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Abstract

Rupture processes of global large earthquakes have been observed to exhibit great variability, whereas recent studies suggest

that the average rupture behavior could be unexpectedly simple. To what extent do large earthquakes share common rupture

characteristics? Here we use a machine learning algorithm to derive a generic spectrum of global earthquake source time

functions. The spectrum indicates that simple and homogeneous ruptures are pervasive whereas complex and irregular ruptures

are relatively rare. Despite the standard long-tail and near-symmetric moment release processes, the spectrum reveals two special

rupture types: runaway earthquakes with weak growing phases and relatively abrupt termination, and complex earthquakes

with all faulting mechanisms but mostly shallow origins (<40 km). The diversity of temporal moment release patterns imposes

a limit on magnitude predictability in earthquake early warning. Our results present a panoptic view on the collective similarity

and diversity in the rupture processes of global large earthquakes.
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Highlights: 15 

1. A generic spectrum of characteristic source time functions is derived from global 16 

earthquake observations using machine learning. 17 

2. The spectrum presents a panoptic view of the similarity and the diversity in the rupture 18 

processes of large earthquakes. 19 

3. The diversity of temporal moment release patterns imposes a limit on magnitude 20 

predictability in earthquake early warning.   21 
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Abstract 22 

Rupture processes of global large earthquakes have been observed to exhibit great 23 

variability, whereas recent studies suggest that the average rupture behavior could be 24 

unexpectedly simple. To what extent do large earthquakes share common rupture 25 

characteristics? Here we use a machine learning algorithm to derive a generic spectrum of 26 

global earthquake source time functions. The spectrum indicates that simple and homogeneous 27 

ruptures are pervasive whereas complex and irregular ruptures are relatively rare. Despite the 28 

standard long-tail and near-symmetric moment release processes, the spectrum reveals two 29 

special rupture types: runaway earthquakes with weak growing phases and relatively abrupt 30 

termination, and complex earthquakes with all faulting mechanisms but mostly shallow origins 31 

(<40 km). The diversity of temporal moment release patterns imposes a limit on magnitude 32 

predictability in earthquake early warning. Our results present a panoptic view on the collective 33 

similarity and diversity in the rupture processes of global large earthquakes. 34 

 35 

Plain language summary 36 

In past decades, the rupture processes of many large earthquakes have observed to exhibit 37 

great variability. However, some recent studies suggest that the average rupture behavior could 38 

be unexpectedly simple. Can the average behavior be representative of most earthquakes? To 39 

what extent do large earthquakes share common rupture characteristics? Here we use machine 40 

learning to derive a panoptic picture, i.e. a generic spectrum of source time functions, for global 41 

earthquake. The spectrum show that simple and homogeneous ruptures are pervasive whereas 42 

complex and irregular ruptures are relatively rare. Besides, it reveals two special rupture types: 43 

runaway earthquakes with weak initial phases, and complex earthquakes with all faulting 44 

mechanisms but mostly shallow origins (<40 km). Our results present a panoptic view on the 45 

collective similarity and diversity in the rupture processes of global large earthquakes, which 46 

affects how well we can predict earthquake magnitude in earthquake early warning.  47 
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Introduction 48 

Large earthquakes start, propagate, and terminate in diverse manners owing to complex 49 

interplay between rupture dynamics and fault properties. In the past decades, observations of 50 

large earthquake rupture processes have shown various degrees of peculiarity (Ammon, 2005; 51 

Ammon et al., 2006; Meng et al., 2012; Ross et al., 2019), suggesting that each large 52 

earthquake probably has its own unique characteristics. However, understanding the general 53 

physical laws that govern earthquake phenomena requires derivation of the underlying patterns 54 

from the seemingly diverse behaviors (Houston and Vidale, 1994; Vallée, 2013; Meier et al., 55 

2017; Denolle, 2019). The average behaviors, often obtained by stacking a large set of 56 

seismological data, tend to show relatively simple characteristics, implying common similarity 57 

hidden behind the diverse ruptures (Houston and Vidale, 1994; Meier et al., 2017). The distinct 58 

emphases on collective rupture peculiarity and similarity raises a critical question: to what 59 

extent do large earthquakes share common rupture characteristics? To answer this question 60 

calls for a panoptic view of the variability in the rupture processes of global earthquakes.  61 

Earthquake source time functions (STFs) describes the history of seismic moment release 62 

during rupture. As an important observation constraining on the source processes, STFs have 63 

been routinely extracted from seismograms for large earthquakes. However, because of the 64 

high-dimensionality and great variations of amplitude and duration (Tanioka and Ruff, 1997; 65 

Duputel et al., 2013; Vallée, 2013), STFs cannot be compared directly. Hence, comparison is 66 

often performed on individual STF properties such as duration, peak amplitude, peaks and 67 

skewness (Houston, 2001; Persh and Houston, 2004), as well as other derived parameters, such 68 

as scale energy (Denolle, 2019) and relative radiated energy efficiency (Ye et al., 2018). 69 

Although these individual properties constrain on specific aspects of earthquake ruptures, it 70 

remains challenging to examine the variability of overall moment release processes. 71 

Here we employ a machine learning algorithm, called variational autoencoder (VAE), to 72 

illuminate the systematic variability of STF shapes among global earthquakes (Figure 1). We 73 

train the VAE model with normalized STFs of 3675 M>5.5 global earthquakes from 1992 to 74 

2019 (SCARDEC database, Vallée & Douet, 2016). This trained model is applied to another 75 
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independent database of 112 STF of M>7.0 megathrust earthquakes (Ye et al., 2016), to 76 

validate the model’s generalization capability. With the model, we derive a standard STF 77 

spectrum that contains a systematic set of characteristic shapes along with corresponding 78 

earthquake population density. The spectrum exhibits a broad range of rupture characteristics 79 

for global earthquakes and sheds light on special classes of earthquakes that are not well 80 

attended before. Moreover, the deviation of individual earthquakes from the standard spectrum 81 

is measured by the reconstruction misfit. Hence, large reconstruction misfits naturally detect 82 

earthquakes outside the norm, i.e. earthquakes with unusual rupture processes.  83 

 84 

VAE for STFs 85 

VAE is widely used in signal and image processing to uncover the intrinsic structure of a 86 

large data set (Kingma and Welling, 2014). It consists of an encoder to compress the high-87 

dimensional data into a low-dimensional latent representation and a decoder to reconstruct the 88 

high-dimensional data from the latent representation (Figure 1). The bottleneck architecture 89 

forces the model to learn the key characteristics of STFs and discards the noise in individual 90 

samples. After training, VAE can take input of virtual latent values to generate synthetic data 91 

constrained by real observations, and therefore belongs to generative learning methods.   92 

Following Yin et al. (2021), the STFs of SCARDEC and YE2016 are resampled to 128 93 

points, given that the maximum duration is approximately 100 s and that a minimum sampling 94 

rate would be greater than 1 Hz. The amplitude of STFs are then normalized to the event 95 

seismic moment to retain the shapes only. The VAE model is constructed as follows: an input 96 

layer of 128 neurons, an encoder of two 512 neurons, a bottleneck of two neurons (latent 97 

representation), a decoder of two 512 neurons, and an output layer of 128 neurons (Figure 1).  98 

The loss function to train the VAE is defined as: 99 

𝑙𝑜𝑠𝑠 = ‖𝑆𝑇𝐹′ − 𝑆𝑇𝐹‖ + 𝐾𝐿[ℕ(𝜇𝑥, 𝜎𝑥) − ℕ(0,1 )] 100 

where the first term is the root mean square between the reconstructed and original STFs, and 101 

the second is the Kullback-Leibler divergence which measures the difference in probability 102 

density between latent variables and normal distribution. The Kullback-Leibler divergence 103 
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essentially acts a regularizer of the latent space (Kingma and Welling, 2014). We use the Adam 104 

solver for network parameter optimization (Kingma and Ba, 2017). 105 

The SCARDEC STFs are split in 80% for training and 20% for validation. The 106 

convergence of train and validation loss (Figure S1) ensures the model generality and warrants 107 

analysis of the entire data set altogether. An important sign for a well-trained VAE is the 108 

successful reconstruction of STFs for both SCARDEC and YE2016 (Figures 1b and 1c). 109 

Except for some complex events (e.g. 2000 Mw 8.1 New Ireland earthquake, Papua New 110 

Guinea earthquake, 2006 Mw 8.3 Kuril earthquake), the reconstructed STFs capture the 111 

primary characteristics of the most observed STFs, such as the variations in skewness and 112 

peakedness variations, demonstrating the learned low-dimensional latent variables are good 113 

representations of the high-dimensional STFs. 114 

 115 

The standard STF spectrum 116 

The VAE model allows us to visualize the STFs orderly in both low- and high- dimensional 117 

spaces, which is important for evaluating their systematic variability. The encoder projects the 118 

STFs into a 2D latent space (Figure 2), whose affinity property ensures that similar STFs are 119 

located closely in the latent space (Figure S2). Because of the imposed regularizer on the latent 120 

variables, the earthquake population in the latent space generally follows a normal distribution, 121 

i.e. approximately ~67% of earthquakes within the radius of 1 and 95% of earthquakes within 122 

the radius of 2. Based on these two properties, the most common STF shapes are mapped near 123 

the center, whereas the rare ones are mapped outwards.  124 

To visualize the overall STF variations, we input virtual latent parameters at every 0.5 125 

interval from -3.0 to 3.0 into the decoder to construct a set of synthetic STFs (Figure 2b). 126 

Because each of these STFs is constrained by real STFs near its locality in the latent space, 127 

they represent the generic variations of global earthquakes. Therefore, we call this synthetic 128 

collection as the standard STF spectrum. It is noteworthy that the synthetic STFs are 129 

constrained with a different number of STFs, given the population distribution of real STFs. 130 

Overall, the standard spectrum exhibits three outstanding characteristics that vary continuously: 131 
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number of peaks, skewness, and peakedness (Figures 2b and S3). For convenience of 132 

discussion, the spectrum is divided into four quadrants based on the changes of characteristics: 133 

Q1: Z1>-0.5, Z2>0.5,  Q2: Z1<-0.5, Z2>0 134 

Q3: Z1<-0.5, Z2<0,  Q4: Z1<-0.5, Z2<0.5 135 

Where Z1 and Z2 are the first and second latent variable, respectively. Q1 represents the complex 136 

type with two or more subevents with varying relative size and timings. In comparison, events 137 

in Q2, Q3, and Q4 are single peaked but negative-skewed (or runaway), symmetric, and positive-138 

skewed (or long-tail) types, respectively. Overall, the one-peak types Q2-Q4 account for 83% 139 

of global events (16% runaway, 15% symmetric, 52% long-tail), whereas the complex type in 140 

Q1 account for 17%. 141 

Skewness measures the relative duration of moment acceleration and deceleration phases. 142 

The long-tailed shapes suggest the rupture breaks away energetically but die away slowly. They 143 

have the largest population among all the types, consistent with generally energetic onsets of 144 

large earthquakes (Denolle, 2019). However, part of them, especially those with very long tails, 145 

could be due to artifacts from imperfect modeling of P wave coda (Vallée and Douet, 2016). 146 

The symmetric type suggests near equivalent acceleration and deceleration duration, which is 147 

often considered a generic STF shape in standard models (e.g. Tanioka and Ruff, 1997). Finally, 148 

the runaway type has a relatively weak onset, representing ruptures that culminate in the late 149 

stage of rupture. This type of events is of particular interest, because they are misguided as 150 

small events at the beginning but their final magnitude is largely determined by the later phase. 151 

The runaway type is comparably populated as the symmetric type. 152 

Another characteristic revealed in the spectrum peakedness measures the temporal 153 

homogeneity of moment release. From the center to periphery, peak width changes from being 154 

broad to narrow. The rounded peaks near the center suggests relatively homogenous moment 155 

release during the rupture, whereas the spiky peaks in the periphery suggest that a predominant 156 

amount of energy is released within a compact prime time. The population distribution suggests 157 

that earthquakes with homogenous moment release is much more populated than the highly 158 

concentrated ones, reflecting the prevalence of homogenous faulting in nature. 159 
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 160 

Earthquakes outside the norm 161 

The spectrum describes a comprehensive set of standard shapes that represent a majority 162 

of global earthquakes. However, some earthquakes cannot be adequately described by the 163 

spectrum, which is quantified by the misfit between the reconstructed and original STFs 164 

‖𝑆𝑇𝐹𝑟𝑒𝑐−𝑆𝑇𝐹𝑟𝑎𝑤‖

‖𝑆𝑇𝐹𝑟𝑎𝑤‖
. While the majority of the SCARDEC events have predominantly small misfits 165 

(Figure 3a), some have unusually high misfits, such as the 2006 M 7.7 Java tsunami earthquake, 166 

2006 M 8.3 Kuril earthquake and 2007 M 8.1 Solomon tsunami earthquake (Figure S4). These 167 

events have complex STFs and many are documented with unusual rupture characteristics 168 

(Ammon et al., 2006, 2008; Furlong et al., 2009). Hence, the events with high misfits represent 169 

a special class of unusual earthquakes outside the norm. 170 

The complex events can be categorized according to their latent locality, i.e. the systematic 171 

ones in Q1 and the scatters in other quadrants. The high misfits observed in Q1 indicate the 172 

actual shapes there are even more complicated than depicted in the spectrum. These events 173 

have temporally separated subevents, representing ruptures of relatively distant 174 

asperities/faults or inter-event triggering. In comparison, the high-misfit events outside Q1 are 175 

fit with simple one-peak shapes, yet exhibiting complex characteristics. They appear to be 176 

temporally more compact and generally “rougher”. This could be interpreted as ruptures of 177 

spatially concentrated asperities and/or heterogeneous frictional properties along faults (Ye et 178 

al., 2018). 179 

Figure 3 shows that the complex events exhibits three intriguing characteristics: 1) they 180 

are shallower than 40 km; 2) they exist in all faulting environments; 3) many are located along 181 

the northern boundaries of the Australian plate and in Southeast Asia. Houston (2001) 182 

examined the number of peaks of subduction zone events and found a group of shallow 183 

complex ones. She attributed this phenomenon to heterogeneous and rapidly deformation in 184 

interplate boundary region. However, the complex events found here exist in all different 185 

mechanisms, suggesting more universal depth-dependent rupture complexity. Applying cluster 186 

analysis to the SCARDEC data, Yin et al. (2021) also identified depth dependence of 187 
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earthquake complexity. They proposed that variations of frictional properties with depth, such 188 

as slip weakening distance or other equivalent rupture parameters could play an important role 189 

in controlling rupture complexity. Alternatively, we speculate that there could be more 190 

geometric and stress irregularities (e.g. faults and asperities) at shallow depths owing to low 191 

confining pressure and temperature. In statistical perspective, the populated irregularities allow 192 

higher chance of triggering and accidental activation during rupture. This hypothesis is partly 193 

supported by the pervasiveness of complex events in the apparently complex fault systems, 194 

such as in the northern boundaries of the Australian plate and in Southeast Asia, although the 195 

causes for specific complex events could be case dependent. 196 

 197 

Implications for earthquake rupture diversity 198 

The machine learning model condenses a large number of global earthquake observations 199 

into the standard STF spectrum along with the information of population density, which 200 

unravels more diverse rupture characteristics than the mean shape from commonly used 201 

stacking methods. Complementary to the spectrum, the reconstruction misfit quantifies the 202 

deviation of individual earthquakes from it and naturally measures the rupture uniqueness. 203 

These components taken together provide a panoramic view of earthquake rupture variability 204 

and showcase the extent that large earthquakes share common rupture characteristics. 205 

Our observations, first of all, confirm that earthquakes with apparent simple rupture 206 

processes are predominant and that the extremely skewed or complex ones are rare. Around 207 

the spectrum center with highest population density, the shapes are weakly skewed and gently 208 

peaked, representing relatively homogenous and apparent one-patch-like rupture processes. 209 

This is generally consistent with the simple mean shape reported by Meier et al. (2017). 210 

However, the spectrum offers a much richer collection of standard shapes other than the simple 211 

mean. Beyond one standard deviation, for example, the shapes start to exhibit significant 212 

skewness and more complexity, reflecting increasingly irregular rupture processes. These 213 

irregular types comprise a non-negligible proportion of the entire earthquake population (e.g. 214 
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32% if counting those outside radius 1), which should be interpreted by more sophisticated 215 

rupture models.  216 

The diversity of temporal moment release patterns imposes a limit on magnitude 217 

determinism, i.e. the predictability of earthquake size before the rupture is complete. A near 218 

isosceles triangular shape averaged from all STFs suggests that approximately half the duration 219 

is required to predict final magnitude (Meier et al., 2017). For the runaway events, the early 220 

amplitude is small and the peak moment rate arrives much later. The break of strong asperities 221 

in the later rupture stage implies the existence of drastic dynamic weakening (Denolle et al., 222 

2015), such as flash heating and thermal pressurization. This type of event poses a greater 223 

challenge for early warning, because using the early P waves tend to underestimate the final 224 

size. In addition, recent discoveries of similar initial waveforms between large and small 225 

earthquakes imply that whether or not a small event can develop into a big one could be in part 226 

a stochastic result (Okuda and Ide, 2018; Ide, 2019). Although STFs predicted by the Brune-227 

Haskell model (Haskell, 1964; Brune, 1970) as well as those empirically derived tend to 228 

emphasize the importance of symmetric STFs (Tanioka and Ruff, 1997), our results show that 229 

the population of the runaway type is actually comparable to that of the symmetric type, 230 

examples including the 1996 M 7.7 and 2001 M 7.6 Peru, 2010 M 8.8 Chile, 2011 M 7.3 231 

Honshu earthquakes (Figure S4). In addition to the runaway type, complex events represented 232 

in Q1 have subevents with unknown relative size and timing, which can further confuse early 233 

warning systems. It is more challenging that there seems no effective way to diagnose the event 234 

type when the rupture is developing. Therefore, early estimates of earthquake magnitude would 235 

be expectedly often offshoot, even though it could be partly inferred (Melgar and Hayes, 2019). 236 

An important questions in earthquake science is whether or not rupture processes are 237 

magnitude-dependent (Meier et al., 2017; Ye et al., 2018; Melgar and Hayes, 2019; Renou et 238 

al., 2019). Figure 2a shows a disproportion of M>8 events in the Z1>0 and Z2<0 quadrants, 239 

implying a plausible preferential rupture mode for M>8 events. In fact, the largest earthquakes 240 

seem to shift systematically to the negative direction of the first latent variable (Figure 4). This 241 

trend, if true, implies that the largest earthquakes prefer to begin with small events (symmetric 242 
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or run-away types) rather than release most of the energy in the early stage (long-tail type). 243 

Yet, this hypothesis remains to be tested because of the obvious concern on the scarcity of large 244 

events. Despite this, the encoder-decoder system provides a general tool to investigate potential 245 

variations with source parameters and thus could offer useful insights into the collective 246 

patterns of physical rupture processes. Moreover, our study illustrates that generative machine 247 

learning could be helpful in uncovering underlying patterns of high-dimensional seismic data. 248 

 249 
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 341 

Figures 342 

 343 

Figure 1. Variational autoencoder (VAE) for earthquake source time functions (STFs). a. 344 

The VAE architecture. Both of the decoder and encoder consist of two fully connected layers 345 

with 512 neurons. The bottleneck comprises of two latent variables constrained to follow 346 

normal distribution. b. Original STFs (blue) and VAE reconstructed STFs (red) from 347 

SCARDEC. The numbers in the top right mark the misfits. c. Same as b but for the STF 348 

database of Ye et al. (2016) (refer to as YE 2016 thereinafter). 349 
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 350 

Figure 2. The latent representation and the standard spectrum of STFs. a. Low-351 

dimensional latent representations of SCARDEC (dots) and YE2016 (squares) STFs. The 352 

population density in both Z1 and Z2 follows normal distribution. b. The standard spectrum of 353 

synthetic STFs as reconstructed from virtual latent values. The spectrum shows systematic 354 

variations of STFs: complex type in Q1, runaway type in Q2, symmetric type in Q3, long-tail 355 

type in Q4.  356 
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 357 

Figure 3. Reconstruction misfit as a proxy of unusual earthquakes. a. Reconstruction 358 

misfits of all the SCARDEC (dots) and YE2016 (squares) events in latent space. Note that most 359 

high-misfits are located in Q1 and some are in other quadrants. b. Reconstruction misfit as a 360 

function of earthquake depth and focal mechanisms. On the right is the median misfit across 361 

different depths. The depth at 40 km marks the transition of earthquake complexity. c. 362 

Geographic distribution of reconstruction misfit of global earthquakes. Note that the high-363 

misfits are predominantly located in the northern boundaries of the Australian plate and 364 

Southeast Asia. 365 
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 366 

Figure 4. Latent variables Z1, Z2 and reconstruction misfits as a function of Mw. Note that 367 

Z2 and misfit remain nearly constant across different magnitudes, whereas Z1 decreases with 368 

magnitude, indicating a plausible magnitude dependence of moment release processes.  369 
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Figure S1. History of train and test loss for the VAE model. 
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Figure S2. Affinity property of the latent space: the distance between two STFs in latent space is 

proportional to the dissimilarity between them. 

 

 



 

Figure S3. The variations of skewness and kurtosis across the standard STF spectrum. 

 



 

Figure S4. Original STFs (blue) and VAE reconstructed STFs (red) for all the 112 megathrust 

earthquakes in YE2016 (b). The numbers in the top right mark the misfits. 

 



 

Figure S4 (continued). Original STFs (blue) and VAE reconstructed STFs (red) for all the 112 

megathrust earthquakes in YE2016 (b). The numbers in the top right mark the misfits. 
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