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Abstract

For decades, the Arctic has been warming at least twice as fast as the rest of the globe. As a first step towards quantifying

parametric uncertainty in Arctic feedbacks, we perform a variance-based global sensitivity analysis (GSA) using a fully-coupled,

ultra-low resolution (ULR) configuration of version 1 of the Department of Energy’s Energy Exascale Earth System Model

(E3SMv1). The study randomly draws 139 realizations of ten model parameters spanning three E3SMv1 components (sea

ice, atmosphere and ocean), which are used to generate 75 year long projections of future climate using a fixed pre-industrial

forcing. We quantify the sensitivity of six Arctic-focused quantities of interest (QOIs) to these parameters using main effect,

total effect and Sobol sensitivity indices computed with a Gaussian process emulator. A sensitivity index-based ranking of

model parameters shows that the atmospheric parameters in the CLUBB (Cloud Layers Unified by Binormals) scheme have

significant impact on sea ice status and the larger Arctic climate. We also use the Gaussian process emulator to predict the

response of varying each variable when the impact of other parameters are averaged out. These results allow one to assess the

non-linearity of a parameter’s impact on a QOI and investigate the presence of local minima encountered during the spin-up

tuning process. Our study confirms the necessity of performing global analyses involving fully-coupled climate models, and

motivates follow-on investigations in which the ULR model is compared rigorously to higher resolution configurations to confirm

its viability as a lower-cost surrogate in fully-coupled climate uncertainty analyses.
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Key Points:9

• We perform the first global sensitivity analysis using the fully-coupled ultra-low10

resolution Energy Exascale Earth System Model (E3SM).11

• Uncertainty in cloud physics parameters is found to most greatly impact Arctic12

climate predictions.13

• Our inferred quantity of interest-parameter correlations uncover key physical feed-14

backs and can guide model tuning.15
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Abstract16

For decades, the Arctic has been warming at least twice as fast as the rest of the globe. As17

a first step towards quantifying parametric uncertainty in Arctic feedbacks, we perform a18

variance-based global sensitivity analysis (GSA) using a fully-coupled, ultra-low resolution19

(ULR) configuration of version 1 of the Department of Energy’s Energy Exascale Earth Sys-20

tem Model (E3SMv1). The study randomly draws 139 realizations of ten model parameters21

spanning three E3SMv1 components (sea ice, atmosphere and ocean), which are used to22

generate 75 year long projections of future climate using a fixed pre-industrial forcing. We23

quantify the sensitivity of six Arctic-focused quantities of interest (QOIs) to these parame-24

ters using main effect, total effect and Sobol sensitivity indices computed with a Gaussian25

process emulator. A sensitivity index-based ranking of model parameters shows that the26

atmospheric parameters in the CLUBB (Cloud Layers Unified by Binormals) scheme have27

significant impact on sea ice status and the larger Arctic climate. We also use the Gaus-28

sian process emulator to predict the response of varying each variable when the impact of29

other parameters are averaged out. These results allow one to assess the non-linearity of30

a parameter’s impact on a QOI and investigate the presence of local minima encountered31

during the spin-up tuning process. Our study confirms the necessity of performing global32

analyses involving fully-coupled climate models, and motivates follow-on investigations in33

which the ULR model is compared rigorously to higher resolution configurations to confirm34

its viability as a lower-cost surrogate in fully-coupled climate uncertainty analyses.35

Plain Language Summary36

Feedbacks associated with Arctic warming are consequential for both the region and the37

strongly coupled global climate system. With the goal of assessing the variability of the38

impacts of global warming and associated feedbacks in model-based predictions, we study39

the sensitivity of the Arctic climate state to ten uncertain model parameters using a com-40

putationally inexpensive ultra-low resolution (ULR) configuration of the Department of41

Energy’s global climate model, the Energy Exascale Earth System Model (E3SM). We can42

confidently conclude that, of the ten parameters considered, the atmospheric parameters43

in E3SM’s cloud physics model are the most influential, having a strong influence on at-44

mosphere, sea ice and ocean quantities of interest. Since identifying such cross-component45

influences is impossible without running a fully-coupled climate model, our study demon-46

strates the importance of fully-coupled climate analyses. To the best of our knowledge,47

this is the first global sensitivity study using E3SM’s current release, and the first known48

scientific study involving the ULR configuration. Our study suggests that the ULR E3SM49

shows some promise in being used as a relatively inexpensive surrogate for higher resolu-50

tion climate models, and demonstrates a need for rigorous quantitative follow-on studies51

involving this model configuration.52

1 Introduction53

Understanding the impact of warming on the Arctic is important because regional events54

can lead to high-consequence global changes (Lenton, 2008, 2012; Bathiany et al., 2016)55

including tipping points (irreversible changes in the global climate system (Lenton, 2008;56

Peterson et al., 2020)). Melting of the Greenland ice sheet will result in global sea level rise57

with risks to coastal infrastructure (Graeter et al., 2018). Sea ice loss will lead to increased58

maritime activity and possibly geopolitical conflict as more nations vie for access to the59

region (L. C. Smith & Stephenson, 2013). In addition, there is evidence that loss of sea ice60

and Arctic warming can induce changes in mid-latitude weather and precipitation (Cohen,61

Zhang, et al., 2018; Cohen, Pfeiffer, & Francis, 2018; Cvijanovic et al., 2017) potentially62

leading to food and water shortages (Parry et al., 2001).63
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According to recent data (Snow, Water, Ice, and Permafrost in the Arctic (SWIPA),64

2017; Richter-Menge et al., 2019; IPCC, 2021), the Arctic is warming at more than twice65

the rate of the rest of the globe. This accelerated Arctic warming leads to changes in a66

variety of physical systems influencing Arctic climate. For instance, the well-known ice-67

albedo feedback effect has been shown to contribute to sea ice loss. As highly reflective68

sea ice is lost, the surface albedo is reduced and solar radiation absorption in the darker69

ocean water is increased (Goosse et al., 2018). This positive feedback is counteracted by70

a negative feedback mechanism whereby thinner sea ice grows more quickly in response71

to thermodynamic forcing from the ocean and atmosphere. Permafrost thaw is increasing72

greenhouse gas release, thereby increasing warming (Parazoo et al., 2018; Schuur et al.,73

2015). Both sea ice and land ice melt are increasing freshwater flux into the North Atlantic,74

which can lead to ocean current disruptions and further changes to climate (Sevellec et al.,75

2017).76

As a first step towards identifying possible tipping events stemming from climate77

change-driven processes in the Arctic with quantified uncertainty, we present a global sensi-78

tivity analysis of climate projections of version 1 of the U.S. Department of Energy’s (DOE’s)79

fully-coupled Energy Exascale Earth System Model (E3SMv1). To motivate the main con-80

tributions of this paper, we first provide a brief overview of related past work, focusing on81

studies aimed at addressing the sensitivity of Earth System Model (ESM) components and82

coupled models to various model parameters.83

1.1 Overview of related work84

Recent years have seen a number of studies aimed at understanding the sensitivity of85

various climate models to relevant parameters. The vast majority of this work has focused86

on individual components of a global ESM, e.g., the ocean, sea ice and atmosphere compo-87

nents. Several authors have investigated the sensitivity of ocean models to parameters, most88

of them examining subgrid mixing parameterizations, wind drag, model domain and grid89

resolution, numerical formulations and topography (Alexanderian et al., 2012; Bernard et90

al., 2006; M. Hecht & Smith, 2008; M. W. Hecht et al., 2008; Hurlburt & Hogan, 2000; Mal-91

trud & McClean, 2005; Asay-Davis et al., 2018; Reckinger et al., 2015). A handful of studies92

have examined the sensitivity of model predictions to model parameters in stand-alone con-93

figurations of sea ice models, including (Kim et al., 2006; Peterson et al., 2010; Uotila et94

al., 2012; Urrego-Blanco et al., 2016). In the most recent of these works (Urrego-Blanco et95

al., 2016), Urrego-Blanco et al. conducted a comprehensive sensitivity analysis of sea ice96

thickness and area to 39 sea ice model parameters using Sobol sequences together with a97

fast emulator for the Los Alamos sea ice model, CICE (Community Ice CodE) (Hunke et al.,98

2015). Similar sensitivity studies have been done for stand-alone atmosphere models, e.g.99

(Zhao et al., 2013; Covey et al., 2013; Qian et al., 2018; Rasch et al., 2019; Guo et al., 2014).100

Zhao et al. (Zhao et al., 2013) evaluated the sensitivity of radiative fluxes at the top of the101

atmosphere to various cloud microphysics and aerosol parameters. Covey et al. (Covey et102

al., 2013) used Morris one-at-a-time (MOAT) screening to estimate sensitivity with respect103

to 27 atmospheric parameters. Qian et al. (Qian et al., 2018), estimated the sensitivity of the104

model fitness of generalized linear model (GLMs) of response variables obtained from short105

(three day) simulations of a 1◦ resolution E3SM atmosphere model (EAM) with respect to106

18 parameters from various parts of the atmospheric dycore, including parameterizations of107

deep convection, shallow convection and cloud macro/microphysics. Guo et al. (Guo et al.,108

2014), used GLMs to determine the most influential parameters of the Cloud Layers Unified109

by Binormals (CLUBB) physics parameterization within the single-column version of the110

Community Atmosphere model version 5 (SCAM5). In related recent work focused on the111

EAM, Rasch et al. (Rasch et al., 2019) demonstrated the utility of using lower-resolution112

versions of the EAM atmospheric component and short-term hindcasts to guide tuning and113

sensitivity analysis of higher-resolution models.114
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While the aforementioned studies provide much insight into individual ESM compo-115

nents, without considering a fully-coupled ESM, it is impossible to identify the interaction116

among various climate components. Hence, studies focusing on a single climate component117

have the danger of significantly overlooking relevant climate feedbacks. Performing sensi-118

tivity studies on fully-coupled climate models is far more challenging than considering an119

individual climate component. The main hurdle is the fact that running a fully-coupled ESM120

is far more computationally expensive than running a single climate component. Since sen-121

sitivity studies typically require many simulation ensembles, sensitivity analyses using fully-122

coupled models are typically intractable without the use of efficient surrogates, especially123

at “production” grid resolutions. The authors are aware of only one reference focusing on a124

sensitivity study involving several climate components using a fully-coupled ESM, namely125

(Urrego-Blanco et al., 2019). In (Urrego-Blanco et al., 2019), Urrego-Blanco et al. use the126

1◦ resolution of the E3SM v0-HiLAT (EHV0) fully coupled climate system (developed for127

the simulation of high-latitude processes) to identify emerging relationships between sea ice128

area, net surface longwave radiation and atmospheric circulation over the Beaufort gyre.129

The authors consider five model parameters, two from the atmosphere model (version 5 of130

the Community Atmosphere Model, or CAM5 (Dennis et al., 2012)), two from the sea ice131

model (version 5 of the Los Alamos Sea Ice Model, or CICE5 (Hunke et al., 2015)) and one132

from the ocean model (version 2 of the Parallel Ocean Program, or POP2 (R. Smith et al.,133

2010)), and initialize their model using pre-industrial forcing. By employing an elementary134

effects or MOAT method (Morris, 1991) for their sensitivity analysis (an approach that135

perturbs one input parameter at a time, rather than all parameters together), the authors136

are able to keep the number of ensemble members (or E3SM simulations) required down to137

just 24.138

It is worthwhile to note that there are other works utilizing global climate models139

for sensitivity analyses targeting a single climate component. For instance, the authors of140

(Rae et al., 2014) perform a sensitivity study of the sea ice simulation within the global141

coupled climate model HadGEM3. Here, both the Arctic and Antarctic are considered. In142

a similar vein, Uotila et al. (Uotila et al., 2012) explore the sensitivity of the global sea ice143

distribution of the Australian Climate Ocean Model (AusCOM) to a range of sea ice physics-144

related parameters within a global ocean-ice model comprised of AusCOM coupled with the145

Los Alamos CICE model. While studies such as these have the advantage of incorporating146

feedbacks from the global climate system, they have a similar limitation of single-component147

sensitivity studies in that they preclude the identification of cross-component parameter148

interactions.149

1.2 Contributions and organization150

Our present work is primarily motivated by the recent study in (Urrego-Blanco et al.,151

2019), but differs in several important ways. First, we consider version 1 of the E3SM152

(referred to herein as E3SMv1), the newest available release of the E3SM to date. Second,153

we employ a much lower spatial resolution grid than those considered in (Urrego-Blanco154

et al., 2019). We will refer to our resolution model as the “Ultra-Low Resolution” (ULR)155

model, which corresponds to a 7.5◦ grid resolution in the atmosphere and 240 kilometer grid156

resolution for the ocean and sea ice. By using a lower resolution grid, we are able to afford far157

more simulations, allowing us to consider more parameters and employ more sophisticated158

sensitivity analysis approaches than the MOAT method used in (Urrego-Blanco et al., 2019).159

Specifically, we perform a variance-based global sensitivity analysis which uses Gaussian160

process emulators constructed using the PyApprox library (J. D. Jakeman, 2021). To the161

best of our knowledge, this is the first global sensitivity analysis involving the fully-coupled162

E3SMv1, and the first scientific study involving the ULR configuration of this model.163

In our variance-based GSA, we study the effect of ten parameters, spanning three E3SM164

components, the sea ice model (MPAS-SeaIce (M. R. Petersen et al., 2019)), the E3SM atmo-165

sphere model (EAM (Rasch et al., 2019)) and the ocean model (MPAS-Ocean (M. Petersen166
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et al., 2018)), on six Arctic-focused quantities of interest (QOIs). We construct fast Gaus-167

sian process emulators for these QOIs using 139 75-year ensemble runs of the fully-coupled168

ULR E3SMv1. Each simulation is initialized from a spun-up initial condition generated169

specifically for this study (a spun-up initial condition was not readily available at the con-170

sidered resolution) and forced with pre-industrial control conditions. Using each emulator171

we calculate Sobol sensitivity, main effect and total effect indices of our ten parameters.172

Main effect indices quantify the effects of single parameters acting in isolation, and Sobol173

and total effect indices are useful for identifying strong parameter interactions.174

The 139 ensemble runs comprising this study exhibited significant variability, with sev-175

eral runs resulting in complete loss of Arctic sea ice and several other runs exhibiting an176

apparent exponential growth in the amount of Arctic sea ice. The main takeaway from177

our study is that the parameters in the cloud physics parameterization within the atmo-178

sphere component of the E3SMv1 have the most impact on the Arctic climate state. Our179

study identified several relationships between QOI, which match physics-based intuition180

(e.g., ensemble members with low sea ice extent had high surface air temperature), and181

led to plausible conclusions regarding feedback processes important to the Arctic climate182

state (e.g., seasonal cloud convective regimes can create a feedback that affects Arctic sea183

ice extent). These results suggest that the ULR model may serve as a viable lower-cost184

surrogate for sensitivity analysis and uncertainty quantification workflows, and motivate a185

follow-on evaluation/validation study in which the ULR model is compared rigorously to186

higher resolution configurations of the E3SM for the purpose of identifying its current lim-187

itations. By constructing univariate functions by marginalizing all but a single parameter,188

we are additionally able to determine whether increasing/decreasing a given parameter will189

increase or decrease a given QOI. These results are useful in guiding model spin-ups, and190

are consistent with the parameter-QOI correlations uncovered by our manual spin-up of the191

ULR E3SMv1.192

The remainder of this paper is organized as follows. We detail the methods employed193

in this study in Section 2. This includes a description of our coupled model, E3SMv1, and194

our tuning of this model, together with a discussion of the design and implementation of195

our global sensitivity study using this coupled model. In Section 3, we present the main196

results of our global sensitivity study applied to the ULR E3SMv1, and provide a discussion197

of their significance. We end with a concluding summary (Section 4).198

2 Methods199

2.1 E3SMv1 coupled climate model200

In the present study, E3SMv1 is used to investigate changes in Arctic sea ice in response201

to internal variability related to ocean and atmosphere modes as well as in response to202

perturbations in the model parameters. E3SM consists of component models for atmosphere,203

ocean, ice, land, and river transport. The E3SM Atmosphere Model (EAM) (Rasch et al.,204

2019) has a spectral element dynamical core discretized on a cubed sphere grid using 72205

vertical levels. The standard resolution E3SM configuration uses a 1◦ grid for both EAM206

and the E3SM Land Model (ELM) (Bisht et al., 2018), which corresponds to approximately207

110 km at the equator. The ocean and sea ice models are based on the Model for Prediction208

Across Scales (MPAS) framework (Heinzeller et al., 2016). MPAS-Ocean (M. Petersen et al.,209

2018) uses a finite volume discretization on an unstructured Voronoi grid, which is shared210

with MPAS-SeaIce (M. R. Petersen et al., 2019). At the standard resolution, the ocean211

and sea ice grid has a resolution varying between 60 km at midlatitudes and 30 km at the212

poles. The Model for Scale Adaptive River Transport (MOSART) (Cornette, 2012) is also213

employed, and has a resolution of 50 km.214

The present study is based on an ULR configuration of E3SMv1. We chose an ULR con-215

figuration that would provide a computationally tractable way to generate larger numbers216
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of ensemble runs to explore the parameter space in the coupled model. This ULR config-217

uration has a grid resolution of approximately 7.5 degrees for EAM and ELM and 240 km218

or approximately 2.2 degrees for MPAS-Ocean and MPAS-SeaIce. A plot of the ULR grid219

employed in this study is provided in Figure 1. It is noted that the ULR is not an officially220

supported E3SM resolution. While this resolution is commonly used for testing purposes221

by E3SM developers, this paper is the first work (to the authors’ knowledge) that investi-222

gates the use of the ULR configuration for scientific studies. To quantify the computational223

advantages of the ULR configuration, we note that it achieves approximately 4 simulated224

years per day per node on the Skybridge cluster (described in Section 2.5) in comparison225

to 0.035 simulated years per day per node for the 1◦ standard resolution configuration of226

E3SM. This results in an estimate that the ULR configuration is more than 100 times faster227

than the standard resolution configuration.228

In the following section, we assess the predictive performance of the ULR E3SM. We229

find that ULR predictions capture the large scale features of the 1◦ model, which suggests230

that the ULR model can help inform sensitivity analysis and uncertainty quantification of231

higher resolution models.232

(a) (b)

Figure 1. Ultra-low resolution grid for atmosphere (a) and ocean (b) used in our E3SMv1 study.

.

2.2 E3SMv1 ultra-low configuration tuning233

For our ULR simulations, we first performed a spin-up (i.e., running the model until234

equilibrium state is achieved) using pre-industrial control (piControl) forcing for 500 simu-235

lated years with default parameter values. It is desirable at the end of the spin-up to have a236

near-zero long-term average net top-of-atmosphere (TOA) energy flux, constant global av-237

erage mean surface air temperature and stable yearly sea ice coverage in order to initialize238

the perturbed runs with a stable state. Our original 500-year spin-up simulation exhibited239

a warm bias, with surface temperature elevated, compared with observations and declining240

sea ice over the 500-year period. (See Figure 2). To improve the model tuning, we ran241

an additional 180 years starting from year 500 of the spin-up simulation using atmospheric242

parameter values modified to match the final tuning from the Golaz et al. paper (Golaz et243

al., 2019). Parameter values are given in Table 1.244

The branch run with the Golaz et al. values did result in a more realistic climate with245

stable surface temperature, net TOA flux and sea ice extent. In Figure 2, time series plots246

of these quantities for the 500-year spin-up using default parameter values are shown in247

blue with the final 180-years from the simulation with modified parameter values shown248

in red. Note that slopes of the quantities are near zero for the branched run indicating249

that the simulations have reached an equilibrium. The final year of this branch run was250

used as the initial condition for all perturbed sensitivity analysis simulations as well as for251

a baseline simulation that continued with the same parameter values for an additional 75252

years. Investigations of the impact of the equilibrium values of the initial state on sensitivity253
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(a)

(b)

(c)

Figure 2. Yearly averaged global surface air temperature (◦C) (a), yearly averaged net flux at

TOA (W/m2) (b), and yearly averaged sea ice extent (106 km2) (c). The blue line is from the

500-year ULR model spin-up with default parameter values and the red line is from the 180-year

branch run with modified parameters values as shown in Table 1.

.

analysis results are beyond the scope of this study, but this could be addressed in future254

work using additional tunings of the ULR model informed by our results involving the255

marginalized main effect indices (Section 3.5).256

To confirm that the ULR simulation is able to capture large-scale spatial-variations,257

we computed annual climatologies from the final 200 years in the initial spin-up. Plots of258
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Table 1. Default atmospheric parameter values for ULR configuration and corresponding values

from Golaz et al. (Golaz et al., 2019). In this table, zmconv ke is the coefficient for evaporation

of convective precipitation, so4 sz thresh icenuc is the Aitken mode SO4 size threshold used for

homogeneous ice nucleation, and clubb c14 is the damping coefficient for u′2 and v′2 in the CLUBB

(Larson, 2020) aerosol physics parameterization.

Parameter Default value Golaz et al. value
zmconv ke 1.5× 10−6 5.0× 10−6

so4 sz thresh icenuc 7.53× 10−8 5.0× 10−8

clubb c14 1.3 1.06

the annual average global precipitation, and TOA flux are shown in Figure 3, where the259

final 200 years of the ULR baseline spin-up is compared to the average of the 500 year pre-260

industrial control simulation from the 1◦ E3SMv1 CMIP6 simulations. The 1◦ resolution261

E3SMv1 simulations have been scientifically validated and provide a reference for these262

quantities in the ULR simulation (Golaz et al., 2019). In Figure 4, zonal mean values of263

surface temperature and zonal wind comparisons between the ULR and 1◦ show vertical264

variation in the atmosphere. Figures 3 and 4 demonstrate that the ULR simulation does265

capture the large-scale features of the flow providing support that the ULR configuration266

can be an effective surrogate for the standard resolution and provide useful information to267

guide targeted higher-resolution modeling.268

(a) (b)

Figure 3. Precipitation (mm/day) (a) and TOA (W/m2) (b) for years 300-500 of the ULR

pre-industrial control spin-up (top) and for the 1◦ standard resolution pre-industrial control run

(bottom).

2.3 Design of global sensitivity study (GSA)269

The first step in designing a sensitivity study, given a spun-up initial condition, is270

selecting the set of parameters (which will be denoted by {zi}) to be perturbed, together271

with the set of relevant QOIs on which the parameters are expected to have an effect. A272

description of the parameters, their baseline values, and the range of their perturbed values273

is given in Table 2. The parameters were chosen based on their significance in previous274

sensitivity studies involving both individual component as well as fully-coupled climate275
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(a) (b)

Figure 4. Zonal temperature (◦C) (a), and zonal winds (m/s) (b) for years 300-500 of the ultra-

low resolution pre-industrial control spin-up (top) and for the 1◦ standard resolution pre-industrial

control run (bottom).

simulations, most notably (Urrego-Blanco et al., 2016, 2019; Reckinger et al., 2015; Asay-276

Davis et al., 2018; Qian et al., 2018; Rasch et al., 2019). Of the ten parameters, three are277

from the sea ice component (MPAS-SeaIce), three are from the ocean component (MPAS-278

Ocean) and four are from the atmosphere model (EAM) – more specifically, the CLUBB279

(Larson, 2020) aerosol physics parameterization within EAM.280

Our global sensitivity analysis (GSA) is based upon random realizations of the ten281

parameters randomly selected from a uniform distribution over the ranges defined by the282

“Min” and “Max” values given in Table 2. The sampling and associated model evaluations283

were managed using the DAKOTA library (Adams et al., 2013), an open-source software pack-284

age for optimization, uncertainty quantification and advanced parametric analysis. Much285

like the parameters themselves, the selection of the parameter ranges was guided by past286

analyses (Urrego-Blanco et al., 2016, 2019; Reckinger et al., 2015; Asay-Davis et al., 2018;287

Qian et al., 2018; Rasch et al., 2019). It is worthwhile to note that the three MPAS-SeaIce288

parameters selected in our GSA were hard-coded to their default values in the master branch289

of the E3SM1. In order to enable the straightforward specification of these parameters in290

the relevant input file, a fork of the E3SM was created2 and used in the present study.291

Instructions for cloning this fork as well as building the code and submitting a perturbed292

run are provided in Appendix B of (Peterson et al., 2020).293

In the present study, we report sensitivity metrics for a set of six QOIs, summarized294

in Table 3. This set of QOIs is selected for several reasons, including: (1) their overlap295

with QOIs considered in similar past works (Rasch et al., 2019; Urrego-Blanco et al., 2019)296

(to enable comparisons), (2) their importance and relevance to studying the Arctic climate297

state (e.g., the CLDLOW QOI, which represents low cloud coverage, is selected because low298

clouds are particularly important in the Arctic and may impact sea ice coverage), and (3)299

the fact that they span the three climate components targeted by this study (sea ice, ocean,300

atmosphere). Following the approach in (Urrego-Blanco et al., 2016, 2019), we look at the301

QOIs in Table 3 annually as well as seasonally.302

1 Available at: https://github.com/E3SM-Project/E3SM.
2 Available at: https://github.com/karapeterson/E3SM (add namelist params branch).
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Note that we originally obtained results for a larger set of QOIs than those summarized303

in Table 3, as discussed in (Peterson et al., 2020). Specifically, we considered five additional304

QOIs: the surface air specific humidity averaged over 60-90◦ (QS), the large-scale snow305

precipitation averages over 60-90◦ (PRECSL), and the mean sea level pressure over the306

Beaufort Sea, the Aleutian Low and the Siberian High (BH, AL and SH, respectively).307

We omit these results here largely for the sake of brevity. The former two QOIs (QS and308

PRECSL) were highly correlated with other QOIs, so including those results would not add309

much to the discussion. Additionally, our sensitivity analysis results for the latter three310

QOIs (BH, AL and SH) precluded us from making strong conclusions about the impact of311

parameter variations on these QOIs, as the relevant ensemble trajectories resembled white312

noise (indicating there was no clear signal) and high errors in the sensitivity indices were313

observed.314

Each perturbed simulation in our study was run up to time Tfinal, and was given a315

spin-up period of Tspin-up < Tfinal to equilibrate the simulation (that is, to get past the316

inevitable transient period that occurs when the run commences). Here, we prescribed a317

spin-up period of 50 years (Tspin-up = 50 years), and each perturbed model configuration318

was run until time Tfinal = 75 years. In general, it is not expected for all the perturbed319

simulations to run to completion, and indeed crashes (discussed in more detail in Section 3)320

occurred for a handful of our runs. For the successful runs (runs that made it to year 75),321

our six QOIs were calculated by averaging annually and seasonally over the last 25 years of322

the simulations (i.e., between times t = Tspin-up + 1 and Tfinal).323

Table 3. Global sensitivity analysis quantities of interest (QOIs).

QOI Units Description Component

SIE km2 Total Arctic sea ice extent sea ice

SIV km3 Total Arctic sea ice volume sea ice

SST ◦C Sea surface temperature averaged over 60-90◦ N ocean

TS ◦C Surface air temperature averaged over 60-90◦ N atmosphere

FLNS W/m2 Net longwave flux at surface over 60-90◦ N atmosphere

CLDLOW − Low cloud coverage below 700 hPa averaged over 60-90◦ N atmosphere

As discussed earlier in Sections 2.1 and 2.2, the GSA study performed herein used the324

ULR configuration of the E3SMv1 and pre-industrial (piControl) forcing. Repeating the325

study with a different forcing, such as one of the forcings in (Golaz et al., 2019), would be326

an interesting and useful follow-on exercise to the present study.327

2.4 Variance-based global sensitivity analysis328

In this section, we describe the variance-based GSA used to determine the relative329

sensitivity of model predictions to uncertain model parameters.330

2.4.1 Sobol indices331

In this paper, Sobol sensitivity indices (Sobol, 2001) are used to quantify the relative
importance of parameter combinations on a given QOI. With this goal, let f denote a
model output QOI that depends on some model parameters z = [z1, ..., zd]T . Any function
f with finite variance parameterized by a set of independent variables z with probability
distribution ρ(z) =

∏d
j−1 ρ(zj) and support Γ =

⊗d
j=1 Γj can be decomposed into the
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following finite sum, referred to as the Analysis of Variance (ANOVA) decomposition,

f(z) = f̂0 +

d∑
i=1

f̂i(zi) +

d∑
i,j=1

f̂i,j(zi, zj) + · · ·+ f̂1,...,d(z1, . . . , zd), (1)

or more compactly

f(z) =
∑
u⊆D

f̂u(zu), (2)

where f̂u quantifies the dependence of the function f on the variable dimensions i ∈ u and332

u = (u1, . . . , us) ⊆ D = {1, . . . , d}.333

The functions f̂u can be obtained by integration, specifically

f̂u(zu) =

∫
ΓD\u

f(z)dρD\u(z)−
∑
v⊂u

f̂v(zv), (3)

where dρD\u(z) =
∏

j /∈u dρj(z) and ΓD\u =
⊗

j /∈u Γj . The first-order terms f̂u(zi), ||u||0 =334

1 represent the effect of a single variable acting independently of all others. Similarly, the335

second-order terms ||u||0 = 2 represent the contributions of two variables acting together,336

and so on.337

The terms of the ANOVA expansion are orthogonal, i.e. the weighted L2 inner product
(f̂u, f̂v)L2

ρ
= 0, for u 6= v. This orthogonality facilitates the following decomposition of the

variance of the function f

V[f ] =
∑
u⊆D

V
[
f̂u

]
, V

[
f̂u

]
=

∫
Γu

f̂2
udρu, (4)

where dρu(z) =
∏

j∈u dρj(z).338

Two popular measures of sensitivity are the main effect and total effect indices given
respectively by

SM
i =

V
[
f̂ei

]
V[f ]

, ST
i =

∑
u∈J V

[
f̂u

]
V[f ]

, (5)

where ei is the unit vector, with only one non-zero entry located at the ith element, and
J = {u : i ∈ u}. Main effect values represent the expected decrease in variance obtained
from observing zi. The total effects measure the variance that remains after learning the
values of every variable except zi. In the following, we also report Sobol indices (Sobol,
2001)

Su =
V
[
f̂u

]
V[f ]

,

which measure the contribution of the interaction between the parameter subset u on the339

variance of the function f .340

Note that three aforementioned quantities (Sobol indices, main effect indices and total341

effect indices), measure some aspect of global sensitivity. In particular, they reflect a vari-342

ance attribution over the range of the input parameters, as opposed to the local sensitivity343

reflected by a derivative.344

2.4.2 Gaussian process345

The Sobol indices (4) can be computed using a number of different methods, for example346

via (Quasi) Monte Carlo sampling (Saltelli et al., 2010), using surrogates (such as polynomial347
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chaos expansions (Sudret, 2008)), or with sparse grids (J. Jakeman et al., 2019). Herein,348

we employ the software library PyApprox (J. D. Jakeman, 2021), a flexible and efficient349

open-source3 tool for high-dimensional approximation and uncertainty quantification, which350

utilizes Gaussian processes (Rasmussen & Williams, 2006; Harbrecht et al., 2020).351

Gaussian processes are well-suited to computing approximations of high-dimensional352

computationally-expensive models, such as the one we consider in this paper. They have a353

number of desirable properties. First, Gaussian processes can accurately approximate the354

output of a complex model with limited training data. Second, sensitivity indices can be355

computed easily from the Gaussian process. Finally, the surrogate and the Sobol indices356

are endowed with probabilistic error estimates which measure the influence of using a finite357

set of training data. These error estimates can be used to weight the confidence placed in358

decisions made from the output of the Gaussian process.359

Building a Gaussian process requires specifying a correlation function, C(z, z′) and a
trend function. The Gaussian process leverages the correlation between training samples to
approximate the residuals between the training data and the trend function. In this work
we set the trend function to zero and consider the squared exponential kernel

C(z, z′) = exp

(
−

d∑
i=1

1

2l2i
(zi − z′i)

2

)
,

where l = [l1, . . . , ld]T is a vector hyper-parameters that determine the exact nature of the360

correlation function.361

A Gaussian process is a distribution over a set of possible functions. Given a set of
training samples Z = {z(i)}Mm=1, and associated function values y = [f(z(1)), . . . , z(M)]>

(realizations of the random output Y ) the posterior mean and variance of the Gaussian
process are

m?(z) = t(z)TA−1y, C?(z, z′) = C(z, z′)− t(z)TA−1t(z′),

respectively, where

t(z) = [C(z, z(1)), . . . , C(z, z(N))]T ,

and A is a matrix with elements Aij = C(z(i), z(j)) for i, j = 1, . . . ,M . In this work, we use362

Scikit-learn (Pedregosa et al., 2011) to construct the Gaussian process and estimate the363

hyper-parameters. Because of the differing magnitudes of the ranges of the training samples364

and values, we found it essential to normalize the training data. Specifically, we transformed365

the training samples to [−1, 1]d and normalized the training values to have mean zero and366

unit variance. Once the Gaussian process is constructed, we post-process the approximation367

using PyApprox to obtain main effect functions and sensitivity indices. Because the Gaussian368

process is itself random, the aforementioned quantities are also random.369

2.4.2.1 Marginalized main effect functions. The main effect functions f̂i(zi) = E [Y | zi]−
E [Y ] are linear functionals of the Gaussian process and thus the posterior distributions
of f̂i(zi) are also Gaussian. For tensor-product densities ρ and separable kernels of the
form C(z, z′) =

∏d
i=1 Ci(zi, z

′
i), such as the squared-exponential used here, we can compute

the posterior mean and variance of the main effect functions using one-dimensional (1D)
quadrature rules (Oakley & O’Hagan, 2004). Specifically, the posterior mean of f̂i(zi) is
E? [E [Y | zi]]− E? [E [Y ]] where

E? [E [Y | zi]] = ti(zi)

d∏
j=1
j 6=i

∫
Γ

tj(zj)ρj(z) dz (6)

3 Available at: https://github.com/sandialabs/pyapprox.
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Here the superscript ? indicates we are taking the expectation over the posterior distribution
of the Gaussian process and we have used the separability of the kernel to write t(z) =∏d

i=1 ti(zi). We use 100 point Gaussian quadrature rules to compute the 1D integrals in (6).
We use a similar technique to compute the posterior variance of the main effect functions.

V? [E [Y | zi]] = Ci(zi, z
′
i)u− (t(zi) ◦ τ)

>
A−1 (t(zi) ◦ τ) ,

where ◦ is the Hadamard (element-wise) product and

u =

d∏
j=1
j 6=i

∫
Γ

∫
Γ

Cj(zj , z
′
j)ρj(z)ρj(z

′) dzdz′, τ =

d∏
j=1
j 6=i

∫
Γ

tj(zj)ρj(z) dz.

The left expression above requires a two-dimensional (2D) tensor-product quadrature, but
since we are not evaluating the simulation model, this is inexpensive to apply. In Figures 15
and 16, we plot the normalized posterior mean of the main effect functions marginalized
over one parameter at a time, plus or minus two standard deviations, that is

V? [Y ]
− 1

2 (E? [E [Y | zi]]− E? [E [Y ]])± 2V? [Y ]
− 1

2 V? [E [Y | zi]]
1
2 .

2.4.2.2 Sensitivity indices. Given the presentation above, the posterior distribution370

of Sobol, main effect and total effect indices can not be obtained analytically. Follow-371

ing (Oakley & O’Hagan, 2004), we compute the posterior mean and variance as the sample372

average of the estimates of the indices obtained using 1000 different random realizations373

of the Gaussian process. For each realization we compute the sensitivity indices accurately374

(close to machine precision) using a procedure similar to that used for constructing the main375

effect functions. We omit the exact expressions used because they are overly complex. In376

Figures 8-13 we plot the median sensitivity indices (red line), the interquartile range (box)377

and the minimum and maximum values (whiskers).378

2.5 Global sensitivity analysis workflow379

Figure 5 summarizes our GSA workflow. First, an appropriate initial condition is380

obtained by spinning up the E3SM to equilibrium, as discussed in Section 2.2. Next, after381

selecting Tspin-up and Tfinal (ensuring that these values are large enough to avoid initial382

transients in the ensemble runs), we employ the DAKOTA library (Adams et al., 2013) to383

generate N random samples of the parameters {zi} from the selected parameter ranges or384

probability distributions (Table 2). We then create namelist files for each of our E3SM385

runs, corresponding to each of the N randomly selected parameter sets (for our study, the386

relevant namelist files are user nl cam, user nl mpaso, user nl mpascice), and set off N387

runs of the E3SM, branching off the spun-up initial condition. Finally, we post-process388

the perturbed runs to extract from them the relevant QOIs (see Table 3), and perform the389

GSA by providing M QOI-parameter pairs to PyApprox, where M ≤ N is the number of390

runs that completed successfully (simulated the global climate state to time Tfinal). The391

workflow depicted in Figure 5 was largely automated through the creation of shell scripts392

that execute the relevant commands comprising these steps. These scripts are stored in a393

repository containing the E3SM fork used for this study4. All of our runs were performed on394

the Skybridge high-capacity cluster located at Sandia National Laboratories, which contains395

1848 nodes, each having 16 2.6 GHz Intel Sandy Bridge processors.396

3 E3SM simulation results397

In the present study, a total of N = 212 sets of parameter combinations were generated,398

assuming uniform probability distributions given by the “Min” and “Max” values found in399

4 Available at: https://github.com/karapeterson/E3SM.
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Figure 5. GSA workflow. Here N denotes the total number of perturbed E3SM simulations

launched, and M ≤ N is the number of runs that completed successfully (simulated the global

climate state to time Tfinal).

Table 2 for each parameter. We then set off 212 75-year perturbed runs of E3SMv1, one for400

each set of parameter values using pre-industrial control forcing. In addition to perturbing401

the values of the parameters in Table 2, modified parameter values from (Golaz et al.,402

2019), which are given in Table 1, were used for all of the perturbed runs for consistency403

with the final model spin-up, discussed in Section 2.2. The values of all 212 perturbed sets404

of parameters are given in Appendix C of (Peterson et al., 2020). Parameter values for the405

so-called “baseline” run, which was a continuation of the final spin-up run and included in406

our ensemble set, are given in Table 2. All of our simulations were run on 96 processors (6407

nodes) of Sandia’s Skybridge high-capacity cluster described earlier in Section 2.5.408

Of the N = 212 perturbed runs, a total of 138 runs made it to Tfinal = 75 years.409

The baseline run also made it to Tfinal = 75 years, totaling M = 139 successful runs. As410

described earlier in Section 2.3, in calculating the QOIs in Table 3, we performed averaging411

both annually and seasonally over years 51-75, so as to allow each perturbed run a spin-412

up/equilibration period of 50 years.413

3.1 Ensemble trajectories414

Figure 6 shows the trajectories of all six QOIs considered (Table 3) for each of the 139415

successful ensemble runs (runs that made it to year Tfinal = 75). The QOIs are averaged over416

each year and plotted as a function of the year since the start of each perturbed run. The417

baseline run is distinguished from the others by the red markers. All six QOIs are effectively418

in equilibrium at all times for the baseline run, as expected. A careful inspection of the419

trajectories in Figure 6 reveals that the relationships between the QOIs are also as expected,420

i.e., runs giving rise to a large sea ice area also give rise to a smaller surface air temperature.421

Additionally, one can see from Figure 6 that most of the perturbed runs appear to have422

reached equilibrium by year 40. This justifies the selection of Tspin-up = 50 years. It is423

interesting to remark that significant changes to the QOIs are seen in the perturbed runs,424

with several runs resulting in a complete loss of Arctic sea ice and several runs exhibiting425

an apparent exponential growth in Arctic sea ice. This suggests that our parameter choices426

and ranges produced a sufficiently wide range of possible climate outcomes, as intended.427
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(a) SIE (b) SIV

(c) SST (d) TS

(e) FLNS (f) CLDLOW

Figure 6. Ensemble trajectories of the QOIs in Table 3 for the ensemble members that made it

to year 75. The baseline run is distinguished from the others by the red markers.

3.2 Ensemble statistics428

We now look at some statistics for the perturbed runs that made it to year 75. Figure429

7 shows box-and-whiskers plots for each of the six QOIs considered, calculated by season.430

Here, the seasons are defined as follows: “Winter” is comprised of the months of January to431

March, “Spring” is comprised of the months April to June, “Summer” is comprised of the432

months July to September, and “Autumn” is comprised of the months October to December.433

The red central mark indicates the median of the data, whereas the bottom and top edges434
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of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the435

most extreme data points not considered outliers, and the outliers5 are plotted using the436

‘+’ symbol.437

Figure 7 shows that the maximum and minimum sea ice extent is observed in the438

“Spring” and “Autumn” seasons, respectively. This result may seem surprising, as obser-439

vational data and standard 1◦ resolution E3SM simulations (see (Peterson et al., 2020))440

have shown that the maximum and minimum sea ice extent in general occur in March and441

September, respectively, which would correspond to the “Winter” and “Autumn” seasons442

based on our definition. A closer inspection reveals that, for the majority of our ULR runs,443

including the baseline run, the maximum and minimum sea ice extent occurs in April and444

October (for a plot showing this, the reader is referred to (Peterson et al., 2020)). Similarly,445

the maximum and minimum sea ice volume occurs in May and October, respectively. The446

cause of this shift in the month of maximum and minimum sea ice extent and volume in447

the ULR configuration is uncertain at this time, but these results motivate follow-on work448

to understand the behavior in more detail.449

It is interesting to look at the relative spreads of the box-and-whiskers plots in Figure450

7. This spread can be viewed as a measure of uncertainty. One can see from Figure 7(a)451

that the SIE QOI has the smallest uncertainty in the melting seasons (during which it452

is particularly relevant for trans-Arctic shipping routes), summer and autumn. The only453

QOI with significant outliers is the SIV. Referring to the ensemble trajectory plots, namely454

Figure 6(b), the reader can observe that the SIV QOI (an estimator of older, multi-year ice)455

is the only QOI with a significant number of trajectories so anomalous that they predict456

an apparent exponential growth in Arctic sea ice volume. It is likely that these trajectories457

translate to the outliers in the box-and-whiskers plot for SIV (Figure 7(b)); however, it is458

unclear what mechanism within the ULR E3SM is causing a feedback of this type. The SIV459

QOI has the same uncertainty trends as the SIE QOI if outliers are excluded; however, if460

outliers are included, the uncertainty in SIV is comparable across all four seasons, a result461

similar to the one obtained in (Urrego-Blanco et al., 2019). The remaining four QOIs have462

the largest uncertainty during the seasons in which they are either minimal (for TS and463

CLDLOW) or maximal (for SST and FLNS), on average. Certain expected correlations464

in uncertainties between the QOIs are observed. For example, the box-and-whisker plot465

spreads for the FLNS and CLDLOW mimic each other across all four seasons, which can be466

explained by the fact that FLNS is in general strongly determined by cloud variations and467

cloud cover (Schweiger et al., 2008).468

3.3 Correlations in QOIs469

Tables 4 – 7 give the correlation coefficients between our six QOIs, averaged seasonally.470

In general, the relationships between the QOIs are consistent with expectations. SIE and471

SIV, as well as SST and TS, have a strong positive correlation across all four seasons.472

SIE/SIV are negatively correlated with SST/TS, again as expected: larger sea ice volumes473

occur under lower air and sea surface temperatures. One can additionally observe a general474

negative correlation between CLDLOW and FLNS, especially during the warmer spring,475

summer and autumn seasons. This relationship can be explained by the fact that clouds476

absorb and re-emit the longwave radiation emitted by the surface. Since FLNS is defined as477

upward positive, one expects to see an increase in longwave flux down at the surface in the478

presence of clouds, which has the effect of decreasing net longwave flux. There is virtually479

no correlation between the following pairs of QOIs in the winter season: (SIE, FLNS), (SIV,480

CLDLOW) and (TS, FLNS). While the lack of correlation between (SIE, FLNS) and (SIV,481

CLDLOW) in winter may be surprising, this result is consistent with recent studies (Kay &482

5 Outliers are defined as values that are more than 1.5 times the interquartile range away from the top or

bottom of the box in a given box plot.
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(a) SIE (b) SIV

(c) SST (d) TS

(e) FLNS (f) CLDLOW

Figure 7. Box-and-whiskers plots showing ensemble statistics for the first six QOIs from Table

3. The red central mark indicates the median of the data, whereas the bottom and top edges of the

box indicate the 25th and 75th percentiles, respectively. Outliers are plotted using the ‘+’ symbol.

Gettelman, 2009) that have suggested that there is no clear relationship between cloud cover483

and sea ice extent/area/volume during the freezing season. The reader can observe negative484

relationships between CLDLOW and the surface temperature QOIs (SST and TS) across485

all four seasons. In the spring and summer seasons, when the sun is above the horizon,486

clouds will generally reflect solar (shortwave) radiation, which would potentially decrease487

surface temperature. This interpretation is consistent with our results in all seasons but488

winter. In the winter season, the general expectation is that cloud coverage would increase489
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surface temperature. This trend is not observed in our data. It is possible that the fact that490

our data set contains a number of runs without any sea ice coverage is biasing the results.491

Since, at the present time, there do not exist observational data for the case of no sea ice492

(especially in winter), it may not be possible to interpret the CLDLOW correlations with493

the surface temperatures.494

Table 4. Table of correlation coefficients between the six QOIs considered (Table 3), averaged

during the winter season (January–March) over the last 25 years, for the successful ensemble runs.

Large positive correlation coefficients (≥ 0.75) are colored blue. Large negative correlation coeffi-

cients (≤ −0.75) are colored yellow.

SIE SIV SST TS CLDLOW FLNS

SIE 1.0 0.77 −0.90 −0.98 0.44 −0.039

SIV 1.0 −0.57 −0.86 −0.0545 0.38

SST 1.0 0.87 −0.67 0.28

TS 1.0 −0.30 −0.096

CLDLOW 1.0 −0.77

FLNS 1.0

Table 5. Table of correlation coefficients between the six QOIs considered (Table 3), averaged

during the spring season (April–June) over the last 25 years, for the successful ensemble runs. Large

positive correlation coefficients (≥ 0.75) are colored blue. Large negative correlation coefficients (≤
−0.75) are colored yellow.

SIE SIV SST TS CLDLOW FLNS

SIE 1.0 0.79 −0.97 −0.98 0.97 −0.89

SIV 1.0 −0.69 −0.86 0.70 −0.50

SST 1.0 0.95 −0.99 0.94

TS 1.0 −0.95 0.83

CLDLOW 1.0 −0.95

FLNS 1.0

Table 6. Table of correlation coefficients between the six QOIs considered (Table 3), averaged

during the summer season (July–September) over the last 25 years, for the successful ensemble

runs. Large positive correlation coefficients (≥ 0.75) are colored blue. Large negative correlation

coefficients (≤ −0.75) are colored yellow.

SIE SIV SST TS CLDLOW FLNS

SIE 1.0 0.85 −0.90 −0.92 0.89 −0.87

SIV 1.0 −0.66 −0.73 0.66 −0.59

SST 1.0 0.99 −1.0 0.97

TS 1.0 −0.99 0.95

CLDLOW 1.0 −0.98

FLNS 1.0
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Table 7. Table of correlation coefficients between the six QOIs considered (Table 3), averaged

during the autumn season (October–December) over the last 25 years, for the successful ensemble

runs. Large positive correlation coefficients (≥ 0.75) are colored blue. Large negative correlation

coefficients (≤ −0.75) are colored yellow.

SIE SIV SST TS CLDLOW FLNS

SIE 1.0 0.84 −0.78 −0.95 0.68 −0.51

SIV 1.0 −0.57 −0.81 0.43 −0.20

SST 1.0 0.93 −0.95 0.83

TS 1.0 −0.83 0.65

CLDLOW 1.0 −0.94

FLNS 1.0

3.4 Main effects, total effects and Sobol indices495

Finally, we present and discuss the results of the GSA study using the methodology and496

workflow described in Sections 2.4 and 2.5, respectively. Our main results are summarized497

in Figures 8–13 below. For each row of each figure, three plots are reported, which show the498

main effect, Sobol and total effect indices (from left to right, respectively) corresponding499

to each of the ten parameters considered (Table 2). As discussed in more detail in Section500

2.4.2, the main effect indices measure the effect of individual parameters acting alone and can501

sum to at most 1. As the sum approaches 1, the contribution of all parameter combinations502

involving two or more variables decreases. A value of 1 indicates that the function is purely503

additive and there is no interaction between any parameters. Total effect indices measure504

the total contribution of each parameter to the variance of a given QOI; specifically, they505

measure the contributions of all interactions involving a specific parameter. Consequently506

the total effect index of a single variable will always be at least as large as the main effect507

index of that variable. Furthermore, the sum of all total effect indices can be greater than508

1, because Sobol indices for parameter interactions involving at least two variables can be509

used to compute the total effects of multiple variables, i.e., the Sobol index of Sij = V[f̂ij ]510

will contribute to the total effect indices of both the ith and jth variables. Comparing main511

effect and total effect indices can be used to determine the strength of high-order (involving512

more than two parameter) interactions. For example, in Figure 10(b), the main effect of513

clubb c1 (z5) is less than 3% of the total variance, yet the total effect of this variable is over514

20% of the total variance. While main and total effect indices summarize the contributions515

of a single parameter to the variance of a QOI, Sobol indices can be used to identify the516

contribution of specific parameter interactions to the total variance. Sobol indices involving517

just one parameter are labeled “(zk)” and indices involving two parameters are labeled518

“(zi, zj)” with i 6= j. Contributions by miscellaneous pairs of parameters in which the519

percent contribution was < 1% were omitted from the plots. We found that there were no520

strong interactions involving three or more variables. The confidence intervals provided in521

the plots provide a more goal oriented means to determining the confidence in parameter522

rankings. Overlapping intervals of sensitivity indices suggest that we cannot rank parameters523

confidently.524

Figures 8–13 also report the predictivity coefficient Q2, which is a measure of the mean525

square error (MSE) of the Gaussian process model using cross-validation (Marrel et al.,526

2008). A value of Q2 = 1 is indicative of a perfect cross-validation fit for the given data.527

Larger values of Q2 imply greater confidence can be placed in the sensitivity results; however,528

the value of Q2 that engenders sufficient confidence is subjective.529
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3.4.1 Atmospheric parameters530

From Figures 8–13, we can credibly conclude that the atmospheric parameters cldfrc dp1531

(z4), clubb c1 (z5), clubb c8 (z6), and gamma coeff (z7) are the most sensitive for all sea-532

sons and QOI. The minimum values (bottom whisker) of the total effects of these parameters533

are all larger than the maximum values (top whisker) of the other parameters. This result534

is consistent with results obtained in earlier sensitivity studies, namely the fully-coupled535

study of (Urrego-Blanco et al., 2019). Although there are uncertainty bounds that make it536

difficult to rigorously pick the most important parameter, based on the median values of the537

main and total effect indices obtained from Gaussian process emulator approximations, the538

parameter z6 (clubb c8) is consistently the most important parameter for all six QOIs and539

across all four seasons, followed by z7 (gamma coeff). In fact, for most seasons and QOIs,540

the minimum total effect values of these two parameters are greater than the maximum541

values for all other parameters. The main effects trends for parameters clubb c1 (z4) and542

clubb c8 (z5) are not as clear cut, but seem to follow similar correlation patterns for the543

QOI as clubb c8 (z6) and gamma coeff (z7) respectively (i.e., clubb c1 has similar trends544

to clubb c8, and clubb c1 has similar trends to gamma coeff).545

To streamline and consolidate some of the presentation, we introduce and analyze Figure546

14, which plots the seasonal variation of the median total sensitivity (total effects) indices of547

the four most influential (atmospheric) parameters. In this plot, the box represents 25-75%548

confidence intervals, the red line denotes the median of the data and the blue dot denotes549

the mean of the data. Whiskers designate the minimal and maximum values of the total550

effects indices.551

The cldfrc dp1 (z4) parameter. The cldfrc dp1 (z4) CLUBB parameter, which con-552

trols cumulus cloud-formation convective regimes in the E3SM (Larson, 2020; Qian et al.,553

2018), has a significant impact on four of the six QOIs considered here, namely SIE, SST,554

CLDLOW and FLNS. Figure 14 shows that CLDLOW is most sensitive to this parameter555

in winter. In contrast SIE and FLNS are most sensitive to cldfrc dp1 in spring (Figures 8,556

13 and 14). The sensitivities of SIE and SIV have strong cyclic seasonal trends. In addition,557

non-cyclical seasonal variation is present in SIV and CLDLOW. Seasonal variation in the558

median values of the sensitivity indices of some other QOI are also present; due to large con-559

fidence intervals that overlap, these trends may be considered plausible, but, without higher560

accuracy, not credible. With this being said, it is interesting to note that the seasonal trend561

in the median total effect indices of SIV and SIE differ significantly. These differences could562

reflect the difference between relatively stable multi-year ice (measured by SIV) and young,563

seasonal ice (measured by SIE).564

565

The clubb c1 (z5) parameter. The clubb c1 (z5) parameter controls the balance of566

cumulus versus stratocumulus clouds, as discussed in (Larson, 2020). Large positive values567

of this parameter favor cumulus clouds, while small or negative values are associated with568

stratocumulus clouds. Stratocumulus clouds are hybrids of the layered stratus and cellular569

cumuli clouds, and are believed to have a planet-wide surface cooling effect, but earlier570

investigations have hypothesized that this cloud type in the Arctic has surface warming571

effects over most of the year (Eastman & Warren, 2010). Figure 14 shows that the SIE, TS572

and FLNS QOIs exhibit a strong sensitivity to clubb c1 (z5) during the autumn season.573

These results are consistent with previous observational and modeling studies (Huang et al.,574

2019; Philipp et al., 2020; Kay & Gettelman, 2009; Eastman & Warren, 2010; Taylor et al.,575

2015), which have reported a correlation between cloud type, Arctic surface temperature and576

Arctic sea ice extent during the October–November months. Interestingly, our CLDLOW577

QOI does not show as strong a sensitivity to clubb c1 (z5) in the autumn as seen for578

the FLNS QOI. This indicates that while clubb c1 (z5) influences cloud type (cumulus or579

stratocumulus (Larson, 2020)), it may not strongly influence the fraction of general low580

cloud cover. That FLNS is responsive to clubb c1 (z5) in autumn is not surprising, given581
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that this season represents the period of maximum interannual variation in SIE, which both582

reflects and influences the atmosphere/cloud-ocean-sea ice feedback.583

The clubb c8 (z6) parameter. The clubb c8 (z6) parameter was developed to achieve584

radiative balance in atmospheric models (Larson, 2020; Qian et al., 2018). Specifically,585

increasing clubb c8 (z6) brightens clouds, resulting in Earth surface cooling, as brighter586

clouds reflect more incoming solar radiation. Figure 14 reports that the clubb c8 (z6) has587

significant influence over all six QOIs considered across all four seasons, with a median main588

effect of at least 0.4. It is interesting to observe that the CLDLOW and FLNS responses589

to clubb c8 (z6) trend similarly across the four seasons. Even accounting for errors in590

sensitivity indices, Figure 14 suggests that FLNS has the strongest seasonal response to591

perturbation of clubb c8 (z6) in winter. The SIE QOI shows a strong response to clubb c8592

(z6) in autumn, with a median total effect of approximately 0.6 and a lower bound of the593

confidence interval above 0.5. This seems to suggest that cloud brightening has the potential594

to control the degree to which sea ice is lost towards the end of the melting season (autumn).595

The impact of clubb c8 (z6) perturbation relative to the other atmospheric parameters with596

the exception of the significantly less influential clubb c1 (z5) parameter on the SST QOI597

is difficult to separate due to overlapping uncertainty bounds for these QOIs (Figure 10).598

In contrast, clubb c8 (z6) is very clearly the most dominant parameter when it comes to599

its influence over the TS QOI for all seasons (Figure 11).600

The gamma coeff (c7) parameter. Like clubb c8 (z6), gamma coeff (z7) parameter is601

a tunable parameter in the CLUBB shallow convection parameterization scheme that can602

brighten or dim low clouds, developed to achieve global radiative balance in E3SM (Larson,603

2020). Our results show both relatively strong (SIE, SIV, CLDLOW, FLNS) and moderate604

(TS, SST) seasonal responsiveness to gamma coeff (z7) (Figure 14). SIE shows greatest605

response to gamma coeff (z7) in spring, the period of both the onset of melt season and606

the annual maximum, with mean total effects of 0.50, and minimum/maximum total effects607

of approximately 0.40/0.60, respectively. In spring, the season during which SIE is most608

responsive to gamma coeff (z7), the Arctic is moving into longer days, as both the annual SIE609

maximum is reached, and the melt season is beginning. In this context, cloud brightening610

potentially influences surface energy balance, because brighter clouds reflect more incoming611

solar radiation. Interestingly, SIV, an estimator of multi-year ice, shows a markedly different612

response to perturbation of this parameter than SIE, a proxy for seasonal and marginal ice;613

however, these results should be interpreted with some caution due to the large confidence614

intervals. While the gamma coeff (z7) and clubb c8 (z6) parameters both have ostensible615

control on cloud brightness, their impacts upon SIE differ markedly: the greatest mean616

total effects for the clubb c8 (z6) parameter were observed in autumn (≈ 0.60), compared617

to spring for the gamma coeff (z7) (≈ 0.40). The different responses are explained by the618

fact that the parameters represent distinct terms in CLUBB (Larson, 2020).619

Interactions between atmospheric parameters. It is important to note that while the620

present study reveals that significant parameter interactions generally involve the four at-621

mospheric parameters, our study demonstrates the effect of these parameters on QOIs from622

E3SM components other than the atmosphere model. These results would be impossible623

to obtain without a global fully-coupled ESM. Despite non-trivial errors in the sensitivity624

indices, we can also conclude that certain parameter interactions involving the four most625

sensitive parameters contribute more to the variability of all QOI than any of the six insensi-626

tive parameters. For example, the Sobol index labeled (z5, z6) in Figure 9, which quantifies627

the strength of the interactions between clubb c1 and clubb c8 for the QOI SIV in spring,628

is much stronger than the total effects of the six insensitive parameters. Indeed in this629

case the interaction contributes more than cldfrc dp1 (z4) acting alone. Additionally, for630

the CLDLOW and FLNS QOIs (Figures 12 and 13, respectively), a number of parameter631

interactions involving the various atmospheric parameters are at least comparable to the632

effect of clubb c1 (z5) acting alone.633
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3.4.2 Sea ice and ocean parameters634

While we see little impact from the sea ice and ocean parameters relative to the atmo-635

spheric parameters, there are a few cases for which the total effects for these parameters are636

non-zero. Of the sea ice parameters, ksno (z1) had the largest total effect for several QOIs637

in several seasons. Non-zero total effect indices associated with ksno (z1) for the SST and638

FLNS QOIs are shown in Figures 10 and 13, respectively. This result is consistent with the639

observation that the snow conductivity can affect ocean temperature since it impacts the640

amount of heat flux (solar radiation) that reaches the ocean in ice-covered waters. During641

the late spring, summer and early autumn seasons, this solar radiation input would primar-642

ily come from short-wave solar radiation. Of the sea ice parameters, the reader can observe643

that the salinity restoring constant piston velocity (z10) parameter had a total ef-644

fect of approximately 0.05-0.13 in summer and 0.03-0.08 in winter for the SIV QOI. It is645

well-known that salinity of the upper ocean has an impact on the column thermodynamics646

of the sea ice, so it is not surprising that the salinity would influence the SIV. In general,647

in the melting season (summer), the upper ocean is less saline, as the older sea ice releases648

freshwater during melt; conversely, in the freezing season (winter), the upper ocean is more649

saline due to brine rejection during freezing. Our results suggest that salinity changes during650

these two changes have some influence on the sea ice volume due to ocean-sea ice feedbacks651

such as these. The sea ice and ocean parameters do not show up in the parameter pairs652

appearing in our Sobol indices results.653

3.5 Marginalized main effect indices654

In this section we present the univariate marginalized main effect functions (equation655

(6)) described in Section 2.4.2. These main effect functions enable us to determine a priori656

whether increasing/decreasing a given parameter will increase or decrease a given QOI.657

These results are particularly useful for model spin-up/tuning, which can be an ad hoc trial-658

and-error process. For the sake of brevity, we provide the marginalized main effects results659

for only two of our QOIs averaged annually6, SIE and TS (Figures 15 and 16, respectively),660

as these are the QOIs most relevant for model spin-ups.661

The results presented below demonstrate that, as expected, the four atmospheric pa-662

rameters considered herein have the greatest influence when it comes to model spin-up/tuning.663

The reader can observe by examining Figures 15 and 16 that there are clear-cut parameter-664

QOI correlations for the clubb c8 (z6) and gamma coeff (z7) parameters. The parameter665

clubb c8 (z6) has a strong positive correlation with SIE and a strong negative correlation666

with TS, whereas the parameter gamma coeff (z7) has a strong negative correlation with SIE667

and a strong positive correlation with TS. The fact that SIE and TS have opposite trends is668

consistent with the QOI correlations uncovered earlier (Section 3.3). It is interesting that the669

marginalized main effects plots for the remaining two atmospheric parameters, cldfrc dp670

(z4) and clubb c1 (z5), have inflection points and some level of convexity/concavity, mean-671

ing that determining whether increasing/decreasing these parameters will increase/decrease672

a QOI depends on the parameter value. In our manual spin-up of the ULR E3SMv1, we673

found by trial-and-error that cldfrc dp1 (z4) had a significant effect on tuning the model, in674

particular, increasing cldfrc dp1 within the range [0.075, 0.5] decreased TS and increased675

SIE (Peterson et al., 2020). This provides some corroboration of the results in Figures 15676

and 16.677

Reconciling the results discussed above with the relevant physical processes requires678

discussion of the physical effects our four atmospheric parameters. Without loss of gener-679

ality, we will focus on the surface air temperature, or TS, QOI. From Table 2, clubb c1680

(z5) and clubb c8 (z6) have an effect on the skewness of the Probability Density Function681

(PDF) of the vertical velocity w′ within the CLUBB parameterization (Qian et al., 2018;682

6 Identical conclusions were obtained from the analogous seasonal plots.
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Larson, 2020; Guo et al., 2014). High skewness in the vertical velocity causes the production683

of cumulus-like layers of clouds with a low cloud fraction, whereas low skewness results in684

stratocumulus clouds having a high cloud fraction. Increasing clubb c8 (z6) and clubb c1685

(z5) is known to lead to cloud brightening and cooling at the Earth surface (Larson, 2020).686

This result is consistent with our analysis. Additionally, with low values of clubb c1 (z5),687

which favor insolation-reducing stratiform clouds, SIE is relatively high and TS is low, a688

result consistent with observational studies on the general surface-cooling effects of this689

cloud type. Like stratocumulus clouds, cumuli can reflect incident solar radiation, or trap690

heat, depending on the cloud height and optical density. Since SIE is relatively low and TS691

is relatively high for larger values of clubb c1 (z5), our results point to the heat-trapping692

effects of the cumulus species. The parameter gamma coeff (z7), which controls the width693

of the individual Gaussians within the CLUBB parameterization (Larson, 2020), has broad694

effects within CLUBB, influencing not only shallow convection but also stratocumulus cloud695

formulation. As discussed in (Qian et al., 2018), increasing gamma coeff (z7) has a similar696

effect to increasing skewness, which leads to a smaller cloud fraction. Thus, the parameter697

gamma coeff (z7) is expected to have a similar effect on the surface air temperature as698

clubb c1 (z5), which is in general consistent with our results. Finally, we turn our atten-699

tion to the last atmospheric parameter, cldfrc dp1 (z4), CLUBB’s deep convection cloud700

parameter. Increasing this parameter results in the movement (convection) of hotter and701

therefore less dense material upward, causing colder and denser material to sink under the702

gravity, cooling the Earth’s surface. Yet again, the negative cldfrc dp1 (z4)-TS correlation703

uncovered by our results is consistent with this physical mechanism.704

While the subplots in Figures 15 and 16 corresponding to the ocean and sea ice pa-705

rameters are flat compared to the subplots corresponding to the atmospheric parameters,706

the reader can observe a slight curvature in the plots for sea ice parameters ksno (z1) and707

dragio (z3). It is interesting to remark that the trends present in these parameter-QOI cor-708

relations are similar to the trends uncovered using an alternate marginalization technique709

for the stand-alone sea ice model GSA of (Urrego-Blanco et al., 2016) (see Figure 11 in this710

reference).711

4 Summary712

We have performed a GSA involving ten parameters and six QOIs spanning three cli-713

mate components (atmosphere, ocean, sea ice) using a fully-coupled ULR configuration of714

E3SMv1. To the best of our knowledge, this is the first GSA involving the fully-coupled715

E3SMv1, and the first scientific study involving the ULR configuration. In order to perform716

the sensitivity analysis, we created a fast Gaussian process emulator from 139 75-year runs717

of the ULR E3SMv1, which included pre-industrial control forcing and were initialized from718

a spun-up initial condition developed for the purpose of this study. The runs exhibited a719

great deal of variability, spanning the gamut from complete loss of Arctic sea ice to apparent720

exponential growth in Arctic sea ice. Our Gaussian process emulator was used to determine721

Sobol indices, main effect indices and total effect indices for each QOI-parameter combina-722

tion, and provided uncertainty bounds for each set of indices. While the sometimes large723

uncertainty bounds made it difficult to rigorously pick out the most influential parameter for724

each QOI, the study enabled a definitive ranking of the most dominant parameters affecting725

each QOI annually and seasonally. We found the atmospheric parameters related to cloud726

physics within the CLUBB model in EAM (and their interactions) had by far the greatest727

impact on the Arctic climate state. While our study demonstrated that the most significant728

parameter-parameter interactions involved the atmospheric parameters with each other, it729

enabled us to investigate the effect of these parameters on QOIs from E3SM components730

different than the atmosphere model. The fact that this investigation would not be possible731

with a stand-alone atmosphere model reinforces the need for coupled analyses when study-732

ing climate model uncertainties/sensitivities. We performed a careful study of QOI-QOI733

correlations and parameter-parameter interactions using our sensitivity indices, and were734
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able to reconcile these relationships with several well-known Arctic feedback processes. By735

approximating univariate main effect functions (Oakley & O’Hagan, 2004), we were able736

to determine the sensitivity of individual QOIs on individual parameters, thereby inferring737

QOI-parameter correlations, useful for model spin-up/tuning. We performed a careful study738

of the marginalized main effect functions for the most influential (atmospheric) parameters,739

and demonstrated that the trends uncovered by the study are consistent with both our man-740

ual spin-up of the ULR E3SMv1 as well as the physical processes underlying the CLUBB741

parameterization (e.g., the formation of cumulus vs. stratocumulus clouds, the relative742

amount of shortwave cloud forcing/cloud brightening).743

The GSA described herein motivates several future research endeavors. While the ULR744

model’s ability to identify and explain a variety of physical processes and feedbacks present745

within the global climate system suggests that the model has the potential for serving as746

a low-cost surrogate for higher resolution configurations of the E3SM, a rigorous quantita-747

tive study in which the ULR model is evaluated and compared to more standard (higher748

resolution) configurations is needed to confirm the model’s viability in scientific studies,749

and is a logical next step motivated by the present work. For completeness, this evalu-750

ation/validation endeavor could include not only the ULR model but also data-driven or751

machine-learned surrogates trained using high-resolution E3SM data, towards determining752

which class of surrogates provides the best trade-off when it comes to computational cost,753

accuracy and robustness. As discussed above, the present study used a simple pre-industrial754

control forcing; a worthwhile follow-on study is one in which the analysis described in this755

work would be repeated, but under alternate (more realistic, e.g. those with a prescribed756

CO2 increase) forcings such as those in (Golaz et al., 2019). The marginalized main effect757

functions we produced could be used to generate improved initial conditions (recall that758

the initial condition used in this study had a warm bias) for such follow-on targeted stud-759

ies using the ULR E3SMv1. We additionally envision augmenting the present study with760

higher-fidelity ensemble data (e.g., using a medium-low resolution, or MLR, of the E3SMv1761

having a resolution of approximately 2.7◦ for the atmosphere component (Peterson et al.,762

2020)), towards a multi-fidelity global sensitivity analysis study. The GSA results described763

herein have the potential of informing targeted studies and spin-ups at higher resolutions,764

such as the MLR E3SM. Determining to what extent the marginalized main effects results765

presented herein can be used to tune higher-resolution models would be a valuable future766

exercise.767
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Figure 8. GSA results: main effects, Sobol and total effects indices (from left to right) for the

Sea Ice Extent (SIE) QOI calculated annually and by season. The box-and-whiskers plots depict

GSA results obtained using a Gaussian process emulator, which provides uncertainty bounds: the

red central mark indicates the median of the data, the bottom and top edges of the box indicate

the 25th and 75th percentiles, respectively. The parameters {zi} are described in Table 2.

–31–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Main Effects

(z4, z5)(z4, z7)(z4, z6)(z5, z7) (z4) (z6, z7)(z5, z6) (z5) (z7) (z6)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sobol Indices

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.0

0.1

0.2

0.3

0.4

0.5

Total Effects

(a) Annual (Q2 = 0.518)

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Main Effects

(z4, z5)(z4, z7)(z4, z6)(z5, z7) (z4) (z6, z7)(z5, z6) (z5) (z7) (z6)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sobol Indices

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.0

0.1

0.2

0.3

0.4

0.5

Total Effects

(b) Winter (Q2 = 0.562)

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Main Effects

(z4, z5)(z2, z5)(z4, z6)(z6, z7)(z5, z7) (z4) (z5, z6) (z5) (z7) (z6)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sobol Indices

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.0

0.1

0.2

0.3

0.4

0.5

Total Effects

(c) Spring (Q2 = 0.713)

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.00

0.05

0.10

0.15

0.20

0.25

Main Effects

(z4, z5)(z4, z7)(z4, z6)(z5, z7) (z4) (z6, z7)(z5, z6) (z5) (z7) (z6)

0.00

0.05

0.10

0.15

0.20

0.25

Sobol Indices

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.0

0.1

0.2

0.3

0.4

0.5

Total Effects

(d) Summer (Q2 = 0.425)

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.00

0.05

0.10

0.15

0.20

0.25

Main Effects

(z4, z5)(z4, z7)(z4, z6) (z4) (z5, z7)(z6, z7)(z5, z6) (z7) (z5) (z6)

0.00

0.05

0.10

0.15

0.20

0.25

Sobol Indices

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Total Effects

(c) Autumn (Q2 = 0.481)

Figure 9. GSA results: main effects, Sobol and total effects indices (from left to right) for the

Sea Ice Volume (SIV) QOI calculated annually and by season. The box-and-whiskers plots depict

GSA results obtained using a Gaussian process emulator, which provides uncertainty bounds: the

red central mark indicates the median of the data, the bottom and top edges of the box indicate

the 25th and 75th percentiles, respectively. The parameters {zi} are described in Table 2.
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Figure 10. GSA results: main effects, Sobol and total effects indices (from left to right) for

the Sea Surface Temperature Averaged Over 60-90◦ (SST) QOI calculated annually and by season.

The box-and-whiskers plots depict GSA results obtained using a Gaussian process emulator, which

provides uncertainty bounds: the red central mark indicates the median of the data, the bottom

and top edges of the box indicate the 25th and 75th percentiles, respectively. The parameters {zi}
are described in Table 2. –33–
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Figure 11. GSA results: main effects, Sobol and total effects indices (from left to right) for the

Surface Temperature Averaged Over 60-90◦ (TS) QOI calculated annually and by season. The box-

and-whiskers plots depict GSA results obtained using a Gaussian process emulator, which provides

uncertainty bounds: the red central mark indicates the median of the data, the bottom and top

edges of the box indicate the 25th and 75th percentiles, respectively. The parameters {zi} are

described in Table 2. –34–
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Figure 12. GSA results: main effects, Sobol and total effects indices (from left to right) for the

Low Cloud Coverage Averaged Over 60-90◦ (CLDLOW) QOI calculated annually and by season.

The box-and-whiskers plots depict GSA results obtained using a Gaussian process emulator, which

provides uncertainty bounds: the red central mark indicates the median of the data, the bottom

and top edges of the box indicate the 25th and 75th percentiles, respectively. The parameters {zi}
are described in Table 2. –35–
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Figure 13. GSA results: main effects, Sobol and total effects indices (from left to right) for

the Net Longwave Surface Radiation Averaged Over 60-90◦ (FLNS) QOI calculated annually and

by season. The box-and-whiskers plots depict GSA results obtained using a Gaussian process

emulator, which provides uncertainty bounds: the red central mark indicates the median of the

data, the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The

parameters {zi} are described in Table 2. –36–
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Figure 14. GSA results: seasonal variation of the mean total sensitivity (total effects) indices of

the four most influential parameters. The box represents 25-75% confidence intervals. The median

of the data is denoted by the red line. The mean of the data is denoted by the blue dot. Whiskers

designate the minimal and maximal values of the total effects indices.
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Figure 15. Marginalized main effects of the most important parameters affecting annual sea

ice extent (SIE). The black solid line represents the median of the main effects calculated using a

Gaussian process and the gray shading represents the 95% confidence intervals of the main effects

calculated using the Gaussian process emulator.
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Figure 16. Marginalized main effects of the most important parameters affecting annual surface

temperature (TS). The black solid line represents the median of the main effects calculated using

a Gaussian process. The gray shading represents the 95% confidence intervals of the main effects

calculated using the Gaussian process emulator.
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