthetic data constrained by real observations, and therefore belongs to generative learning 95 

methods. In geophysics, VAE has been recently used to speed up geophysical inversion (Cheng 96 

and Jiang, 2020; Liu et al., 2021; Lopez-Alvis et al., 2021), explore the dimensionality of 97 

geophysical data (Dokht Dolatabadi Esfahani et al., 2021), and predict subsurface geological 98 

properties (Li and Misra, 2017). 99 

Following Yin et al. (2021), the STFs of SCARDEC and YE2016 are resampled to 128 100 

points as input size. Given that the longest STFs are approximately 100 s, the resulting 101 

sampling rates would be greater than 1 Hz. This reserves the frequency contents below 1 Hz 102 

for the STFs, which are relatively reliable by the SCARDEC method (Vallée and Douet, 2016; 103 

Yin et al., 2021). The amplitude of STFs is then normalized with the seismic moment to retain 104 
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the shapes only (Meier et al., 2017; Yin et al., 2021). In this way, the normalized STF shapes 105 

likely do not contain direct information of earthquake size, and essentially only reflect the 106 

relative moment release with respect to the entire rupture process. However, there might be 107 

other features of the normalized shapes that are magnitude dependent and could be detected by 108 

the VAE approach. Unlike other STF normalization methods, such as stretching the amplitude 109 

and duration by M!
"#/%  and M!

"&/%  respectively (Houston, 2001; Vallée, 2013), the 110 

normalization adopted in this study leads to the loss of absolute time scale. Hence, 111 

interpretation of the results will be focused on temporal distribution of moment release relative 112 

to the earthquake’s rupture process. 113 

The VAE is constructed as follows: an input layer of 128 neurons, an encoder of two layers 114 

of 512 neurons each, a bottleneck of two neurons (latent representation), a decoder of two 512 115 

neurons, and an output layer of 128 neurons (Figure 1). The use of two latent variables is key 116 

for the architecture as it determines the dimensionality of the latent space. Although using more 117 

latent variables can lead to better fit (refer to supporting infomation), two variables are used to 118 

capture the most essential features of STFs and allow direct visualization of the STF model in 119 

the latent space.  120 

The loss function to train the VAE is defined as: 121 

𝑙𝑜𝑠𝑠 = ‖𝑆𝑇𝐹' − 𝑆𝑇𝐹‖ + 𝐾𝐿[ℕ(𝜇( , 𝜎() − ℕ(0,1	)] 122 

where the first term is the root mean square between the reconstructed and original STFs, and 123 

the second is the Kullback-Leibler divergence which measures the difference in probability 124 

density between the latent variable vector Z with mean	 𝝁  and variance 𝝈 , and normal 125 

distribution. The Kullback-Leibler divergence essentially acts a regularizer of the latent space 126 

(Kingma and Welling, 2014). We use the Adam solver for network parameter optimization 127 

(Kingma and Ba, 2017). 128 

The SCARDEC STFs are split in 80% for training and 20% for validation. The 129 

convergence of train and validation loss (Figure S1) ensures the model generalizability and 130 

warrants analysis of the entire data set altogether. An important sign for a well-trained VAE is 131 

the successful reconstruction of STFs for both SCARDEC and YE2016 (Figures 1b and 1c). 132 



 6 

Except for some complex events (e.g. 2000 Mw 8.1 New Ireland earthquake, 2006 Mw 8.3 133 

Kuril earthquake, 2007 Mw 8.1 Peru earthquake), the reconstructed STFs capture the primary 134 

characteristics of most observed STFs, such as skewness and peakedness variations, 135 

demonstrating the learned low-dimensional latent variables are good representations of the 136 

high-dimensional STFs. 137 

 138 

The standard STF model 139 

The VAE allows us to visualize the STFs orderly in both low- and high- dimensional 140 

spaces, which is important for evaluating their systematic variability. The encoder projects the 141 

STFs into a 2D latent space (Figure 2), whose affinity property ensures that similar STFs are 142 

located closely in the latent space (Figure S2). Because of the imposed regularizer on the latent 143 

variables, earthquake population in the latent space generally follows a normal distribution, i.e. 144 

approximately ~68% of earthquakes within the radius of 1 and 95% of earthquakes within the 145 

radius of 2. Based on these two properties, the most common STF shapes are mapped near the 146 

center, whereas the rare ones are mapped outwards.  147 

To visualize the overall STF variations, we input virtual latent parameters at every 0.5 148 

interval from -3.0 to 3.0 into the decoder to construct a set of synthetic STFs (Figure 2b). 149 

Because each of these STFs is constrained by real STFs near its locality in the latent space, 150 

they represent the generic variations of global earthquakes. Therefore, we call this synthetic 151 

collection as the standard STF model. It is noteworthy that the synthetic STFs are constrained 152 

with a different number of STFs, according to the population distribution of real STFs. Overall, 153 

the standard model exhibits three outstanding characteristics that vary continuously: number 154 

of peaks, skewness, and peakedness (Figures 2b and S3). For convenience of discussion, the 155 

model is divided into four quadrants based on the changes of characteristics: 156 

Q1: Z1>-0.5, Z2>0.5,  Q2: Z1<-0.5, Z2>0 157 

Q3: Z1<-0.5, Z2<0,  Q4: Z1>-0.5, Z2<0.5 158 

Where Z1 and Z2 are the first and second latent variable, respectively. Q1 represents the complex 159 

type with two or more subevents with varying relative size and timings. In comparison, events 160 
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in Q2, Q3, and Q4 are single peaked but negative-skewed (runaway), symmetric, and positive-161 

skewed (long-tail) types, respectively. Overall, the one-peak types Q2-Q4 account for 83% of 162 

global events (16% runaway, 15% symmetric, 52% long-tail), whereas the complex type in Q1 163 

accounts for 17%. 164 

Skewness measures the relative duration of moment acceleration and deceleration phases. 165 

The long-tailed shapes suggest the rupture breaks away energetically but die away slowly. They 166 

have the largest population among all the types, consistent with pervasive energetic onsets of 167 

large earthquakes (Denolle, 2019). However, part of them, especially those with very long tails, 168 

could be due to artifacts from imperfect modeling of P wave coda (Vallée and Douet, 2016). 169 

The symmetric type suggests near equivalent acceleration and deceleration duration, which is 170 

often considered a generic STF shape in standard models (e.g. Tanioka and Ruff, 1997). Finally, 171 

the runaway type has a relatively weak onset, representing ruptures that culminate in the late 172 

rupture stage. This type of events is of particular interest, because they are misguided as small 173 

events at the beginning but their final magnitude is largely determined by the later phase. The 174 

runaway type is comparably populated as the symmetric type. Notice that while long-tailed 175 

shapes appear to be more typical over all, there seems to be a pattern shift to the negative Z1 176 

direction (runaway and symmetric) with increasing magnitude. This phenomenon will be 177 

discussed in the last section. 178 

Peakedness, another characteristic revealed in the model, measures the temporal 179 

homogeneity of moment release. From the center to periphery, peak width decreases. The 180 

rounded peaks near the center suggests relatively homogenous moment release during the 181 

rupture, whereas the spiky peaks in the periphery suggest that a predominant amount of energy 182 

is released within a compact prime time relative to the entire rupture duration. One should note 183 

that the compactness is not in the sense of physical time scale, which is lost in normalization, 184 

but is relative to the earthquake’s rupture process itself. For example, earthquakes with 185 

different moment release rates may have the same temporal homogeneity. The population 186 

distribution suggests that earthquakes with homogenous moment release is much more 187 
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populated than the highly concentrated ones, reflecting the prevalence of homogenous faulting 188 

in nature.  189 

 190 

Earthquakes outside the norm 191 

The model describes a comprehensive set of standard shapes that represent a majority of 192 

global earthquakes. However, some earthquakes cannot be adequately described by the model. 193 

The excursion is quantified by the misfit between the reconstructed and original STFs 194 

‖*+,!"#"*+,!$%‖
‖*+,!$%‖

. While the majority of the SCARDEC events have predominantly small misfits 195 

(Figure 3a), some have unusually high misfits, such as the 2006 M 7.7 Java tsunami earthquake, 196 

2006 M 8.3 Kuril earthquake and 2007 M 8.1 Solomon tsunami earthquake (Figure S4). These 197 

events have complex STFs and are documented with unusual rupture characteristics (Ammon 198 

et al., 2006, 2008; Furlong et al., 2009). Hence, the events with high misfits represent a special 199 

class of unusual earthquakes outside the norm. 200 

The complex events can be categorized according to their latent locality, i.e. the systematic 201 

ones in Q1 and the individual ones in other quadrants. The high misfits observed in Q1 indicate 202 

the actual shapes there are even more complicated than depicted in the model. These events 203 

have temporally separated subevents, representing ruptures of relatively distant 204 

asperities/faults or inter-event triggering. In comparison, the high-misfit events outside Q1 are 205 

fit with simple one-peak shapes, yet exhibiting complex characteristics. They appear to be 206 

temporally more compact and generally “rougher”. This could be interpreted as ruptures of 207 

spatially concentrated asperities and/or heterogeneous frictional properties along faults (Ye et 208 

al., 2018). 209 

Figure 3 shows that the complex events exhibits three intriguing characteristics: 1) they 210 

are shallower than 40 km; 2) they exist in all faulting environments; 3) many are located along 211 

the northern boundaries of the Australian plate and in Southeast Asia. Houston (2001) found 212 

that the complexity of events is generally higher in the top 40 km in global subduction zones. 213 

She attributed this phenomenon to heterogeneous interplate boundary regions. However, in our 214 

results, the complex events are found to exist in all different mechanisms, suggesting more 215 
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universal depth-dependent rupture complexity. Applying cluster analysis to the SCARDEC 216 

data, Yin et al. (2021) also identified depth dependence of earthquake complexity. They 217 

proposed that variations of frictional properties with depth, such as slip weakening distance or 218 

other equivalent rupture parameters could play an important role in controlling rupture 219 

complexity. One should note that some complex shallow events might be caused by the 220 

artifacts of unmodelled seismic phases, such as depth phases (Vallée and Douet, 2016). 221 

However, Yin et al. (2021) observed that co-located shallow events have various degrees of 222 

complexity, indicating inaccuracy in the Green’s function does not impact the overall 223 

observations. Moreover, to mitigate the structural effect, the SCARDEC method cuts the STFs 224 

after the last local maximum 40% of the absolute maximum.  225 

Alternatively, we hypothesize that there could be more geometric and stress irregularities 226 

(e.g. faults and asperities) at shallow depths owing to low confining pressure and temperature. 227 

In a statistical perspective, the larger population of geometric and stress irregularities allows 228 

higher chance of triggering and accidental activation during rupture. This hypothesis is partly 229 

supported by the pervasiveness of complex events in the apparently complex fault systems, 230 

such as in the northern boundaries of the Australian plate and in Southeast Asia (Figure 3), 231 

although the causes for specific complex events could be case dependent. 232 

 233 

Discussion 234 

Implications for earthquake rupture diversity 235 

The VAE condenses a large number of global earthquake observations into the standard 236 

STF model along with the information of population density, which unravels more diverse 237 

rupture characteristics than the mean shape from commonly used stacking methods. 238 

Complementary to the model, the reconstruction misfit quantifies the deviation of individual 239 

earthquakes and naturally measures the rupture uniqueness. These components taken together 240 

provide a panoramic view of earthquake rupture variability and showcase the extent that large 241 

earthquakes share common rupture characteristics. 242 
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Our observations, first of all, confirm that earthquakes with apparent simple rupture 243 

processes are predominant and that the extremely skewed or complex ones are rare. Around 244 

the model center with highest population density, the shapes are weakly skewed and gently 245 

peaked, representing relatively homogenous and apparent one-patch-like rupture processes. 246 

This is generally consistent with the simple mean shape reported by Meier et al. (2017). 247 

However, the model offers a much richer collection of standard shapes other than the simple 248 

mean. Beyond one standard deviation, for example, the shapes start to exhibit significant 249 

skewness and more complexity, reflecting increasingly irregular rupture processes. These 250 

irregular types comprise a non-negligible proportion of the entire earthquake population (e.g. 251 

32% if counting those outside radius 1), which should be interpreted by more sophisticated 252 

rupture models.  253 

The STF model derived by the VAE approach aims to quantify the first and second order 254 

features of global earthquakes’ STFs, which is similar to the STF model by Meier et al (2017). 255 

However, the two models differ in some important aspects. For example, in addition to the 256 

median STF, Meier et al (2017) quantified the statistical fluctuations, which is found to be 257 

multiplicative and Gaussian-like. Their model considers a real STF as the median STF 258 

perturbed by random fluctuations at all frequencies. In comparison, our model produces 259 

smoother STFs and the high-frequency roughness of real STFs is assimilated in the misfit and 260 

viewed as part of earthquake complexity (Figures 1-3). Moreover, our model has two 261 

controlling parameters to reconstruct the STFs and take a misfit metric to measure the 262 

excursion, whereas the model of Meier et al. (2017) has controlling parameters as many as the 263 

fluctuation phases at all frequencies. These differences are essentially sourced from different 264 

decomposition schemes of real STFs resulted from the respective methods. 265 

 266 

Implications for earthquake early warning 267 

The diversity of temporal moment release patterns imposes a limit on magnitude 268 

determinism, i.e. the predictability of earthquake size before the rupture is complete. A near 269 

isosceles triangular shape averaged from all STFs suggests that approximately half the duration 270 
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is required to predict final magnitude (Meier et al., 2017). In addition, many symmetric events 271 

observed in the model exhibit a low-amplitude onset acceleration, which may also lead to 272 

magnitude underestimate in early warning. For the runaway events, the early amplitude is 273 

particularly small and long and the peak moment rate arrives much later. This runaway 274 

behavior could be caused by dynamic weakening mechanisms during the rupture development , 275 

such as flash heating and thermal pressurization, resulting in the break of strong asperities in 276 

the later rupture stage (Denolle et al., 2015). Alternatively, it could be also caused by triggering 277 

a later large asperity by an early small asperity. In this case, both ruptures are so close in time 278 

that the moment release appears to be one peak. More generally, triggering among asperities 279 

with different sizes and spatial separations can result in other types of events as well. Recent 280 

discoveries of similar initial waveforms between large and small earthquakes imply that 281 

whether or not a small event can develop into a big one could be in part a stochastic result 282 

(Okuda and Ide, 2018; Ide, 2019). Hence, this type of events poses a greater challenge for early 283 

warning. 284 

Although STFs predicted by the Brune and Haskell models (Haskell, 1964; Brune, 1970) 285 

as well as those empirically derived tend to emphasize the importance of symmetric and long-286 

tail STFs (Tanioka and Ruff, 1997), our results show that the population of the runaway type 287 

is actually comparable to that of the symmetric type. The examples of large runaway events 288 

include the 1996 Mw 7.7 and 2001 Mw 7.6 Peru, 2010 Mw 8.8 Chile, and 2011 Mw 7.3 Honshu 289 

earthquakes (Figure S4). In addition to the runaway type, complex events represented in Q1 290 

have subevents with unknown relative size and timing, which can further confuse early warning 291 

systems. It seems that there is no effective way to diagnose the event type when the rupture is 292 

developing, making early magnitude estimation more challenging. Recent studies also show 293 

that that the absolute duration can vary significantly even for earthquakes with similar 294 

magnitudes (Vallée, 2013; Sallarès and Ranero, 2019), which further decreases magnitude 295 

predictability beyond the discussed STF shape diversity. Therefore, early estimates of 296 

earthquake magnitude would expectedly often excurse, even though it could be partly inferred 297 

(Melgar and Hayes, 2019). 298 
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 299 

Potentials for revealing earthquake mechanics 300 

An important question in earthquake science is whether or not rupture processes are 301 

magnitude-dependent (Meier et al., 2017; Ye et al., 2018; Melgar and Hayes, 2019; Renou et 302 

al., 2019). Figure 2a shows stark contrast in the numbers of M>8 events in Z1>0 and Z1<0 303 

quadrants, implying a plausible preferential rupture mode for M>8 events. In fact, we observe 304 

that the largest earthquakes seem to shift systematically to the negative Z1 direction (Figure 4). 305 

We estimate the statistical significance of this trend by bootstrap tests. To reduce the impact of 306 

scarcity of large-magnitude events, in each test, 100 events are randomly drawn in each 307 

magnitude bin (Figure 4a and b) for calculation of Spearman correlation and p value. For bins 308 

with less than 100 events, all the events in the bins are used. This procedure is repeated 1,000 309 

times. The results show that Z1 has correlation 0.20 ± 0.03 with magnitude and p value 310 

10"-±&, suggesting a statistically significant pattern shift along the Z1 direction (Figure 4). In 311 

contrast, Z2 has correlation 0.067 ± 0.03 with magnitude and p value 10"#.%±!.-, suggesting 312 

negligible change along the Z2 direction. This magnitude-dependent Z1 distribution implies 313 

that the largest earthquakes seemingly prefer to begin with small events (symmetric or run-314 

away types) rather than release most of the energy in the early stage (long-tail type). An 315 

admissible explanation is that a relatively high level of rupture momentum and dynamic 316 

weakening is likely needed to activate and break unusually large and/or strong asperities. 317 

More generally, the encoder-decoder system provides an effective tool to investigate 318 

potential pattern variations with source parameters and thus could offer useful insights into the 319 

physics of rupture processes. It also provides a convenient tool to evaluate the generality and 320 

peculiarity of particular events in the context of historical observations in a uniform framework. 321 

Our study illustrates that generative unsupervised machine learning could be powerful in 322 

uncovering underlying collective patterns of high-dimensional seismic data. 323 
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 441 

Figures 442 

 443 

Figure 1. Variational autoencoder (VAE) for earthquake source time functions (STFs). a. 444 

VAE architecture. Both of the decoder and encoder consist of two fully connected layers with 445 

512 neurons each. The bottleneck consists of two latent variables constrained to follow normal 446 

distribution. b. Original STFs (blue) and VAE reconstructed STFs (red) from SCARDEC. The 447 

numbers in the top right mark the misfits. c. Same as b but for the STF database of Ye et al. 448 

(2016) (referred to as YE2016 thereinafter). 449 
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 450 

Figure 2. The latent representation and the standard model of STFs. a. Low-dimensional 451 

latent representations of SCARDEC (dots) and YE2016 (squares) STFs. The population 452 

density in both Z1 and Z2 follows normal distribution. b. The standard STF model reconstructed 453 

from virtual latent values. The model shows systematic variations of STFs: complex type in 454 

Q1, runaway type in Q2, symmetric type in Q3, and long-tail type in Q4.  455 
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 456 

Figure 3. Reconstruction misfit as a proxy of unusual earthquakes. a. Reconstruction 457 

misfits of all the SCARDEC (dots) and YE2016 (squares) events in latent space. Note that most 458 

high-misfits are located in Q1 and some are in other quadrants. b. Reconstruction misfit as a 459 

function of earthquake depth and focal mechanisms. The definition of fault type follows 460 

Shearer et al. (2006). On the right is the median misfit across depth. The depth at 40 km marks 461 

the change point of earthquake complexity. c. Geographic distribution of reconstruction misfit 462 

of global earthquakes. Note that the high-misfits are predominantly located in the northern 463 

boundaries of the Australian plate and Southeast Asia. 464 
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 465 

Figure 4. Dependencies of latent variables Z1 and Z2 on magnitude. a. Blue dots represent 466 

Z1 of individual earthquakes. Red dots and bars represent the mean and standard deviation in 467 

each magnitude bin bracketed by dashed gray lines. b. Similar symbol representation as in a 468 

but for Z2. c. Histograms of Spearman correlations between Z1, Z2 and magnitude from 469 

bootstrapping tests. d. Histograms of p values for hypothesis test in which null hypothesis is 470 

that Z1, Z2 are uncorrelated with magnitude. In each test, 100 events are randomly selected in 471 

each magnitude bin (for bins with less than 100 events, all within the bins are used) to calculate 472 

the correlation and p-value, which is repeated 1,000 times. 473 


