
P
os
te
d
on

26
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
82
69
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Improving atmospheric angular momentum forecasts by machine

learning

Robert Dill1, Jan Saynisch-Wagner2, Christopher Irrgang2, and Maik Thomas3

1Deutsches GeoForschungsZentrum GFZ
2Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences
3Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences

November 26, 2022

Abstract

Earth angular momentum forecasts are naturally accompanied by forecast errors that typically grow with increasing forecast

length. In contrast to this behavior, we have detected large quasi-periodic deviations between atmospheric angular momentum

wind term forecasts and their subsequently available analysis. The respective errors are not random and have some hard to

define yet clearly visible characteristics which may help to separate them from the true forecast information. These kinds of

problems, which should be automated but involve some adaptation and decision-making in the process, are most suitable for

machine learning methods. Consequently, we propose and apply a neural network to the task of removing the detected artificial

forecast errors. We found, that a cascading forward neural network model performed best in this problem. A total error

reduction with respect to the unaltered forecasts amounts to about 30% integrated over a 6 day forecast period. Integrated

over the initial 3 day forecast period, in which the largest artificial errors are present, the improvements amount to about 50%.

After the application of the neural network, the remaining error distribution shows the expected growth with forecast length.

However, a 24 hourly modulation and an initial baseline error of 2*10-8 became evident that were hidden before under the

larger forecast error.
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Abstract11

Earth angular momentum forecasts are naturally accompanied by forecast errors12

that typically grow with increasing forecast length. In contrast to this behavior, we have13

detected large quasi-periodic deviations between atmospheric angular momentum wind14

term forecasts and their subsequently available analysis. The respective errors are not15

random and have some hard to define yet clearly visible characteristics which may help16

to separate them from the true forecast information. These kinds of problems, which should17

be automated but involve some adaptation and decision-making in the process, are most18

suitable for machine learning methods. Consequently, we propose and apply a neural net-19

work to the task of removing the detected artificial forecast errors. We found, that a cas-20

cading forward neural network model performed best in this problem. A total error re-21

duction with respect to the unaltered forecasts amounts to about 30% integrated over22

a 6 day forecast period. Integrated over the initial 3 day forecast period, in which the23

largest artificial errors are present, the improvements amount to about 50%. After the24

application of the neural network, the remaining error distribution shows the expected25

growth with forecast length. However, a 24 hourly modulation and an initial baseline26

error of 2∗10−8 became evident that were hidden before under the larger forecast er-27

ror.28

1 Introduction29

The impact of atmospheric dynamics on the time-variable rotation of the Earth has30

been detected already during the early years of Very Long Baseline Interferometry (VLBI)31

by analyzing excitation functions based on global numerical weather prediction models32

(Barnes et al., 1983). Subsequently, the accuracy of space geodesy progressed rapidly,33

and also the quality of atmospheric model data sets improved due to newly available me-34

teorological satellite observations and a break-through in meteorological data assimila-35

tion (Eubanks, 1993). Progress eventually led to the detection of signatures of the El Niño36

Southern Oscillation in seasonal variation in the length-of-day (Gross et al., 1996) caused37

by low-frequency variations in tropospheric winds.38

Changes in the orientation of the solid Earth are conveniently studied by apply-39

ing the principle of conservation of angular momentum in the whole Earth system in-40

cluding the surrounding fluid layers of atmosphere, oceans, and the terrestrial hydrosphere41
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(Gross, 2007). By summarizing the angular momentum changes from mass re-distributions42

in any of those sub-systems, the overall effect on the orientation of the solid Earth as rep-43

resented by the terrestrial reference frame realized through a set of geodetic observato-44

ries is obtained. Changes in the mass distribution of the atmosphere can be expressed45

by its tensor of inertia calculated from given surface pressure fields. In addition, rela-46

tive angular momentum changes can be derived from vertically integrated zonal and merid-47

ional atmospheric winds. The influence on Earth rotation from those angular momen-48

tum changes can be summarized as effective angular momentum functions (EAM) (Brzeziński,49

1992) divided into the pressure or mass term and the motion term. EAM functions also50

consider a partly de-coupled rotation of the Earth’s core, the effect of elastic Earth sur-51

face deformations under atmospheric pressure, and rotational deformations.52

Numerous studies inter-compared EAM for the atmosphere with atmospheric an-53

gular momentum (AAM) from different sources (Koot et al., 2006; Masaki, 2008), and54

highlighted the importance of various specific aspects of the calculation of AAM includ-55

ing the accurate consideration of the surface orography (Zhou et al., 2006) and the con-56

sideration of stratospheric winds in addition to the tropospheric mass transports (Zhou57

et al., 2008). The individual contributions of surface pressure variations from regional58

sectors to AAM were also analyzed (Nastula et al., 2009), thereby opening up opportu-59

nities to principally inform atmospheric models by means of assimilating information on60

atmospheric angular momentum from geodetic observations (Neef & Matthes, 2012).61

The strong relationship between model-based EAM and observed EOP encouraged62

the use of EAM forecasts for Earth rotation predictions. Especially, the short-term pre-63

dictions of variations in the Earth spin rate UT1-UTC (universal time – coordinated uni-64

versal time) could benefit from the 3rd component (χ3) of AAM forecast data (Bell et65

al., 1991; Freedman et al., 1994). UT1 prediction errors were reduced by 20 % at a fore-66

cast horizon of 5 days. In 2000 the International Earth Rotation and Reference Systems67

Service (IERS) started to introduce AAM χ3 forecasts from NCEP into their official Earth68

rotation prediction product Bulletin A in order to improve the short-term predictions69

of UT1-UTC variations. However, it showed up, that including the AAM forecasts some-70

times degraded the UT1 prediction skill due to systematic differences between the AAM71

and UT1 series. Smoothing of the AAM data to reduce the sub-daily variability helped72

to reduce those effects (both periodic and linear).73
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Not only UT1 predictions could be improved by AAM χ3 forecasts, but polar mo-74

tion predictions could also benefit from AAM forecasts, namely the components χ1 and75

χ2. The first comparison campaign for Earth orientation parameters prediction under-76

lines the necessity of the AAM forecast for the very-short-term EOP prediction (Kalarus77

et al., 2010). The authors also recommend the incorporation of EAM forecasts for ocean78

and terrestrial hydrology as presented the first time in a comprehensive study by Dill79

and Dobslaw (2010) for polar motion and UT1 predictions. The findings were confirmed80

by a study of Gross (2012) for improved UT1 predictions. Although EAM forecasts have81

typically a very short forecast horizon of only several days, 90-day EOP prediction could82

also benefit from the improvements in the very-first part of the EOP prediction (Dill et83

al., 2013, 2018).84

EAM contributions for χ1, χ2, χ3 mass and motion term forecasts of ocean and hy-85

drology, χ1 and χ2 mass term forecasts of the atmosphere and χ3 mass and motion fore-86

cast of the atmosphere show excellent prediction skills with a Brier-Skill (Storch & Zwiers,87

1999) score above 0.8 throughout the whole forecast length of 6 days. In contrast to this88

good performance of most EAM components, AAM χ1 and χ2 motion term forecasts show89

much lower prediction skills. Here, regular drops below zero (Brier-Skill score < 0.0)90

occur, see Fig. 3 in (Dobslaw & Dill, 2017). During the first 3 prediction days, these de-91

ficiencies in the AAM χ1 and χ2 motion term forecasts even drag down the overall EAM92

prediction skill sometimes below a Brier-Skill score of 0.8 that would be necessary for93

meaningful predictions.94

In contrast to all other EAM forecast errors that are increasing with prediction length,95

large deviations between the AAM χ1 and χ2 motion term forecast and subsequently avail-96

able analysis data pop up irregularly in the very-first forecast epochs. These deviations97

decrease with prediction length. Figures 1 and 2 exemplary show the deviations of 10098

consecutive AAM motion term forecasts from its subsequently available analysis data.99

In the χ1 and χ2 components (Fig. 1) we find artificial quasi-periodic signals with ini-100

tial amplitudes larger than the increasing stochastic forecast error after 6 days with an101

average period of 1.071 days in χ1 and 1.098 days in χ2. This artificial signal is excited102

irregularly from day to day with seemingly arbitrary amplitude and phase. The signal,103

if excited, vanishes with increasing forecast length. The χ3 component (Fig. 2) reflects104

the normal behavior, a continuously increasing forecast error with increasing forecast length105

(compare temporal behavior along the vertical axis tforecast in Fig. 1 and Fig. 2).106
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Figure 1. Systematic forecast errors in the χ1 (right) and χ2 (left) AAM motion terms. Fore-

cast minus analysis time series. Heat map over 100 consecutive forecasts with a typical forecast

time window of 6 days each (3-hourly sampling).

107

108

109

We suspect the origin of these AAM motion term forecast errors in the ECMWF113

(European Centre for Medium-Range Weather Forecasting) wind fields. So far, we couldn’t114

find any documentation that might explain the existence of such artificial signals. It looks115

like the ECMWF’s forecast system excites a free eigenmode once the system is no more116

constrained by assimilation data. In order to reduce the AAM forecast error, the follow-117

ing study explores machine learning (ML) to eliminate these supposedly artificial sig-118

nals in the AAM motion term forecasts as far as possible. ML encompasses a class of119

generic yet highly adaptable operators and tools that can be trained to solve specific tasks.120

ML applications range from image classification, speech recognition to automated driv-121

ing (e.g., Girasa, 2020). However, ML methods are also rapidly advancing in Earth sci-122

ences and can solve a plethora of classification, data-augmentation, inversion and mod-123

elling problems in this field (Irrgang et al., 2021; Salcedo-Sanz et al., 2020; Lary et al.,124

2016).125

2 Atmospheric angular momentum analysis and forecast data126

Atmospheric surface pressure and wind data are available from various sources in-127

cluding global re-analyses from the National Center for Environmental Prediction (NCEP),128
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Figure 2. Systematic forecast errors in the χ3 AAM motion term. Forecast minus analysis

time series. Heat map over 100 consecutive forecasts with a typical forecast time window of 6

days each (3-hourly sampling).
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the Japan Meteorological Agency, and the European weather agency ECMWF. More-129

over, these institutions also provide short-term forecasts of atmospheric data, but gen-130

erally the access to the data is restricted. AAM derived from NCEP data is processed131

at the center for Atmospheric and Environmental Research in Boston, and from ECMWF132

by ESMGFZ (Earth System Modelling group at the Helmholtz Centre Potsdam GFZ,133

German Research Centre for Geosciences). The AAM data products are provided via134

the International Earth Rotation and Reference Systems Service (IERS) under the aus-135

pices of the International Association of Geodesy (IAG). The IERS hosts the Global Geo-136

physical Fluids Center (GGFC) that collects and disseminates those AAM data and meta-137

data describing the contributions from mass re-distributions in atmosphere, oceans, and138

the terrestrial hydrosphere (https://www.iers.org/IERS/EN/DataProducts/GeophysicalFluidsData/geoFluids.html).139

All data of the GGFC are publicly available without any charges.140

In contrast to AAM (analysis) data sets from several re-analysis runs of numeri-141

cal weather models, up to now, AAM forecasts data sets are publicly available via the142

GGFC only from ESMGFZ. Since 2016, ESMGFZ is moreover routinely providing EAM143

forecasts for either 6 days (individually for the EAM from atmosphee, ocean, hydrology144

and sea level) or 90 days (combination of all effects). The data sets are updated daily145

around 11:00 UTC with all time steps of the previous day (analysis) and 6 days into the146

future (forecasts). More details are available at http://esmdata.gfz-potsdam.de:8080/.147

For this study, we collected 1988 daily AAM χ1 and χ2 motion term forecasts from148

2016 - 2021, each sampled 3-hourly, i.e., 48 epochs for 6 days. The forecasts were con-149

trasted against subsets of the AAM analysis data for the same epochs. Fig. 3 shows the150

mean differences time series and the variety of forecast errors over the forecast length.151

In contrast to Fig. 1 where individual forecast errors are plotted for a subset of consec-152

utive forecasts, Fig. 3 shows the forecast errors for the whole data set in an aggregated153

view. Again, the strong quasi-periodicity of the χ1 and χ2 forecast errors is very promi-154

nent (Fig. 3, black line). However, the large variety of this quasi-periodicity in shape as155

well as period, phase, length and amplitude is visible, too (Fig. 3, grey swath).156

On the one hand, exactly this erratic behavior makes it challenging to filter out this157

kind of error. Defining a filter that removes the error signal is challenging especially since158

the forecasts contain useful information on the same periods that has to be retained. As159

clearly as the errors are visible in the aggregated view of Fig. 3, when looking at a sin-160

gle forecast time series these periodic errors are far from obvious.161
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Figure 3. Forecast error, i.e., differences between AAM motion term forecast and the respec-

tive analyses time series for a prediction of 6 days into the future. Left: χ1. Right: χ2. Range

(grey) and average (black) over the 1988 individual curves.

166

167

168

On the other hand, the errors are not random and have some hard to define yet162

clearly visible characteristics which may help to separate true from false forecast infor-163

mation. With ML, a suitable filter has not to be defined a priori, it will be generated164

within a neural network (NN) during the training.165

In general, we would expect a forecast error increasing with forecast length. How-169

ever, we can detect exceptionally large errors especially in the first forecast epochs (e.g.,170

Fig. 3). The forecast errors are caused by an artificial periodic signal that is arbitrar-171

ily excited at the beginning of the AAM forecasts with decreasing amplitude for longer172

prediction length. Respective time series from AAM analysis do not contain this peri-173

odic signal. In contrast to the AAM forecast, the AAM analysis is based on numerical174

weather model simulations that assimilate observational data as soon as they are avail-175

able.176

In addition to the exceptional difference between AAM χ1 and χ2 motion term fore-177

casts and analysis, we find also large deviations in the overlapping epochs of consecu-178

tive forecasts. Here, we would expect only small deviations, especially for the first part179

of the forecast period (e.g. 1st day of today’s forecast vs. 2nd day of yesterday’s fore-180

cast). A preliminary approach to estimating the erroneous forecast signal from such con-181
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secutive forecasts and the known deviation from the analysis of older forecasts led only182

to a minor reduction of the overall forecast error as the overlapping time series are too183

short for a robust harmonic analysis.184

Due to the restricted access to AAM forecasts from other numerical weather mod-185

els such as NCEP, we could not inspect if the observed AAM motion term forecast short-186

comings are typical for numerical weather prediction models or solely existent in ECMWF’s187

atmospheric wind forecasts.188

3 Methods189

To isolate and remove the systematic errors contained in the polar motion related190

AAM data, different neural network classes were applied and tested: feed forward neu-191

ral networks (FFNN), long short-term memory (LSTM) and other recurrent neural net-192

works (RNN), as well as convolutional neural networks (CNN). As typical with ML ap-193

proaches, the work includes a large fraction of trial and error to find suitable network194

architectures and connected hyper parameters like network shape, number of neurons195

in each layer, etc. We found that all of the listed network classes could be adapted to196

the problem and give comparable results (not shown). In the following, we describe only197

one of the tested ML classes, the cascading forward neural network model (CFN, e.g.,198

Bolanča et al., 2009; Warsito et al., 2018). The CFN performed slightly better than the199

other tested configurations and was used to generate the results of this study. CFN are200

enhanced FFNN. In FFNN, while the first layer acts on the task-related input data, the201

following hidden layers process only the output of the previous layer. In a CFN, each202

hidden layer can access and process the output of all previous layers including the task-203

related input data.204

The best performing CFN (MATLAB, 2021a) for our purpose is sketched in Fig. 4211

and has the following layout, which was implemented using the Deep Learning Toolbox212

of MATLAB (MATLAB, 2021b). The CFN has 128 input neurons, which process AAM213

motion term forecasts for χ1 and χ2. Both input time series have a length of 64 epochs,214

each containing the erroneous 6-day forecast (48 epochs at 3-hourly sampling) and two215

days of preceding AAM analysis data (16 epochs). The network contains two hidden lay-216

ers with 5 and 3 neurons, respectively, and a final output layer with 96 neurons, match-217

ing the length of the target forecast corrections for χ1 and χ2. The task of the CFN is218
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Figure 4. Sketch of the ML-based correction scheme for one exemplary AAM motion term

forecast. The neural network analyzes time series of 6-day 3-hourly AAM motion term forecasts

for χ1 and χ2 (dark blue time series), both complemented with 2 days from the latest analysis

(light blue time series), to estimate an additive forecast correction (red time series). Colored

blocks show neurons in the different layers and arrows indicate information aggregation and

pathways between the layers.
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209

210

to generate an additive forecast correction to derive an improved version of the erroneous219

input forecast. For this purpose, 6 days of differences (48 epochs), i.e., AAM forecast mi-220

nus analysis for χ1 or χ2, are used as prescribed target outputs. To evaluate the ML-221

based correction, we compare erroneous and ML-corrected AAM forecasts with the cor-222

responding AAM analysis time series in terms of root mean square errors (RMSE). Dur-223

ing the training, the weights of the CFN are adapted by using the Levenberg-Marquardt224

back-propagation algorithm (Marquardt, 1963). From the available 1988 AAM forecasts225

(see sec. 2), 1500 forecasts and their subsequent analyses are used pair-wise during the226

CFN training and validation (Fig. 4). The remaining 488 forecasts and analyses are used227

to quantify the CFN performance with respect to data independent from the training228

procedure (see Sec. 4).229

4 Results and Discussion230

Figure 5 shows the results of the various CFN we designed to improve the AAM231

motion term forecasts. The results are shown as RMSE over the 488 time series which232

were refrained from the CFN training. The black lines corresponds to the black lines of233
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242

Fig. 3, i.e., this is the forecast error of the untreated AAM forecasts. Note that while234

Fig. 3 shows this baseline-error as temporal average, Fig. 5 represents a squared RMSE235

view.236

The most basic approach to the problem is to train two CFN separately, one for243

χ1 and one for χ2. We call this the serial approach from now on. Here, each CFN takes244

one component of the AAM forecast as input and delivers a correction to it as output.245

In and output each have the same length of 48 epochs for 6 days. This most simple ap-246

proach reduces already the RMSE significantly below the baseline (cf., Fig. 5, red with247

black line). The RMSE reduction is quite dramatic. The total RMSE of the 488 χ1 (χ2)248

forecasts amounts to 4, 78 ∗ 10−8 (4, 66 ∗ 10−8) and is reduced by the serial approach249

to 3, 53∗10−8 (3, 67∗10−8), i.e., an relative reduction of about 26% (21%). Especially250

in the first epochs of the forecast, where the supposedly artificial errors are most pro-251

nounced, the RMSE drop. The RMSE of the first 3 days of the forecast period (epochs252

1-24) drop by 38% (30%). Consequently, by applying the serial approach, the remain-253

ing RMSE now grow more linear with the forecast horizon. Towards the end of the 6 days254
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forecasts, the RMSE of the serial approach and the RMSE of the unaltered forecasts meet.255

This linear RMSE trend is expected and far more realistic (cf. also Fig. 2) and arises nat-256

urally from chaotic and nonlinear components in the atmosphere system. In addition to257

the trend, an RMSE baseline of about 2∗10−8 remains. The origin of this offset is not258

part of this study but may originate in missing or in-accurate assimilation data insuf-259

ficiently constraining the ECMWF atmospheric model. Also remaining is a periodic mod-260

ulation of the natural RMSE trend. The period of this remaining RMSE modulation is261

about 12 hours (corresponding to 24 hours in the non-squared errors) and might be con-262

nected with periodic daytime-dependent fluctuations in the quality of ECMWF’s atmo-263

spheric forecasts compared to their operational analysis data. Given its input data, phase264

and amplitude of this remaining modulation is from the CFN point of view random and265

cannot be further reduced.266

The next natural progression of the CFN was to process χ1 and χ2 together within267

one NN. This we termed parallel approach and this CFN has χ1 and χ2 as input and268

delivers respective corrections for both AAM motion term components (Fig. 5, blue line).269

Compared to the serial approach, the total RMSE do improve slightly: 3, 42∗10−8 (3, 46∗270

10−8) for χ1 (χ2). That corresponds to an additional relative improvement of 3% (5%)271

compared with the serial approach. This is surprisingly little, given the fact that the in-272

formation the CFN now gets is doubled. Naturally one would assume that since χ1 and273

χ2 are physically linked, information contained in the one could be useful for correct-274

ing the other. However, the influence of this additional information seems to be of mi-275

nor importance as far as the filtering of the dominant AAM forecast errors is concerned.276

In other words, each component on its own contains already enough information to re-277

duce the RMSE to certain degree and considering the other component gives only lit-278

tle additional, i.e., independent information.279

However, additional information can indeed help to lower the RMSE further, e.g.,280

by extending the input vectors of the parallel approach with analysis data that is avail-281

able at the respective time of forecast. Here we add 16 epochs of data preceding the fore-282

cast time window as additional input to the CFN of the parallel approach (green, cf. Fig. 4).283

The results of this parallel-extended approach amount to a total RMSE of 3, 29∗10−8
284

(3, 19∗10−8), i.e, a relative improvement with respect to the unaltered forecasts of 31%285

(32%) for the full 48 forecast epochs and 48% (45%) improvement when only the epochs286

1-24 are considered (Fig. 5, green line).287
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Considering the remaining RMSE and their development with forecast time, the288

stochastic trend, the initial bias and the periodic modulation of the trend are now very289

clear in both polar motion AAM components. It seems that our general CFN approach290

has reached its full potential, given the provided information. In other words, from the291

perspective of the NN all remaining errors appear to be undecidable at forecast time.292

Undecidable in that sense that the error’s governing mechanisms are random and com-293

pletely external, i.e., no further robust hints about the errors can be found in the input294

data provided to the NN.295

As a final note, the described results do not depend strongly on the choice of NN,296

the hyper-parameters, and the amount of training. As mentioned in Sec. 3, several NN297

classes were tested. All tried configurations were able to considerably reduce the RMSE298

of the forecasts. Likewise, all finally remaining RMSE showed the same characteristics299

as far as trend, modulation and bias are concerned. The RMSE values however, can dif-300

fer slightly depending on the NN of choice and, as usual with ML, among several instances301

of the same network.302

The purpose of an improved AAM motion term forecast is to enhance EOP pre-303

dictions based on AAM forecasts. Without changing the EOP prediction system, three304

hindcast experiments with 1784 daily 90-day EOP predictions for the years 2016 - 2020305

were calculated using ESMGFZ’s EOP prediction algorithm (Dobslaw & Dill, 2017). The306

reference experiment was calculated with the original AAM forecasts. The second ex-307

periment uses the NN corrected AAM motion term forecasts. The third experiment uses308

6-day subsets of the AAM analysis data to simulate perfect forecasts providing a tar-309

get reference for the best possible EOP prediction that might be achieved without any310

further change (parameters for harmonic analysis and autoregression model) of the EOP311

prediction system. Table 1 summarizes the RMS prediction error for the three exper-312

iments for forecast horizons of 5, 10, 40, and 90 days. The polar motion x-component313

shows the expected improvement (4-5%), whereas the y-component shows almost no im-314

provement. However, the y-component does also not benefit from a perfect forecast, which315

might be originated in the EOP prediction system that is tuned to the original forecasts316

and its included errors.317
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Table 1. Polar motion forecast error (RMS) in mas using original AAM forecasts (no correc-

tion), corrected AAM motion terms using NN (AAM corrected), and perfect forecasts reflecting

the AAM analysis data. Forecast horizon 5, 10, 40, and 90 days into the future.

318

319

320

Polar motion forecast RMS [mas] 5 days 10 days 40 days 90 days

no correction X pole 0.93 1.92 8.65 15.76

Y pole 0.64 1.30 5.14 10.85

pole 1.13 2.32 10.06 19.14

AAM corrected X pole 0.89 1.83 8.64 15.78

Y pole 0.67 1.33 5.09 10.77

pole 1.12 2.26 10.03 19.11

perfect forecast X pole 0.88 1.68 8.56 15.80

Y pole 0.66 1.28 5.10 10.74

pole 1.10 2.11 9.97 19.10

For a more extensive exploitation of the corrected AAM motion term forecasts, the321

harmonic analysis and autoregression model of the ESMGFZ’s EOP prediction system322

has to be adapted to the new characteristics of the AAM motion terms.323

5 Summary324

The Earth System Modelling group at the Helmholtz Centre Potsdam GFZ, Ger-325

man Reserach Centre for Geosciences, (ESMGFZ) routinely provides effective angular326

momentum function (EAM) forecasts for the next 6 days, which are based on atmospheric327

reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF).328

EAM forecasts are naturally accompanied with forecast errors that typically grow with329

increasing forecast length. In contrast to this behavior, however, we have detected large330

quasi-periodic deviations between atmospheric angular momentum (AAM) χ1 and χ2331

motion term forecasts and their subsequently available analysis. These supposedly ar-332

tificial forecast errors appear to be excited irregularly with arbitrary amplitude and phase333

during the first forecast epochs and fade with increasing prediction length. While we could334

not conclusively isolate the cause of these artificial forecast errors, we suspect them to335

originate from artificial signatures in ECMWF’s wind fields. Nevertheless, we expected336
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a significant improvement of the forecast quality during the first 3 to 4 days after sep-337

aration and removal of the artificial errors.338

The separation and removal of unwanted noise, or artificial errors, in otherwise mean-339

ingful data is a classical task for machine learning (ML). In this paper, we introduced340

a ML correction scheme for the AAM χ1 and χ2 motion term forecasts that dynamically341

derives a 6-day forecast correction for given 6-day AAM forecasts. After testing differ-342

ent neural network classes, a cascading forward neural network was chosen to isolate fore-343

cast errors from a six-year long time period (2016 - 2021) in a supervised training en-344

vironment.345

Comparing both ML-corrected and uncorrected AAM χ1 (χ2) forecasts with the346

subsequently available analysis has revealed a relative improvement of 31% (32%) for the347

entire 6-day forecast. During the first three forecast days, where the largest artificial er-348

rors were detected, a relative improvement of 48% (45%) could be achieved. Thus, we349

conclude that the neural network is able to successfully identify and remove the erroneous350

quasi-periodic forecast errors. Comparing the ML-corrected forecasts with their anal-351

ysis, shows, as we would expect, a remaining forecast error trend that is increasing lin-352

early with forecast length. On top, however, the error trend contains a remaining off-353

set and an additional periodic modulation with an exact 24 hour (respectively 12 hours354

in the RMSE) period. These remaining signatures could not be entirely removed by the355

ML correction.356

A more rigorous solution to get rid off systematic errors in the AAM motion term357

forecast could be the application of a likewise ML correction scheme in the underlying358

atmospheric wind field forecast rather than in the derived AAM terms.359

However, even in its present form, the ML correction is already skillful enough to360

be included into the operational forecast system at GFZ, allowing us to provide signif-361

icantly improved AAM forecasts to the community. In return, we hope that further anal-362

ysis of our ML-based corrections and the described residual forecast errors can also feed-363

back towards understanding and eliminating the causes of these artificial errors in the364

used atmospheric reanalysis products.365
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