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Abstract

One major challenge of solar flare prediction with machine learning methods is the scarcity of large flares. This issue of low

positive sample size is even more severe for data observed in the relatively weak Solar Cycle 24, for example, the SHARPs data

product. This partly hampers the successful application of deep learning methods, especially those dealing with high-dimensional

spatial and/or temporal data. By joining SHARPs with Space-Weather MDI Active Region Patches (SMARPs), a new data

product derived from observations in Solar Cycle 23, we are able to obtain a fused dataset with nearly tripled positive samples.

We evaluated two deep learning methods, LSTM and CNN, using the selected parameter sequences and image snapshots in

the fused dataset. Experiment results show that the two models trained on the fused dataset achieve better or equivalent test

set performance than those trained on a single solar cycle. In addition, we demonstrate the improvement of the performance

of the stacking ensemble that combines LSTM and CNN. We provided interpretation to CNN using modern visual attribution

methods in computer vision. The results show that CNN is able to identify flare-related signatures in magnetograms.
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ABSTRACT8

One major challenge of solar flare prediction with machine learning methods is the scarcity of large9

flares. This issue of low positive sample size is even more severe for data observed in the relatively10

weak Solar Cycle 24, for example, the SHARPs data product. This partly hampers the successful11

application of deep learning methods, especially those dealing with high-dimensional spatial and/or12

temporal data. By joining SHARPs with Space-Weather MDI Active Region Patches (SMARPs), a13

new data product derived from observations in Solar Cycle 23, we are able to obtain a fused dataset14

with nearly tripled positive samples. We evaluated two deep learning methods, LSTM and CNN, using15

the selected parameter sequences and image snapshots in the fused dataset. Experiment results show16

that the two models trained on the fused dataset achieve better or equivalent test set performance than17

those trained on a single solar cycle. In addition, we demonstrate the improvement of the performance18

of the stacking ensemble that combines LSTM and CNN. We provided interpretation to CNN using19

modern visual attribution methods in computer vision. The results show that CNN is able to identify20

flare-related signatures in magnetograms.21

1. INTRODUCTION22

Solar flares are abrupt electromagnetic explosions in magnetically active regions on the solar surface. Intense solar23

flares can be followed by coronal mass ejections and eruptions of solar energetic particles, which may disturb or disable24

satellites, terrestrial communication systems, and power grids. Predicting such strong flares from solar observations is25

therefore of particular significance and has been one of the primary tasks in space weather research.26

Solar flares, like many other solar eruptive events, are known to be magnetically driven. Over the past decade, a27

great amount of flare prediction studies have benefited from an active region data product called Space-Weather HMI28

Active Region Patches (SHARPs, Bobra et al. 2014). The SHARP database is derived from full-disk observations29

of the Helioseismic and Magnetic Imager (HMI, Schou et al. 2012) aboard the Solar Dynamics Observatory (SDO),30

containing maps and summary parameters of automatically tracked active regions from May 2010 to the present day,31

covering much of Solar Cycle 24. However, Solar Cycle 24 is the weakest solar cycle in a century and, consequently,32

the SHARP database only contains a limited number of strong events, which is not favorable for data-driven learning33

methods.34

Recently, a new data product, Space-Weather MDI Active Region Patches (SMARPs, Bobra et al. 2021), was35

developed as an effort to extend backward the SHARP database to include active regions observations in Solar Cycle36

23, a much stronger solar cycle with significantly more flaring events. In fact, Solar Cycle 23 is the longest solar cycle37

(147 months) in the past 150 years 1. The SMARP database was derived from the Michelson Doppler Imager (MDI,38

Scherrer et al. 1995) aboard the Solar and Heliospheric Observatory (SoHO), which observed the sun from 1996 to39

2010. Compared to its successor HMI, MDI’s measurement of the solar surface magnetic field is only restricted to40

the line-of-sight component, with lower spatial resolution, lower signal-to-noise ratio, and shorter cadence. As such,41
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SMARP is not of as high quality as SHARP. Nonetheless, SMARPs’ coverage of a stronger solar cycle and its partial42

compatibility with SHARPs make it a valuable dataset to use with SHARPs when larger sample size is desired.43

Flare prediction is posed as a classification problem, asking for, most commonly, a binary decision whether an active44

region will flare in a future time window given its observation and/or flaring history. In this paper, we consider a45

“strong-vs-quiet” flare prediction problem, distinguishing active regions that will produce an M- or X- class flare in46

the future 24 hours from those that stay flare quiescent.47

Many machine learning methods for flare prediction have been proposed. They roughly fall into three categories48

in terms of how flare pertinent features are extracted from data. The first category uses explicit parameterization49

of observational data that are considered relevant to flare production, e.g., SHARP parameters that characterize the50

photospheric magnetic field. Much of the effort in data-driven flare forecasting has been made in this category, exploring51

a wide range of machine learning algorithms including discriminant analysis (Leka & Barnes 2003), regularized linear52

regression (Jonas et al. 2018), support vector machine (Yuan et al. 2010; Bobra & Couvidat 2015; Nishizuka et al.53

2017; Florios et al. 2018), k-nearest neighbors (Nishizuka et al. 2017), extremely random trees (Nishizuka et al. 2017),54

random forests (Liu et al. 2017; Florios et al. 2018), multi-layer perceptrons (MLP) (Florios et al. 2018), residual55

networks (Nishizuka et al. 2018, 2020), long short-term memory (LSTM) networks (Chen et al. 2019; Liu et al. 2019),56

etc. The second category learns features from images using fixed transformations, e.g., random filters (Jonas et al.57

2018), Gabor filters (Jonas et al. 2018), wavelet transforms (Hada-Muranushi et al. 2016). The third category, only58

popularized more recently, implicitly learns flare indicative signatures directly from active region magnetic field maps.59

This category features mainly convolutional neural networks (CNNs) (Huang et al. 2018; Li et al. 2020). Note that60

the three categories are not mutually exclusive. For example, methods in the second category typically also depend61

on explicitly constructed features (e.g. Jonas et al. 2018) as the information within transformation coefficients is often62

limited.63

Another taxonomy to categorize machine learning methods for flare prediction is how the method uses the temporal64

evolution of active regions. Most of the literature uses static data, be it images or parameters. Some studies take65

advantage of temporal evolution, for example, sunspot classification evolutions (McCloskey et al. 2018), or moments66

of the time series of magnetogram summary statistics (Ahmadzadeh et al. 2021). Only limited exploration has been67

made in directly modeling time series and extracting dynamic information, most notably the LSTM (Chen et al. 2019;68

Liu et al. 2019).69

In this study, two representative deep learning methods, LSTM and CNN, are considered. LSTM uses times series of70

keyword parameters derived from line-of-sight magnetograms, whereas CNN uses static point-in-time magnetograms.71

We explore the possibilities of combining CNN and LSTM for a better performance by considering a meta-learning72

scheme called stacking. We also provide a visual explanation of how CNN makes a decision using visual attribution73

methods. In particular, we examine the features picked up by the CNN using one attribution method, Integrated74

Gradients.75

The contribution of this paper to the solar flares prediction research lies in the following five folds:76

1. We demonstrated the utility of SMARP on flare prediction when combined with SHARP.77

2. We first compared the flare prediction performance of LSTM and CNN on an equal footing in terms of using the78

same dataset.79

3. We first applied the stacking method that combines LSTM and CNN in flare prediction and demonstrate im-80

provement in certain settings. We called attention to the convexity of stacking criteria in solar flare prediction.81

We also evaluated and compared some convex objectives with conventional metrical objectives.82

4. We provided visual explanations of CNN using visual attribution methods including Deconvolution, Guided83

Backpropagation, Integrated Gradients, DeepLIFT, and Grad-CAM. We demonstrate the potential of these84

methods in identifying flare indicative signatures, interpreting CNN’s decisions, revealing model limitations, and85

suggesting methodical modifications.86

The rest of the paper is organized as follows. Section 2 introduces in detail the data sources and how they are87

processed into machine learning ready datasets. Section 3 describes the flare prediction methods, stacking ensemble,88

and visual attribution methods. Section 4 presents and compares the flare prediction performance on the datasets.89

Section 5 concludes the paper by presenting the lessons learned from the experiments.90
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Table 1: Active region summary parameters. Note that MEANGBL has unit Gauss/pixel, and that the pixel size,

denoted as another keyword CDELT1, is different in SHARP and SMARP.

Keyword Description Pixels Formula Unit

USFLUXL Total line-of-sight unsigned
flux

Pixels in the TARP/HARP region
∑

|BLoS|dA Maxwell

MEANGBL Mean gradient of the line-of-
sight field

Pixels in the TARP/HARP region

√(
∂BLoS

∂x

)2
+
(

∂BLoS
∂y

)2
Gauss/pixel

R VALUE R, or a measure of the un-
signed flux near polarity inver-
sion lines (Schrijver 2007)

Pixels near polarity inversion lines log (
∑

|BLoS|dA) Maxwell

AREA De-projected area of patch on
sphere in micro-hemisphere

Pixels in the TARP/HARP region
∑

dA mH

2. DATA91

2.1. Data sources92

SHARP contains automatically-detected active regions, referred to as HMI Active Region Patches, or HARPs, from93

May 2010 to the present day. SMARP contains Track Active Region Patches, or TARPs, from 1996 to 2010. We94

download SHARP and SMARP records in Cylindrical Equal-Area (CEA) coordinates from Joint Science Operations95

Center2. Only good quality SMARPs and SHARPs within ±70◦ of the central meridian matching at least one NOAA96

active region are considered. We query SMARP records from 1996 April 23 to 2010 October 28 and SHARP records97

from 2010 May 1 to 2020 December 1, both at a cadence of 96 minutes. For keyword parameters, we use four98

common keyword parameters in SMARP and SHARP, i.e., USFLUXL, MEANGBL, R VALUE, and AREA. Definitions and99

calculations of those keywords are listed in Table 1. For images, we use photospheric line-of-sight magnetic field maps,100

or magnetograms, from the two data products.101

The SHARP data product overlaps with the SMARP data product from May 1 to October 28 in 2010. This overlap102

period provides an opportunity to calibrate the two data products. In this study, we use the overlap period to derive103

transformations that map SHARP magnetograms and keyword parameters to “SMARP proxy data”. In the following,104

we describe and analyze the data fusion transformations for magnetograms and keyword parameters.105

The difference between SHARPs and SMARPs magnetograms poses a challenge to use them jointly. SHARP contains106

active region magnetograms at the HMI resolution of about 0.5′′ per pixel, whereas SMARP magnetograms inherit107

the MDI resolution of about 2′′ per pixel. To compare HMI and MDI magnetograms, Liu et al. (2012) reduced HMI108

spatial resolution to match MDI’s by convolving a two-dimensional Gaussian function with an FWHM of 4.7 HMI109

pixels and truncated at 15 HMI pixels. Then, the HMI pixels enclosed in each MDI pixel are averaged to generate110

an MDI proxy pixel. After that, a pixel value transformation MDI = −0.18 + 1.40×HMI is applied. This conversion111

was also used by Huang et al. (2018) in their flare prediction work. In this work, we took a simplified approach by112

subsampling SHARP magnetograms 4 times in both dimensions to match the resolution of SMARP magnetograms.113

In addition, we do not perform pixel value transformation because we found by histogram equating (Riley et al. 2014)114

that the data distribution in the overlap period of MDI and HMI are similar, with the correlation coefficient very close115

to 1 (Figure 1). We use histogram equating because highly precise alignment of CEA-projected active region patches116

between SHARP and SMARP is not yet available (Bobra et al. 2021). Our multiplicative conversion factor (1.099)117

agrees well with that in Riley et al. (2014, Table 2) (0.99 ± 0.13). The discrepancy between our result and Liu et al.118

(2012) (1.099 vs. 1.40) may be because they considered full-disk magnetograms whereas we focus on active regions.119

In addition, they considered only 12 pairs in June – August 2010, whereas we considered every possible matching in120

May – October 2010. Furthermore, they performed pixel-to-pixel match of full-disk magnetograms, whereas we use121

histogram-based methods. Pixel selection rules may also contribute to the difference.122

The keyword parameters in the two databases also need to be calibrated. Designed to represent the same physical123

quantity, keywords with identical names in SHARP and SMARP are calculated from two pipelines with different124

2 See http://jsoc.stanford.edu.

http://jsoc.stanford.edu


4

2000 1000 0 1000
HMI

2000

1500

1000

500

0

500

1000

1500

M
DI

r = 0.982

MDI = 1.099 * HMI + -0.463

Figure 1: Q-Q (quantile-quantile) plot of 50 matched pairs of HARP and TARP from 2010-05-01 to 2010-10-28.

Active regions with pixels outside of ±70◦ from the central meridian are not used. For each pair, the co-temporal

magnetograms are sampled at a rate of every 8 hours. The pixels within the intersection of the bounding boxes of

active region pairs are used. Lighter color indicates higher latitude.

source data, and the difference between them cannot be neglected. Bobra et al. (2021) investigated such difference by125

comparing the marginal and the joint distribution of co-temporal SMARP and SHARP keywords for 51 NOAA active126

regions in the overlap period of MDI and HMI (Bobra et al. 2021, Figure 3). We extend this investigation by looking127

at long-term distributions of the keywords in SMARP and SHARP, respectively. In addition, we perform univariate128

linear regression of SMARP parameters on their counterparts in the SMARP database. The results are shown in129

Figure 2 and 3. In Figure 3 shows that USFLUXL is the most correlated parameter between SHARP and SMARP,130

with r=0.970, whereas MEANGBL is the least correlated parameter, with r = 0.796. We do not see a significant131

improvement when regressing SMARP parameters on multiple co-temporal SHARP parameters. Therefore, the linear132

transformation seems to be a reasonable choice to convert SHARP data.133

To label data samples, we take advantage of the GOES solar flare events. Based on the peak magnitude of 1–8 Å soft134

X-ray flux measured by Geostationary Operational Environmental Satellites (GOES), solar flare events are classified135

into five increasingly intense classes: A, B, C, M, and X, often appended with a number that indicates the finer scale.136

M- and X- classes are referred to as strong flares throughout the paper. Each solar flare event is associated with an137

NOAA active region, which is used to cross-reference the NOAA ARS keyword in SHARP (or SMARP) databases to138

associate the flare with a HARP (or TARP). The GOES event records are queried using the Sunpy package (The139

SunPy Community et al. 2020) from the beginning of 1996 to the end of 2020, covering the period of the SMARP140

and SHARP observations used in this paper. There are 61 event records with unknown GOES event class, most of141

them in the year 1996, that are excluded in this study. Of note, although the GOES catalog is widely considered as142

the “go-to” record database in solar flare forecasting, it is not error-free. There are cases in which flares, even the143

major ones, are not assigned to any active region (Leka et al. 2019). Moreover, small-sized flares could be buried under144

the background radiation, which is frequently observed for A-class flares in the majority of a solar cycle and B-class145

flares after a major flare occurs. As such, works that only consider C-class flares and above are not uncommon (e.g.146

McCloskey et al. 2018).147

2.2. Sample extraction and labeling148

To build a dataset for the 24-hour “strong-vs-quiet” flare prediction task, record sequences of active regions in149

SMARP and SHARP need to be organized into observation samples and labeled according to flare activity. Throughout150

this paper, we define a sample as a 24-hour long observation of an active region, in the form of a time sequence of151

magnetograms or keyword parameters. The 24-hour time window of observation is called the observation period,152

and the following 24 hour time window immediately after the observation is called the prediction period. A sample is153
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Figure 2: Pairplots of keywords USFLUXL, MEANGBL, R VALUE, and AREA in the selected and labeled dataset of SHARP

(a) and SMARP (b), respectively. Shown are kernel density estimations of the marginal and the joint distribution of

the keywords. The axes of the two plots at the same position in (a) and (b) are scaled equally for comparison.
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Figure 4: Demonstration of the sample extraction and labeling procedure of an active region. The dark orange dots

represent flares that occurred in an active region, with the last flare exceeding the M1.0 threshold. The blue sample is

labeled as negative because no flare of any class occurs in the observation and the prediction period. The gray sample

is discarded because all flares in the prediction period are weaker than M1.0. The orange sample is labeled as positive

because the prediction period contains a flare of size exceeding M1.0. Note that the lag time between samples (96

minutes) is not depicted proportionally.

assigned to the positive class if the active region has at least one flare of size exceeding M1.0 occurring in the prediction154

period, and to the negative class if the active region has no flare of any class in both the observation period and the155

prediction period. The steps to extract and label samples are detailed in the following pipeline and illustrated in156

Figure 4.157

1. Discard records subject to severe projection effects. For the record sequence of each HARP region or TARP region158

in the aforementioned time periods with an associated NOAA active region number, we only keep the records159

with the entire active region bounding box inside ±70◦ of the central meridian.160

2. Extract subsequences from each active region record sequence. We segment the record sequence of the active161

region into 24-hour long (or 16 time steps), partially overlapping subsequences that are 96 minutes apart. Hence,162

the observation period of each sample is 24 hours.163

3. Label subsequences. A subsequence belongs to the positive class (or event class) if there is an M- or X-class flare164

within the 24-hour prediction period, i.e., 24 hours after the subsequence ends. A subsequence belongs to the165

negative class (or quiet class) if there is no flare of any class within the observation period and the prediction166

period. Any subsequence that cannot be categorized into the above two classes is discarded.167

4. Discard subsequences with too many missing data. We define a “bad image” as one with Not-a-Number (NaN)168

pixels or with either dimension (height or width) deviating more than 2 pixels from the median dimension of the169

subsequence. For each subsequence, if one of the following conditions are satisfied, the subsequence is considered170

beyond imputation and thus discarded: (1) there are more than 2 “bad images”, (2) the last image is a “bad171

image”, (3) there are more than two missing values in any keyword subsequence, or (4) the last record has missing172

keywords.173

The motivation to extract sequences in Step 2 is to provide a common collection of samples to evaluate and compare174

methods working with time series and those working with static point-in-time observations. Both magnetograms and175

keyword parameters are considered in this pipeline so that we can also compare methods working with images and176

those working with parameters. This pipeline enables sample-level inspection. It also eliminates the randomness177

from sample selection, a long-standing problem for methodical comparison (e.g. Barnes et al. 2016). In our case, a178

reasonably fair comparison can be made between LSTM that takes the parameter sequences and CNN that takes the179

last magnetogram of each sequence.180

We also note that, in step 3, discarded samples have flaring patterns belonging to one of the following two cases: (1)181

samples with only weak flares in the prediction period, and (2) samples that flare in the observation period but not in182

the prediction period. Samples with pattern (1) are discarded because we want better contrast between the two classes.183

This not only makes the learning easier, but also avoids the concern about the granularity of labels (for instance, an184

M1.0 class flare and a C9.9 class flare relieve a similar amount of energy but are categorized differently). Samples with185

pattern (2) are in the decline phase of activity. Predicting those samples equates to answering the question of whether186
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Table 2: Sample sequences extracted from SMARP and SHARP

Positive (M1.0+) Negative (Quiet) Event Rate

SMARP 4601 130695 0.0340

SHARP 2849 66349 0.0412

a flaring active region will return quiet in the near future. This problem could be intrinsically harder, but also less187

interesting from an operational forecasting point of view. Therefore, samples with this pattern are also discarded.188

After the above sample selection pipeline, the number of positive and negative samples extracted from SMARP and189

SHARP is shown in Table 2. The count of negative samples is observed to dominate in both SMARP and SHARP. To190

address the issue of significant class imbalance, we randomly undersample the negative samples, which will be detailed191

in Section 2.4.192

2.3. Train/validation/test split193

Machine learning algorithms typically require data samples to be partitioned into disjoint subsets, also referred194

to as splits. A common practice is to divide the dataset into three splits: a training set on which the model is195

fitted, a validation set on which hyperparameters are selected, and a test set on which the model is evaluated for196

generalization performance. Each split serves a different goal which could be interfered and compromised by the inter-197

splits correlation. On the other hand, the success of generalization hinges on the distributional similarity among splits.198

Therefore, it is important that splits are sufficiently similar in distribution while being statistically independent.199

Due to the temporal coherence of an active region in its lifetime, a random split of data samples will have samples200

coming from one active region categorized into different splits. Such correlation constitutes an undesirable information201

leakage among splits. For instance, information leaking from the training set into the test set will likely result in202

an overly optimistic estimate of the generalization performance. Much of the flare prediction literature deals with203

this issue by taking a chronological split, e.g., a year-based split (e.g. Bobra & Couvidat 2015; Chen et al. 2019).204

Unfortunately, it is observed that the splits may not share the same distribution due to solar cycle dependency (Wang205

et al. 2020). Some other works take an active-region-based split, where data samples from the same active region must206

belong to the same split (e.g. Guerra et al. 2015; Campi et al. 2019; Zheng et al. 2019; Li et al. 2020). Compared207

to splitting by years, this approach has the advantage that active regions in each split are randomly dispersed in208

different phases of a solar cycle, removing the bias introduced by artificially specifying splits. This distributional209

consistency between splits comes at the price of an additional source of information leakage due to sympathetic flaring210

in co-temporal active regions. Yet, such phenomenon is observed to be weak (?) and is ignored in our analysis.211

2.4. Random undersampling212

Both SMARP and SHARP exhibit class imbalance as shown in Table 2. However, a balanced dataset is typically213

easier for machine learning models to learn from. Class imbalance can be dealt with at two levels, the data level and214

the model level. At the data level, one could undersample the majority class and/or oversample the minority class.215

A significant side effect of resampling strategy is that it changes the class distribution. This has to be considered216

critically. At the model level, one could adjust the penalty of misclassification of different classes in the loss function.217

This approach is widely applied in solar flare forecasting (e.g. Bobra & Couvidat 2015; Nishizuka et al. 2018; Liu et al.218

2019). A recent work by Ahmadzadeh et al. (2021) provided a fairly thorough review of the class imbalance in solar219

flare forecasting as well as empirical evaluation of different approaches to tackle this issue.220

In our work, we perform random undersampling on the negative samples to arrive at a balanced dataset with equal221

numbers of positive and negative samples. The random undersamling is applied to all splits separately to ensure each222

split is balanced. We note that, for an operational forecast that needs to report generalization performance on the223

new data with unaltered climatological rate, resampling can only be applied to the training set; applying it to the test224

set leads to systematic bias to the results. However, the distributional difference among splits is undesirable for model225

training: a model generalizes the best on the same data distribution as what it is trained on. In our case, we choose226

to value distributional consistency. Thus, the test set performance is not to be interpreted in an operational setting,227

nor should it be compared to other forecasting methods that sample data differently.228

Both train/validation/test split and random undersampling are random. Repeating these two steps with different229

seeds enables uncertainty quantification to the evaluation results in Section 4. It is worth noting that, to date,230
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uncertainty quantification in forecasting metrics can only provide guidance (Leka et al. 2019). Commonly used schemes231

that estimate the variance of skill scores such as random splitting (Bobra & Couvidat 2015) and cross validation (Jonas232

et al. 2018) are usually biased (Efron & Tibshirani 1997; Bengio & Grandvalet 2004). Even bootstrap estimate of the233

uncertainty incurs bias due to non-distinct observations in the bootstrap samples (Efron & Tibshirani 1997).234

2.5. Image resizing235

The CNN requires all input images to be of the same size, but the active region cutouts are of different sizes and236

aspect ratios. Resizing (via interpolation), zero padding, and cropping are among mostly used methods to convert237

different-sized images into a uniform size. In this work, we decide to resize all active region magnetograms to 128×128238

pixels using bilinear interpolation, similar to Huang et al. (2018) and Li et al. (2020).239

We note that resizing is more of an empirical decision than a scientifically justified one. Resizing obviously does not240

preserve the area and aspect ratio of the active region, which may well be correlated or informative of flaring activities.241

However, when compared to other options like zero padding and cropping, resizing gives better convergence and test242

set performance and hence is adopted.243

2.6. Standardization244

Magnetogram pixel values and keyword metadata are different physical quantities in different units and ranges.245

Unlike physical modeling, many machine learning algorithms are invariant to the input scaling; they only care about246

the relative position of a quantity in the feature distribution. Moreover, drastically different ranges of features may hurt247

the convergence and stability of many algorithms. Therefore, the data of different scales are typically transformed into248

the same range via a process called standardization, also known as normalization. In particular, Z-score standardization249

transforms the input data by removing the mean and then dividing by the standard deviation. In this work, we apply250

the Z-score standardization to image data using the mean and standard deviation of images in SHARP. This is251

because we consider the pixel values between SMARP and SHARP are similar. We apply the Z-score standardization252

to SMARP and SHARP keywords separately. That is, the mean and standard deviation are calculated for SHARP and253

SMARP separately, and data in one dataset is standardized using the mean and the standard deviation in that dataset.254

The transformation is “global” (Ahmadzadeh et al. 2021) in that it is calculated regardless of the splits. Empirical255

evaluation in Ahmadzadeh et al. (2021) showed a global normalization is better than the local normalization, i.e., the256

mean and standard deviation are calculated only for the training split. We note that, with this normalization, the257

linear transformation converting SHARP keywords to SMARP proxy data is not needed anymore; any coefficients and258

bias will have no effect after standardization.259

3. METHODOLOGY260

In this section, we first introduce two deep learning models, LSTM and CNN, used for flaring active region prediction.261

Then we describe the stacking ensemble. After that, we describe forecast verification methods including metrics and262

graphical tools. Following that, we introduce the paired t-test used in making statistically significant claims. Lastly,263

we introduce the visual attribution methods used to interpret CNNs.264

3.1. Deep learning models265

We use two deep neural network models, CNN and LSTM, to predict strong flares from active region observation.266

CNN takes an active region magnetogram as input, whereas LSTM takes a time sequence of keyword parameters.267

Both networks output the probability that the sample belongs to the positive class, i.e., the probability that the active268

region will produce a strong flare the next day, rather than continue to be flare-quiescent.269

Long short-term memory (LSTM) network (Hochreiter & Schmidhuber 1997) is a type of recurrent neural network270

that learns from sequential data such as text and speech. A common LSTM unit is composed of a cell, an input gate,271

an output gate and a forget gate. In solar flare prediction, LSTM has been applied to SHARP parameter series (Chen272

et al. 2019; Liu et al. 2019). The architecture of the LSTM used in this paper is adapted from (Chen et al. 2019),273

shown in Figure 5(a). Two LSTM layers, each with 64 hidden states, are stacked. The last output of the second LSTM274

layer, as a 64-dimensional vector, is sent to a linear layer with 2 outputs. The softmax is applied to this 2-dimensional275

output to get the predicted probabilities of the positive and the negative class.276

Convolutional neural network (CNN) is a neural network architecture that learns from images. CNN has been277

applied to solar flare forecasting by Huang et al. (2018) and Li et al. (2020). We take the architecture used in Li et al.278
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(a) LSTM architecture
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(b) CNN architecture

Figure 5: Neural network architectures. (a) shows the LSTM architecture. (b) shows the CNN architecture.

(2020), illustrated in Figure 5(b), which is in turn inspired by the VGG network (Simonyan & Zisserman 2014) and279

the Alexnet network (Krizhevsky et al. 2012). The first two convolutional layers have kernels of size 11× 11, designed280

to learn low-level and concrete features. The three following convolutional layers have kernels of size 3 × 3, designed281

to learn more high-level, abstract concepts. Batch normalization is used after all convolutional and linear layers to282

speed convergence. ReLU nonlinearity is applied to only convolutional layers. The batch normalization outputs of the283

two linear layers are randomly dropped out with probability 0.5 in training to reduce overfitting. The 2-dimensional284

output is passed to softmax to generate a probability assignment between the positive and the negative class. More285

details of this architecture can be found in Li et al. (2020).286

The training procedures of the LSTM and the CNN are similar. For both models, the Adam optimizer (Kingma287

& Ba 2014) is used to minimize the cross-entropy loss with learning rate 10−3 and batch size 64. Both models are288

evaluated on the validation set after each epoch of training. To prevent overfitting, the training is early-stopped if no289

improvement on the validation True Skill Statistic (or TSS, explained later in Section 3.3) is observed for a certain290

number of epochs called patience. The LSTM is trained for at most 20 epochs with a patience of 5 epochs, whereas291

the CNN is trained at most 20 epochs with a patience of 10 epochs. After training, the LSTM or the CNN with292

the best validation TSS among the checkpoints of all epochs is selected and evaluated on the test set to estimate its293

generalization performance.294

3.2. Stacking ensemble295

In a sense, physical parameters represent the known aspects of flare-related signatures in active regions, whereas296

magnetograms contain much richer information, some of which has not yet been characterized or even understood297

by humans. One might expect that LSTM and CNN fitted on these two types of data could provide somewhat298

different perspectives to the same physical process. It is then natural to ask whether it is possible to combine the299
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two perspectives for better performance. This idea, in fact, belongs to ensemble learning, a learning paradigm that300

capitalizes on different models to achieve a better performance than any of the models alone. Famous examples of301

ensemble learning include bagging (Breiman 1996), boosting (Freund & Schapire 1997; Friedman 2001), and stacking302

(Wolpert 1992). Bagging (bootstrap aggregating) produces an aggregated output (typically average for continuous303

response and voting for discrete response) from many classifiers trained on bootstrapped samples to reduce variance.304

Boosting harvests the boosted performance from a multitude of weak learners. Stacking usually involves only a few305

strong learners. In our case, it is most appropriate to take the stacking approach to ensemble LSTM and CNN.306

First introduced by Wolpert (1992), stacking has been studied extensively in a wealth of literature. The earliest effort307

that applied stacking in solar flare prediction can be traced back at least to a seminal machine learning work by Džeroski308

& Ženko (2004), in which a general stacking method using multi-response model trees was proposed. The authors309

showed their stacking method performed better than the best classifier based on experiments on the UCI Repository of310

machine learning databases (Dua & Graff 2017), including a dataset with 1389 flare instances, each characterized by 10311

categorical attributes. Guerra et al. (2015) first attempted to use stacking over operational forecasts in flare prediction.312

They combined the full-disk probabilistic forecasts from four operational forecasting methods using 13 active regions313

selected from 2012 to 2014. Combination weights are chosen to maximize HSS under the constraint that the weights314

sum to 1. Guerra et al. (2020) continued in this direction with a larger ensemble of forecasting methods and they also315

considered an unconstrained linear combination with a climatological frequency term. They found most ensembles316

perform better than a bagging model that essentially averages the members’ predictions. However, they overlooked317

the nonconvexity of the objective in training the meta-learner. We will discuss this issue and provide solutions later318

in this section.319

In its most basic form, stacking uses a linear combination of the outputs of a collection of models as the output of320

the ensemble. The collection of models are called base learners, and the linear combination of base learners is called321

the meta-learner. Stacking is typically performed in two stages. In the first stage, the base learners are fitted on the322

training set. In the second stage, the predicted probabilities by all base learners on the validation set, as well as their323

labels, are collected into the so-called “level-one” data, on which the meta-learner is fitted to figure out the optimal324

combination weights of the base learners. Cross-validation is frequently used in place of a simple train-validation split325

so that the validation sets in different folds can be combined into “level-one” dataset of the same size as the training326

set. Either way, it is important that the “level-one” data are out-of-sample data for base learners to prevent overfitting.327

In our case with two base learners, we formulate the stacking ensemble as follows. Let pi, qi denote the predicted328

probabilities of instance xi by the independently trained LSTM and CNN, respectively. The stacking ensemble con-329

structs a probability prediction as a weighted average ri = αpi+(1−α)qi, 0 ≤ α ≤ 1. The mete-learner is parameterized330

by a single scalar α. To prevent overfitting, stacking requires the meta-learner parameters to be fitted on a dataset331

different from the datasets on which the base learners were fitted. Therefore, we use the validation set to find the best332

α.333

There are multiple ways to formulate the optimization objective to estimate α. One natural way is to directly optimize334

the metric of interest. However, the loss function constructed by metrics may not be convex or even differentiable.335

For instance, categorical metrics such as ACC, TSS, and HSS are closely related to 0-1 loss which is neither convex336

nor differentiable. Intuitively speaking, smoothness of the loss function makes it possible to deduce the loss function’s337

behavior at the neighborhood given its behavior at one point, whereas convexity ensures the uniqueness (and sometimes338

the existence with stronger conditions) of the minimizer; both are desired properties of optimization problems, making339

them easier to solve in theory and practice (Nocedal & Wright 2006). In Guerra et al. (2020), nonconvex objectives are340

optimized using sequential quadratic programming. However, due to the aforementioned issues, the algorithm is not341

guaranteed to converge to the global minimum of the objective, which may contribute to the instability of optimized342

weights observed in Guerra et al. (2020) for certain metrics. To resolve this issue, the authors repeatedly ran the343

algorithm with random initialization and take the mean as the final weights. In our case with only two base learners,344

the feasible region is constrained to a one-dimensional space. A grid search can be applied to locate the global solution.345

In general, however, nonconvex objectives are difficult to deal with, which motivates the use of convex objectives.346

Convex loss functions are surrogate objectives in cases where the verification metric is not the loss function itself.347

Nonetheless, a loss function can have its own motivation; the optimizer is optimal in that sense. One example is348

maximum likelihood estimation (MLE). Within the meta-learning framework we formulated above, MLE minimizes349
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Predicted

Negative Positive Total

T
ru

e Negative TN FP N

Positive FN TP P

Total N′ P′ N + P

Table 3: A contingency table consisting of TP (true positive), FP (false positive), FN (true negative), and TN (true

negative).

the negative log-likelihood loss function350

L(α) = − log

n∏
i=1

ryii (1− ri)1−yi (1)351

=

n∑
i=1

(−yi log ri − (1− yi) log(1− ri))︸ ︷︷ ︸
Li

. (2)352

353

The MLE objective can also be interpreted as the binary cross-entropy loss, a divergence measure between the distri-354

butions of ground truth labels and predicted probabilities. This loss function can be decomposed into the summation355

of instance-wise loss Li, with the gradient and the Hessian356

L′i(α) =

(
−yi
ri

+
1− yi
1− ri

)
(pi − qi) , (3)357

L′′i (α) =

(
yi
r2i

+
1− yi

(1− ri)2

)
(pi − qi)2 ≥ 0. (4)358

359

Since the Hessian is nonnegative, minimizing L on α ∈ [0, 1] is a convex problem and the grid search will recover the360

unique optimizer. When the number of dimensions scales up, as is the case with multiple base learners, the grid search361

is no longer feasible. However, thanks to the convexity and differentiability of the loss function, iterative procedures362

can be performed to efficiently recover the minimizer with guaranteed algorithmic convergence. Examples of such363

algorithms include projected gradient descent and Newton’s method.364

It is worth noting that stacking is made possible in this work thanks to the sample selection scheme. Magnetograms365

are associated with summary statistic sequences, providing two different modes of the same instance. Each instance366

can then have two predicted probabilities provided by the CNN and the LSTM respectively, which is the prerequisite367

for applying the stacking method.368

3.3. Evaluation tools369

Both CNN and LSTM produce probabilistic predictions. With proper discriminating thresholds, those predictions370

can be made binary decisions, which fall into a contingency table (or confusion matrix) shown in Table 3. The371

contingency table contains the most complete information for categorical predictions. However, it is often the case372

that a single numerical metric is needed to summarize the table. For instance, such a metric may be desired when373

deciding which model is to be deployed in operation. Accuracy and the skill scores adopted in space weather forecasting374

are examples of such contingency table based metrics.375

We start our discussion on metrics with accuracy (ACC), also known as rate correct, the simplest metric that is376

widely used in all sorts of domains. In terms of the contingency table, accuracy is defined as377

A =
TN + TP

N + P
. (5)378

379

For a highly imbalanced classification problem like solar flare prediction, accuracy is generally not considered a useful380

metric, since a no-skill classifier that assigns the majority label to all samples will be correct most of the time.381

Therefore, a plethora of skill scores are devised to overcome this issue.382
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A skill score provides a normalized measure of the improvement against a specific reference method. In its most383

general form, a skill score can be expressed as384

Skill =
Aforecast −Areference

Aperfect −Areference
. (6)385

386

A higher skill score indicates better performance, with the maximum value 1 corresponding to the perfect performance,387

0 corresponding to no improvement over the reference, and negative values corresponding to performance worse than388

the reference. Below, we introduced some of the mostly used skills scores in flare forecasting. For a more complete389

discussion, we refer readers to Woodcock (1976) and Wilks (2011).390

The Heidke Skill Score (HSS), also known as Cohen’s kappa coefficient due to Cohen (1960), uses a random forecast391

independent from the flare occurrences as a reference. The expected number of correct forecasts made by the random392

predictor, denoted by E, can be calculated using the law of total expectation as393

E =
P

N + P
× P′ +

N

N + P
×N′. (7)394

395

The accuracy of the random predictor can then be expressed as396

Areference =
E

N + P
. (8)397

398

Defined using this reference accuracy, HSS has the form399

HSS =
TP + TN− E

N + P− E
(9)400

=
2[(TP× TN)− (FN× FP)]

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
. (10)401

402

HSS quantifies the forecast improvements over a random prediction. Since the random reference forecast is dependent403

on the event rate (climatology) P/(N + P), HSS has to be used with discretion in comparing methods when the event404

rate varies.405

The True Skill Score (TSS), also known as Hanssen & Kuiper’s Skill Score (H&KSS), Peirce Skill Score. It has the406

form407

TSS =
TP

TP + FN︸ ︷︷ ︸
probability
of detection

− FP

FP + TN︸ ︷︷ ︸
false alarm

rate

. (11)408

409

TSS falls into the general skill score definition with a reference accuracy (Barnes et al. 2016)410

Areference =
FN(TN− FP)2 + FP(TP + FN)2

(N + P)[FN(TN− FP) + FP(TP + FN)]
, (12)411

412

constructed such that both the random and unskilled predictors score 0. A nice property of TSS is its invariance to413

the class imbalance ratio, and hence is suggested by Bloomfield et al. (2012) to be the standard measure for comparing414

flare forecasts.415

We note that, on a balanced dataset for which the event rate is 0.5, it can be shown that TSS = HSS = 1−2(1−ACC).416

The trend and the paired t-test results for TSS apply to ACC and HSS due to perfect correlation. Therefore, we mainly417

focus on the discussion on TSS, list ACC as a complement metric, and omit HSS as it is equal to TSS in our setting.418

For probabilistic forecasts, the aforementioned metrics (ACC, HSS, and TSS) depend upon the threshold applied419

to the predicted probability. A common practice is to apply a threshold of 0.5, which is considered to be “random”420

by many researchers. In contrast, the following two metrics, BSS and AUC, are irrelevant to the threshold, and they421

need information (i.e., predicted probabilities) beyond the mere contingency table.422

The Brier Skill Score (BSS) is a skill score evaluating the quality of a probability forecast. It is of a nature different423

from those of HSS and TSS, in that it directly uses probabilistic predictions without thresholding them. The BSS also424
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admits the general skill score formulation, with the accuracy replaced by the Brier Score (BS), defined as the mean425

squared error between the probability predictions fi’s and binary outcomes oi’s:426

BS =
1

n

n∑
i=1

(fi − oi)2 . (13)427

428

With a reference forecast that consistently predicts the average event frequency ō (also known as climatology), the429

BSS is given by430

BSS =
BSforecast − BSreference

0− BSreference
= 1− BSforecast

BSreference
. (14)431

432

It is sometimes of interest to decompose BS into three components of reliability, resolution, and uncertainty (Murphy433

1973; McCloskey et al. 2018). BSS is frequently accompanied by the reliability diagram for more complete information,434

which will be discussed later.435

The last metric we introduce is Area Under Curve (AUC), defined as the area under the receiver operating charac-436

teristic (ROC) curve. The ROC curve depicts how the probability of detection changes with the false alarm rate by437

varying the classification threshold. A higher AUC generally implies a higher probability of detection for the same false438

alarm rate. Although rarely mentioned, AUC also falls into the general formulation of a skill score in a trivial way,439

with the reference forecast being one that has its prediction separated but in the wrong direction, that is, all negative440

samples have predicted probability higher than any of the positive samples. This reference forecast gives a zero AUC.441

Unlike TSS and HSS, AUC is irrelevant to the threshold selected to convert probabilistic forecasts into binary decisions.442

It is a “fair” metric in that sense. One downside of AUC is that it dismisses some metrics regarded as informative by443

the community (Leka et al. 2019). Another problem is related to the nature of AUC as being the integrated probability444

of detection against a uniform measure on the false alarm rate. The reason why this is problematic is that models are445

rarely operated outside a narrow range of low false alarm rates. Indeed, we observe in experiments that there are a446

number of cases where AUC follows a different trend, sometimes opposite, to other dichotomous metrics. Due to this447

reason, we do not use AUC to select models in validation. It is only reported for completeness.448

The above numeric values provide one way to directly compare flare prediction models. In addition to metrics, flare449

forecasts usually also present some graphical tools to provide detailed information for diagnostics and comparison.450

Common graphical tools used in flare prediction include receiver operating characteristic (ROC) curves, reliability451

diagrams (RD), and skill score profiles (SSP). All three of them are only meant for forecasts that predict probabilities452

or continuous scores (e.g., logits) that can be converted to probabilities.453

An ROC curve visualizes the trade-off between probability of detection (POD) and false alarm rate (FAR) by454

altering the dichotomous decision threshold of the predicted probability. A higher ROC curve for up to a particular455

FAR indicates a more powerful detector within a certain size, or in other words, one that makes fewer Type II errors456

(misses) under the constraint of Type I error (false alarm) rate not exceeding a certain level. The area under the ROC457

curve (AUROC, or simply AUC), is a statistic frequently used as a surrogate to measure such quality of a detector.458

The ROC curve reflects how resolved are the predicted distributions of the positive and the negative class (Leka et al.459

2019). It is also worth noting that, if we vary the dichotomous threshold, the highest TSS is achieved by the point on460

the ROC that is farthest to the diagonal. The TSS can be visually identified as the vertical distance of this point to461

the diagonal line.462

The reliability diagram, also known as the calibration curve, measures how a probabilistic forecast agrees with the463

observation. The predicted probabilities are binned into groups and the observed event rate within each group is464

plotted. If the predicted probability agrees well with the observed rate, the points will be close to the diagonal of465

the plot (the line of perfect reliability). Such a forecast is known as reliable. Any forecast that produces predictions466

independent of flare activity has all its points close to the horizontal line at climatology. Such a forecast is referred467

to as one with no resolution. BSS provides a metric considering both reliability and resolution. Figure 6 shows an468

example of the plane on which the reliability diagram is drawn. The climatology rate is set to be 0.1. The overall469

BSS can be seen as a histogram weighted average of the contributions of the points on the reliability diagram. The470

contours are equal contribution lines. The points in the shaded area contribute positively to BSS. The dashed line471

with slope 1/2 is called the “no skill” line, the points on which have zero contribution to the overall BSS.472

A skill score profile plot shows how skill scores change as a function of the probability threshold. A high and flat473

profile is usually desired, as the method achieves high skill scores and the performance is robust to the changes of the474

threshold.475
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Figure 6: An illustration of the relation between the reliability diagram and BSS.

3.4. Paired t-tests476

To make sure that our claims based on comparisons are made with statistical significance, we perform hypothesis477

testing. In particular, we perform a one-sided paired t-test to test if there is an improvement induced by a treatment.478

Specifically, two competing hypotheses are formulated: the alternative hypothesis H1 claiming that the measurement479

with the treatment is higher than that without the treatment, against the null hypothesis H0 that states otherwise.480

Measurement pairs on n subjects are collected and formed into two vectors, x and y, with xi and yi denoting the481

measurements on the i-th subject with and without treatment, respectively. The t-statistic is calculated as follows:482

d = y − x (difference)483

d̄ =

∑n
i=1 di
n

(sample mean)484

s =

√∑n
i=1(di − d̄)2

n− 1
(sample standard deviation)485

t =
d̄

s/
√
n

(t-statistic)486

487

Under H0, it can be shown that t follows a Student-t distribution with degrees of freedom n− 1. Consequently, if the488

resulting t is associated with a right-tail p-value less than a threshold, called significance level and denoted as α, we489

can say that sufficient evidence has been observed to reject H0, in the sense that the probability of falsely claiming490

significant improvement when there is none will be no larger than α. Usually, α is set as a small probability such as491

0.05.492

In our case, the paired t-test is made possible by enforcing the same test set between the experiments to be compared.493

For example, in Section 4.1, to test if the treatment of adding SMARP data in the training set of SHARP will improve494

the predictor’s performance on the test set, we treat different test sets resulting from random sampling as subjects.495

For a given metric, pairs of measurements could be taken on the test set for models trained with and without SMARP496

data in the training set. The result of the paired t-test will tell us with statistical confidence if adding SMARP in the497

training set will be of any help in flare prediction.498

3.5. Interpretation of CNN499

Deep learning methods are the essential state-of-the-art in numerous tasks across various domains such as computer500

vision, natural language processing, speech processing, robotics, and games (see, e.g. He et al. 2016; Silver et al. 2016;501

Devlin et al. 2018). As of today, deep learning methodology remains to be a black box that lacks a general theory,502

raising concerns in transparency, accountability, and reliability. However, it is of particular significance to be able to503

provide interpretation when deep learning methodology is applied to make a scientific discovery. Over the years, many504

interpretation tools of neural networks have been proposed, revealing aspects of their underlying decision process.505

One way to interpret a black-box model, often referred to as “attribution”, is to see how different parts of the input506

contribute to the model’s output. An attribution method generates a vector of the same size as the input, with each507

element indicating how much the corresponding element in the input contributes to the model decision for that input.508

In the context of CNN, the attribution vector is a heatmap of the same size as the input image.509
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A multitude of attribution methods have been proposed for CNN in the task of image classification. One type510

of approach is perturbation-based methods, among which occlusion (Zeiler & Fergus 2014) is the most well-known511

method. Occlusion masks the input image with a gray patch at different locations and sees how much the prediction512

score of the ground truth class drops. The prediction score drop varies with location, forming a heatmap, with513

large values indicating the positions of the features important to the CNN’s correct prediction. One drawback of the514

occlusion method is that it is computationally expensive. Another drawback is that the attribution depends on the515

size and shape of the patch, which need to be tuned for sensible results. Therefore, this type of approach is not used516

in our work.517

Another type of approach is gradient-based methods, the basic idea being that the gradient of the predicted score of a518

certain class with respect to the input reveals the contribution of each dimension of the input. Saliency map (Simonyan519

et al. 2013), one of the earliest gradient-based methods, is simply the absolute value of the gradients. The intuition is520

that the magnitude of the derivative indicate which pixels need to be changed the least to affect the class score the most521

(Simonyan et al. 2013). Deconvolution Network (Zeiler & Fergus 2014) and Guided Backpropagation (Springenberg522

et al. 2015) modified the backpropagation rule of ReLU nonlinearity. Integrated Gradients (Sundararajan et al. 2017)523

integrated the gradients along the path from a reference image to the target image. Formally, the integrated gradient524

along the i-th dimension for an input x and a baseline x′ is525

Lci (x;x′) = (xi − x′i)×
∫ 1

α=0

∂Fc(x
′ + α× (x− x′))

∂xi
dα, (15)526

527

where Fc(x) is the model output for class c with input x. One desirable property of Integrated Gradients, known as528

completeness, is that the pixels in the attribution map add up to the difference of prediction scores of the target and the529

reference image, i.e., F (x)− F (x′). DeepLIFT (Shrikumar et al. 2017) and its gradient-based interpretation (Ancona530

et al. 2018) can be seen as the gradient with modified partial derivatives of non-linear activations with respect to their531

inputs. Grad-CAM (Gradient-weighted Class Activation Mapping) (Selvaraju et al. 2017) accredits decision-relevant532

signatures by generating a saliency map, highlighting pixels in the input image that increase the confidence of the533

network’s decision for a particular class. More formally, the Grad-CAM heatmap Lc for class c with respect to a534

particular convolutional layer is given by the positive part of the weighted sums of the layer’s activation maps Ak, i.e.,535

Lc = ReLU

(∑
k

αckA
k

)
, (16)536

537

with weights αck given by the spatial average of partial derivatives of the class-specific score yc with respect to the538

class activation map as539

αck =
1

Z

∑
i

∑
j

∂yc

∂Akij
, (17)540

541

where Z is a normalization constant. Intuitively, a class activation map is weighted more if the pixels therein make542

the CNN more confident to decide the input belongs to class c.543

In solar flare prediction, Yi et al. (2021) applied Grad-CAM to full-disk MDI and HMI magnetograms on CNNs and544

found the polarity inversion line is highlighted as an important feature by CNN. In this paper, we observe the same545

trend for the CNN trained on SHARP and SMARP. Taking a step further, we evaluated other attribution methods,546

providing a more complete view on significant features identified by modern attribution methods.547

4. RESULTS548

4.1. Does data from another solar cycle help?549

One major goal of this paper is to examine the utility of using SMARP and SHARP together. We set an experimental550

group and a control group and contrast their 24-hour “strong-vs-quiet” flare prediction performance. The control551

group consists of models that train, validate, and test exclusively on SHARP data. We refer to this type of dataset552

as SHARP ONLY. Compared to the control group, models in the experimental group have the training set enriched by553

SMARP data, while the validation and the test set are kept the same. We call this type of dataset FUSED SHARP. The554

only difference between SHARP ONLY and FUSED SHARP is that models using FUSED SHARP have access to data from a555

previous solar cycle in the training phase. Symmetrically, we design SMARP ONLY and FUSED SMARP to examine the556

utility that SHARP brought to SMARP. Specifically, the four types of datasets are generated as follows:557



16

Table 4: Sample sizes of the processed datasets

Train Validation Test

Positive Negative Positive Negative Positive Negative

SHARP ONLY 1774 1774 665 665 410 410

FUSED SHARP 5377 5377 1663 1663 410 410

SMARP ONLY 2849 2849 860 860 892 892

FUSED SMARP 5084 5084 1474 1474 892 892

Table 5: Test set performance of LSTM and CNN on 24-hour “strong-vs-quiet” flare prediction. The two datasets

within each comparison group share common test sets. The 1-σ error is calculated from 10 random experiments. Bold

fonts indicate the experiments in which the mean of the metric on the fused dataset is higher than that on the single

dataset.

Group 1 Group 2

Dataset FUSED SHARP SHARP ONLY FUSED SMARP SMARP ONLY

Model

ACC
CNN 0.906+/-0.036 0.922+/-0.017 0.901+/-0.028 0.877+/-0.031

LSTM 0.950+/-0.012 0.942+/-0.016 0.905+/-0.025 0.900+/-0.024

AUC
CNN 0.980+/-0.009 0.981+/-0.006 0.963+/-0.017 0.950+/-0.020

LSTM 0.990+/-0.004 0.986+/-0.004 0.966+/-0.015 0.963+/-0.015

TSS
CNN 0.812+/-0.071 0.843+/-0.034 0.802+/-0.056 0.754+/-0.061

LSTM 0.900+/-0.023 0.884+/-0.032 0.810+/-0.050 0.800+/-0.049

BSS
CNN 0.649+/-0.152 0.714+/-0.064 0.628+/-0.114 0.520+/-0.121

LSTM 0.799+/-0.036 0.775+/-0.047 0.626+/-0.107 0.586+/-0.108

1. Dataset SHARP ONLY: 20% of all the HARPs are randomly selected to form a test set. 20% of the remaining558

HARPs are randomly selected to form a validation set. The rest of the HARPs belong to the training set. In559

each split, negative samples are randomly selected to match the number of positive samples.560

2. Dataset FUSED SHARP: The test set and the validation set are the same with SHARP ONLY. The remaining HARPs561

and all TARPs are combined into the training set. In each split, negative samples are randomly selected to562

match the number of positive samples.563

3. Dataset SMARP ONLY: 20% of all the TARPs are randomly selected to form a test set. 20% of the remaining564

TARPs are randomly selected to form a validation set. The rest of the TARPs belong to the training set. In565

each split, negative samples are randomly selected to match the number of positive samples.566

4. Dataset FUSED SMARP: The test set and the validation set are the same with SMARP ONLY. The remaining TARPs567

and all HARPs are combined into the training set. In each split, negative samples are randomly selected to568

match the number of positive samples.569

The tally of samples produced by a particular random splitting and undersampling is shown in Table 4. On each of the570

four types of datasets, LSTM and CNN are fitted on the training set, validated on the validation set, and evaluated on571

the test set. We reiterate that LSTM uses 24-hour-long time series of parameters before the prediction period begins,572

whereas CNN uses the static point-in-time magnetogram right before the prediction period begins.573

Table 5 shows the results of the “strong-vs-quiet” active region prediction using LSTM and CNN. For LSTM, a574

consistent improvement on the fused datasets (FUSED SHARP and FUSED SMARP) is observed in terms of the mean of575

all metrics. This aligns with the fact that more data are typically desired to improve the generalization performance576



AASTeX v6.31 Sample article 17

Table 6: Paired t-tests for significant improvement of test set performance on the fused datasets as measured by differ-

ent metrics. The alternative hypothesis H1 claims that metric S on the fused dataset (FUSED SHARP or FUSED SMARP)

is greater than the respective single dataset (SHARP ONLY or SMARP ONLY), which is tested against the null hypothesis

H0 claiming otherwise. The bold font p-values are less than 0.05 and considered to be significant.

H1 SFUSED SHARP > SSHARP ONLY SFUSED SMARP > SSMARP ONLY

p-value t p-value t

Metric S Model

ACC
CNN 0.885787 -1.292359 0.001862 3.881137

LSTM 0.016544 2.514074 0.026797 2.219666

AUC
CNN 0.589845 -0.233881 0.001399 4.070352

LSTM 0.000459 4.842485 0.033930 2.074572

TSS
CNN 0.885787 -1.292357 0.001862 3.881135

LSTM 0.016544 2.514079 0.026796 2.219673

BSS
CNN 0.889419 -1.314583 0.000482 4.806837

LSTM 0.054812 1.775082 0.000099 6.014784

of deep learning models because they are overparameterized and can easily overfit on small datasets. For CNN, an577

improvement is observed on FUSED SMARP over SMARP ONLY, but not on FUSED SHARP over SHARP ONLY. This indicates578

that the lower image quality in SMARP has a negative effect on CNN’s performance.579

The statistical significance of the improvement on the fused datasets is tested using a one-sided paired t-test with580

significance level 95%. Table 6 shows the t-statistics and the associated p-values of the paired t-tests. The bold font581

p-values are less than 0.05 and considered to be significant. For LSTM, the fused datasets are better than the single582

datasets in a statistically significant way in almost all settings. The only exception is BSS on FUSED SHARP, whose583

p-value is only slightly larger than 0.05. For CNN, across all metrics, statistically significant improvement is observed584

for FUSED SMARP over SMARP ONLY, but not for FUSED SHARP over SHARP ONLY. This indicates that adding SHARP585

magnetograms into SMARP during training helps CNN to better predict flares, but not the other way around. One586

potential reason is SMARP magnetograms have a lower signal-to-noise ratio than SHARP magnetograms, which may587

have negatively affected CNN. The LSTM, on the other hand, uses the keyword metadata, which could suppress the588

effect of noise during summarizing magnetograms, providing information in a sufficiently good quality that does not589

offset the improvement induced by the increased training sample size.590

Aside from the numerical metrics, we provide graphical evaluation results for Group 1 (FUSED SHARP and SHARP ONLY)591

in Figure 7, and Group 2 (FUSED SMARP and SMARP ONLY) in 8. A trend of over-forecasting for high probabilities and592

under-forecasting for low probabilities is observed in some cases but such effect is minor considering the size of the593

error bars. In reliability diagrams, all models have points closer to the diagonal, indicating high reliability. In ROC594

plots, it is observed that LSTM achieves higher AUC on the fused datasets (FUSED SHARP and FUSED SMARP) than on595

the single datasets (SHARP ONLY and SMARP ONLY). For CNN, similar improvement is also observed in the comparison of596

FUSED SMARP and FUSED SHARP, whereas the ROCs are almost indistinguishable for FUSED SHARP and SHARP ONLY. In597

skill score profiles, the TSS for LSTM trained on fused datasets are at the same level as that trained on single datasets.598

For CNN, on the other hand, FUSED SHARP display an disadvantage against SHARP ONLY, whereas FUSED SMARP displays599

an advantage over SMARP ONLY. This verifies the observations made from metrics. In all cases, the skill score profiles600

are high and relatively flat, indicate the robustness of the performance to the change of thresholds within a wide range601

of the varying threshold.602

4.2. Does LSTM perform better than CNN?603

This section provides forecast verification to the LSTM and CNN. We use the same evaluation results for 10 experi-604

ments in each setting mentioned in Section 4.1, but present them in a way that makes it easier to compare LSTM and605

CNN. We note the differences between our verification set-up and that in an operational setting:606
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Figure 7: Verification plots on SHARP test data to compare models trained on FUSED SHARP and SHARP ONLY. Shown

in (a1) – (a3) are reliability diagram, ROC, and SSP for LSTM. Shown in (b1) – (b3) are the same plots but for CNN.

In each panel, the blue/orange curve is the test performance for the model trained on FUSED SHARP/SHARP ONLY. In

each graph, solid curves and error bars (or shaded area) indicate respectively the means and the standard deviations

calculated from 10 random experiments. In each reliability plot, the short horizontal bars indicate the number of

samples in each probability bin, and the two curves are separated horizontally to prevent error bars from overlapping.

1. In terms of data, the test set of our sort has lots of samples removed based on their active regions, observational607

data, and flare activities. About 1/5 of tracked active region time series in the evaluation period (May 2010 –608

December 2020) are selected. Within each active region series, only samples with good quality observation and609

certain flaring patterns are selected (detailed in Section 2.2). Negative samples (flare-quiet active regions) are610

significantly downsampled to match the number of positive samples (strong-flare-imminent active regions). In611

contrast, operational forecasts do not discard any sample unless absolutely necessary.612

2. In terms of outcomes, the forecast of our sort is independent for individual active regions, with the prediction613

result available every 96 minutes (i.e., MDI cadence) for valid active regions. In contrast, the end goal of an614

operational forecast is a full-disk forecast. For operational forecasts built upon active region based forecasts, the615

predictions for all active regions on the solar disk are aggregated to compute the full-disk prediction. In addition,616

operational forecasts are typically issued at a lower frequency (e.g., every 6 hours), but in a consistent manner.617

The verification results in this section should be interpreted with the above differences in mind.618

It can be seen from Table 5 that the LSTM generally scores higher than CNN in terms of mean performance. We619

performed paired t-test to validate this observation. The results in Table 7 confirm that LSTM scores significantly620

higher (p < 0.01) than CNN across all metrics on all datasets except for FUSED SMARP. On FUSED SMARP, although621

we cannot claim statistical significance, LSTM’s performance is slightly better or at the same level with CNN as is622

observed from Table 5.623
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Figure 8: Same as Figure 7 but for SMARP test data to compare models trained on FUSED SMARP and SMARP ONLY.

Table 7: Paired t-tests for significant improvement of LSTM over CNN in terms of different metrics S on the test set

of the four datasets. The alternative hypothesis H1 claims SLSTM > SCNN. The bold font p-values are less than 0.01

and considered to be significant.

Dataset FUSED SHARP SHARP ONLY FUSED SMARP SMARP ONLY

p-value t p-value t p-value t p-value t

Metric S

ACC 0.001442 4.050296 0.007142 3.028403 0.234866 0.754672 0.001079 4.245351

AUC 0.003757 3.429557 0.002527 3.682754 0.227978 0.779031 0.000743 4.501005

TSS 0.001442 4.050297 0.007142 3.028405 0.234865 0.754673 0.001079 4.245350

BSS 0.005296 3.213872 0.002645 3.653351 0.531965 -0.082481 0.005781 3.159315

We only present the graphical verification results for both models trained and tested FUSED SHARP, given that SHARP624

is widely used and validated by a wealth of studies. For the results on other datasets, the visualization can be obtained625

by simply rearranging the same results shown in Figure 7 and 8.626

The reliability diagram in Figure 9 shows that the probabilistic prediction given by LSTM is closer to the diagonal627

than CNN, and hence more reliable. The CNN exhibit a trend of under-forecasting especially when the predicted628

probability is less than 0.5. The histogram of predicted probability shows that probabilistic forecast by LSTM is629

“more confident”, or has higher resolution, than LSTM, with most of the predicted probabilities close to 0 or 1.630

The ROC in Figure 9 shows a clear advantage of LSTM over CNN, in the sense that it achieves a higher probability631

of detection with the same false alarm rate. This trend is also manifested in terms of AUC.632
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Figure 9: Verification plots of LSTM and CNN on FUSED SHARP. Shown are the reliability diagram, ROC, and SSP,

from left to right. This figure essentially extracts the blue curves (representing FUSED SHARP) in both rows of Figure

7 and overlaps them together.

The SSP in Figure 9 shows LSTM achieves higher TSS on average for all thresholds within 0.2–0.9. It is also observed633

that the TSS for LSTM is maximized by a threshold very close to the climatological rate on the test set (which is 0.5634

in our case), a necessary condition for a reliable predictor (Kubo 2019).635

At the end of this section, we introduce a new interactive visual verification tool that we found useful in diagnosing636

the performance of a probabilistic forecasting method. The reliability diagram provides a concise summary of a637

probabilistic forecast. However, when it comes to diagnosing the method, it is often desired to pinpoint specific638

samples that contribute to a pattern (e.g. over- and under-forecast) observed in the reliability diagram. To this end,639

we propose to use a new interactive graphical tool, which we call the sorted probability plot (Figure 10). Samples in the640

verification dataset are first grouped by labels and then sorted by the predicted probabilities by a reference predictor.641

If only one predictor is available, the reference is that predictor. If multiple predictions by a group of predictors are642

available, the reference can be any predictor in the group, or the average thereof. The sorted probability plot can be643

reduced to the reliability diagram by binning the vertical axis and assigning the proportion of the points on the right644

section in each probability bin as its corresponding observed event rate. Figure 10 shows examples of this type of plot.645

Since each sample is preserved in the sorted probability plot, we can directly identify, for example, the samples that646

CNN is unsure about (i.e., samples with predicted probability covering a large range), the positive samples that are647

detected by CNN but missed by LSTM (i.e., samples on the right section with large CNN probabilities but low LSTM648

probabilities), etc. Further inspection of those samples will provide insights on the strength or the weakness of the649

prediction method.650

4.3. Can CNN assist LSTM for a better prediction?651

In this paper, we only consider stacking methods to combine CNN and LSTM hoping for better predictive perfor-652

mance. We evaluate the test set performance of stacking methods using four different criteria:653

• CROSS ENTROPY: weights are optimized to minimize cross-entropy loss on the validation set.654

• BSS: weights are optimized to maximize BSS on the validation set.655

• AUC: weights are optimized to maximize AUC on the validation set.656

• TSS: weights are optimized to maximize TSS on the validation set.657

Among these criteria, cross-entropy and negative BSS are known to be convex; TSS is neither convex nor concave;658

we observe AUC to be concave but we do not have proof other than empirical evidence. Criteria HSS and ACC are659

excluded from the evaluation since their stacking weights are the same as that of TSS due to the perfect correlation660

mentioned in Section 3.3.661

To provide baseline performances, we include the evaluation results for the two base learners, LSTM and CNN. In662

addition to the above stacking methods, we consider two other meta-learning schemes:663
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Figure 10: Sorted probability plot of (a) LSTM and (b) CNN. Samples in SHARP ONLY are sorted first by labels and

then by the mean probability predicted by five models. An interactive version integrating both plots and sorted by

the average probability of LSTM and CNN is available at https://zeyusun.github.io/cv/sorted probability.html.

• AVG outputs the average of predicted probabilities of two base learners.664

• BEST (Džeroski & Ženko 2004) selects the base learner that performs the best on the validation set and applies665

it to the test set.666

Splitting and undersampling are randomly performed 10 times on each of the four datasets FUSED SHARP,667

FUSED SMARP, SHARP ONLY, and SMARP ONLY. The test set TSS of the 10 random experiments for each criterion on668

each dataset are summarized as box plots in Figure 11. The optimal stacking weights for the four stacking ensembles669

are summarized in Figure 12.670

Figure 11 shows that stacking methods perform slightly better than the BEST meta-learner, especially on FUSED SMARP671

and SMARP ONLY. Of note, the wide error bars are partially due to the randomness originated in data sampling. To672

fairly compare the methods, we perform paired t-tests with significance level 0.05. It turned out stacking is significantly673

better than BEST in the following three settings: BSS on FUSED SMARP (p = 0.048), AUC on SMARP ONLY (p = 0.025),674

and TSS on SMARP ONLY (p = 0.013).675

We also note in Figure 11 that BEST unsurprisingly achieves better performance than AVG but is slightly worse than676

the better performing base learner LSTM, most noticeably on FUSED SHARP. In fact, BEST decided that CNN is the better677

model in 3 out of 10 experiments on FUSED SHARP. This is not unexpected because the “best” model on the validation678

set is not necessarily the best on the test set.679

From Figure 12, we can see that α is greater than 0.5 in most experiments, with the median falling between 0.55 and680

0.9 in all settings. This suggests that stacking ensembles generally depend more on LSTM than on CNN. The variance681

of α is large in some settings, especially for the AUC on FUSED SMARP. The variance of convex criteria (CROSS ENTROPY682

and BSS) is not smaller than that of nonconvex criteria (TSS), indicating that the local minima of non-convex loss683

functions is not the major source of variance. We suspect the major source of the variance comes from the data sampling684

https://zeyusun.github.io/cv/sorted_probability.html
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Figure 11: Test set TSS for base learners and meta-learners using different criteria.

Figure 12: Stacking weight α fitted using different criteria on different datasets. All 10 values of α in an experiment

setting are shown as points next to the corresponding box.

bias among experiments, which is, in turn, a collective consequence of the insufficient sample size, heterogeneity across685

active regions, and possibly a small amount of information leakage because the validation set is used both in the686

validation of base learners and the training of the meta-learner.687

We inspect one experiment of stacking with criterion TSS and the results are presented in Figure 13. Figure 13688

(a1)–(a3) show the predicted probabilities by LSTM and CNN of each instance in the training, the validation, and689

the test set. The points are colored by their labels, with red representing the positive class and blue representing the690

negative class. The green solid line in (a2) and (a3) shows the decision boundary by the meta-learner with α fitted on691

the validation set to maximize TSS. The points (p, q) on the upper right side of the boundary are classified as positive692

because they satisfy r = αp+(1−α)q > 0.5. In this experiment, the fitted α = 0.384, suggesting the stacking ensemble693

relies more on the CNN than on the LSTM. The violet dashed line in (a3) is the decision boundary with α fitted on694

the test set, and hence can be seen as the oracle. It can be observed that the distribution of predicted probabilities695

on the validation set (a2) and the test set (a3) are similar but not exactly the same, which explains the difference696

between the estimated α and the oracle α. The distribution of predicted probabilities on the training data in (a1),697

on the other hand, looks completely different, with CNN achieving almost perfect separation. In fact, CNN overfitted698

on the in-sample data, as indicated by a significantly lower positive recall rate in (a2) and (a3). This validates the699

decision that meta-learners should not be fitted on the predicted probabilities of the same data used to train the base700

learners.701

Figure 13(b) inspects the optimization process of the same experiment, in which the TSS is calculated on the702

validation set (a2) and the test set (a3) by scanning a fine grid of α ∈ [0, 1] with resolution 0.001. The green line is703

the α that maximizes the validation TSS curve, which equals 0.384. It is indeed observed the TSS is not convex with704

respect to α. In fact, the test set TSS has a lot of local maxima across a wide range of α. Still, its trend can be705

roughly estimated by the validation set TSS, and its value at the estimated α is higher than both ends of the curve,706

indicating an improved performance over any of the two base learners.707
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(a1) Train set (a2) Validation set (a3) Test set (b) Optimization of TSS

Figure 13: (a1)–(a3): CNN predicted probability (y-axis) vs. LSTM predicted probability (x-axis) for the train,

the validation, and the test set. The green solid line in (a2) and (a3) is the decision boundary of the ensemble with

meta-learner fitted on the validation set. The violet dashed line in (a3) is the same as the green line but fitted on the

test set, and hence can be seen as the oracle. (b): TSS on the validation and the test set as functions of α. The green

line shows the α that maximizes the validation TSS. The TSS on the left end with α = 0 show the TSS of CNN, and

the TSS on the right end with α = 1 show the TSS of LSTM.

4.4. What image characteristics can CNN inform?708

We use visual attribution methods to extract flare-indicative characteristics of magnetograms from trained CNNs.709

First, we use synthetic images to examine patterns that contribute to a positive decision of CNN. The results of710

synthetic images help us understand better the attribution maps of real magnetograms. Then, we apply visual711

attribution methods to image sequences of selected active regions that transition from a flare-quiescent state to a712

flare-imminent state. Setting the baseline to the first image in the sequence gives a time-varying attribution map that713

tracks magnetic field variations that contribute to the change in the predicted probability.714

4.4.1. Synthetic image715

We generate bipolar magnetic regions (BMR) used in Yeates (2020). Following that paper’s notation, a location in716

the Heliographical coordinate system is denoted as (s, φ), where s denotes sine-latitude and φ denotes (Carrington)717

longitude. A BMR is represented as a scalar function of location, parameterized by amplitude B0, polarity separation718

ρ (in radian), tilt angle γ (in radian) with respect to the equator, and size factor a. The untilted BMR centered at719

origin has the form720

B(s, φ) = −B0
φ

ρ
exp

[
−φ

2 + 2 arcsin2(s)

(aρ)2

]
. (18)721

722

We follow Yeates (2020) and fix a to be 0.56 to match the axial dipole moment of SHARP.723

We sweep a grid of B0, ρ, and tilt angle γ to generate a BMR dataset. We are interested in those images that are724

considered to be positive by CNN. Figure 14 shows some examples of them and their attribution results, from which725

patterns of positive predictions can be summarized. Guided Backpropagation heatmaps have both poles highlighted726

with the signs matching the polarities. Integrated Gradients produces heatmaps that are more concentrated to polarity727

centers and attribute more credits to the negative polarities. DeepLIFT produces similar heatmaps to those by728

Integrated Gradients. Grad-CAM’s results are not as interpretable as the above methods. They seem to avoid the729

polarities and highlight the background and sometimes the polarity inversion lines.730

4.4.2. The emergence of preflare signatures in the active region evolution731

We focus on the attribution results on SHARP as opposed to SMARP because the former has magnetograms of higher732

resolution and better quality. We choose the CNNs that are trained on SHARP ONLY as opposed to FUSED SHARP because733

the former is observed to generalize better in Section 2. To get results that reflect the generalization performance, we734

need to make sure that active regions of interest are out-of-sample, i.e., in the test set. To evaluate any active region of735

interest in SHARP, we perform 5-fold cross-validation on SHARP ONLY, so that every active region is associated with a736

CNN that has never seen the active region in training. In addition, we do not enforce the flare-based sample selection737

rule and random undersampling, so that any active region magnetogram of good quality is included in this study. Of738

note, attribution methods in this study act in a frame-by-frame manner. Integrated Gradients and DeepLIFT require739
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Figure 14: Examples of synthetic bipole images and attribution maps.

a reference image, which we select as the first image in the sequence. No other temporal information is exploited by740

these attribution methods.741

As case studies, we consider four HARP sequences that transition from a flare-quiescent state to a flare-imminent742

state. The HARP numbers and the associated NOAA AR active region numbers are: HARP Figure 15 shows the743

labels and predicted probabilities of the four sample sequences.744

Figure 16 shows the last image of the four HARP sample sequences. The attribution maps of the same size as the745

input of the CNN (128× 128 pixels) are upsampled to the original resolution of the SHARP magnetogram using the746

resize method in the Python package skimage.transform with 2nd-order spline interpolation. The attribution maps747

of DeepLIFT and Integrated Gradients are similar. As such, only the results of the former are shown. The results for748

Integrated Gradients can be accessed online with the link shown in the caption.749

In Figure 16, the attribution maps of Guided Backpropagation are observed to be more concentrated in strong fields750

compared to that of Deconvolution. The reference image of DeepLIFT and Integrated Gradients are chosen as the first751

sample in each sequence. From these two methods, the change of the prediction scores is attributed to the change of752

magnetic configuration of the last frame relative to the first frame, with red pixels indicating positive contribution and753

blue pixels indicating negative contribution. Since the predicted event probability of the last frame is higher than the754

first frame for all HARPs (Figure 15), the red pixels outweigh the blue pixels in the attribution maps of DeepLIFT and755
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Figure 15: CNN predictions of part of time series of in HARP 384, 1806, 5107, and 5982. The labels are shown as
blue open boxes and predicted probabilities as green plus symbols. The point-in-time instance is labeled as positive if

an M1.0+ flare occurred in the future 24 hours in that active region. GOES flare events during and 24 hours within the

sample sequence are shown as short vertical bars, with y-coordinates indicating flare intensities (peak flux in W/m2)

on a log scale.

Integrated Gradients. The Grad-CAM results roughly reveal the position of the strong fields and polarity inversion756

lines.757

Figure 17 shows the contour plots of attribution maps overlaid on magnetograms of the four HARP series. The758

contours enclose areas with large absolute values of Integrated Gradients in the last frame of each series, with red/blue759

contours indicating the region contributing positively/negatively to the increase in predicted probability. A general760

pattern is that the flux is emerging in red contours and canceling in blue contours. From the attribution maps, we can761

explain the increase in prediction scores as the consequence of the emerging flux outweighing the canceling flux. In762

Figure 17(d), it is interesting to note that the emerging polarity inversion line in the penumbra of the leading polarity763

(on the right/west part of the active region) is picked up as a preflare signature by the largest red contour. However,764

this PIL is actually an artifact of magnetogram due to the projection effect when the magnetic vector’s inclination765

relative to the line-of-sight surpasses 90◦ (Leka et al. 2017). This effect is significant at the end of the HARP 5982766
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Figure 16: Attribution results of Deconvolution, Guided Backpropagation, DeepLIFT, and Grad-CAM on the last

magnetogram in the sample sequences of HARP 384, 1806, 5107, and 5982. DeepLIFT chooses the first sample in

the sequence as the reference. “LayerGradCam-4” means Grad-CAM with respect to the output of the fourth, or the

second to last, convolutional layer. The interactive movie of heatmaps on all 9 samples in HARP 5982 using more

attribution methods can be accessed at https://zeyusun.github.io/attribution/captum movie first.html.

series. The magnetic field is highly inclined in the penumbra of the leading polarity as the flux rope is elevating from767

the surface the on the limb of the solar disk (Figure 18). This shows that the CNN trained to associate magnetogram768

and flaring activities is not able to discern the polarity artifact by itself. This suggests that the model could be769

potentially improved if we feed the location information to the model to help CNN correct such artifact.770

https://zeyusun.github.io/attribution/captum_movie_first.html
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(a)

(b)

(c)

(d)

Figure 17: Highly attributed pixels in the last frame by Integrated Gradients on four select HARPs shown in rows.

In (a), the left/right panel shows the first/last magnetogram in the sample sequence of HARP 384. The magnetograms

are in the SHARP resolution, with ticks on the axes indicating pixels. Pixel values saturate at ±500 Gs. The red/blue

contours on the right panel (last frame) highlight the areas with strong positive/negative Integrated Gradients relative

to the first frame. The same contours are mapped to the left panel (first frame) for contrast. The contours are drawn

on the attribution map smoothed with a Gaussian kernel with a standard deviation of 3 pixels. Figures in (b), (c),

and (d) are similar to (a) but for other HARPs. The movies showing the entire samples sequence of can be accessed

at, e.g., https://zeyusun.github.io/attribution/contours/5107/contour movie.gif for HARP 5107.

https://zeyusun.github.io/attribution/contours/5107/contour_movie.gif
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(a) HMI magnetogram (b) AIA 171 Å image

Figure 18: Line-of-sight magnetic field (a) and coronal image (b) of HARP 5982 (NOAA AR 12423) at 23:10:17

on Sep 27, 2015. Images are taken from https://solarmonitor.org/. Note that the image title of (b) should be “AIA

171 Å” instead of “AIA 174 Å”.

5. CONCLUSIONS AND DISCUSSION771

In this paper, we took advantage of a recently published dataset (Bobra et al. 2021) and examined the improvement772

in the flare predictive performance of two deep learning models, LSTM and CNN, when trained on the fused datasets.773

When tested on SMARP, both models showed significant improvement. When tested on SHARP, LSTM showed774

significant improvement. The results of the controlled comparative studies indicate such an improvement is due to the775

significantly increased sample size from the other solar cycle. Then, in our setting of flare prediction, we verified the776

performance of LSTM and CNN using skill scores, reliability diagrams, ROC, and skill score profiles. The comparison777

showed that LSTM is generally a better model than CNN. After that, we explored the possibility of combining LSTM778

and CNN for a better prediction performance in the framework of a meta-learning paradigm called stacking. The779

results showed that in some settings, the stacking model outperforms the best member in the ensemble. Lastly,780

we applied visual attribution methods to CNN. The results demonstrate the utility of visual attribution methods in781

identifying flare-related signatures in active regions, including the flux emergence and new polarity inversion lines. The782

attribution map on one particular region on the limb of the solar disk revealed one limitation of CNN and suggested783

potential modifications for improvement.784

The questions raised in Section 4 are arguably broad and general. We have taken one particular path to partially785

address each question. To inspire future studies, we provide additional comments and discussions related to these786

questions.787

Does more data help flare prediction? —We took a straightforward approach to add the new data in the training set788

and train the models as usual. Based on our experiments, this simple approach generally brings an improvement in789

flare prediction performance. However, such improvement is not observed for CNN when the additional magnetogram790

dataset comes from SMARP. Except for the difference in magnetogram quality, the way we fuse the two datasets could791

also be a reason for the performance decrease, which will be discussed in the next paragraph. We also note a slightly792

more advanced idea inspired from transfer learning (see, e.g., Weiss et al. 2016, for a survey): train on the additional793

data first, then switch to the original data. A brief experiment did not demonstrate the improvement, so this direction794

is not pursued. The SMARP dataset is the best effort the HMI team has made so far to extend the SHARP dataset795

backward for a solar cycle. The additional data could bring a broader impact, under the condition that the differences796

between the two databases are well accounted for.797

https://solarmonitor.org/
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On the fusion of data derived from MDI and HMI —There are exciting ongoing efforts in image super-resolution that798

transforms the MDI magnetograms to high-resolution HMI-style magnetograms (Shneider 2019; Jungbluth et al. 2019).799

By doing that, we do not have to compromise the image quality of SHARP magnetograms to make them useable with800

SMARP magnetograms. Rather, we can super-resolve SMARP magnetograms. The improved overall image quality801

will potentially retain more details of the active region and assist the discovery of flare precursors.802

On problem setting and dataset design for flare prediction —Our setting of flare prediction is somewhat unique: a balanced803

classification problem that discriminates active regions that produce at least one flare of size greater than M1.0, from804

active regions that remain quiet within ± 24 hours from the flare issuance. The motivation of this problem setting is805

that we are trying to make the learning process as easy as possible, so that models can really learn something rather806

than being confused by extreme class imbalance ratio and complex flaring patterns. On the flip side, this setting has807

to be changed if we are going to apply the model in an operational setting.808

Performance comparison between LSTM and CNN —The keywords used by LSTM are derived from magnetograms. In809

that sense, the data used by CNN contains complete information of the data used by LSTM. However, our experiments810

show that LSTM generally has better performance. There are many potential reasons that CNN does not perform811

better than, or as well as LSTM: (1) CNN takes in uniformly sized images whose size and aspect ratio are distorted.812

(2) CNN only uses the image of the last frame, whereas LSTM uses historical data; (3) CNN learns the features by813

itself, wheres LSTM uses hand-crafted parameterizations that are known to be relevant to flaring activity; (4) CNN814

uses subsampled images with information loss, whereas parameters are derived from full resolution images; (5) CNN815

has more parameters and more prone to overfitting (which reflects on the lower training loss but not validation loss of816

CNN in many experiments).817

On flare forecast verification —(1) Interpretation of the predicted probabilities. Unlike mechanistic models, the probability818

reported by neural networks is not physically grounded, but purely a statistic learned from the data distribution. A819

consequence of this is that we are allowed to adjust the categorizing threshold for the probability in favor of any820

skill score of interest. (2) A new graphical verification tool. In addition to the widely used graphical tools of ROC,821

Reliability Diagram, and SSP, we advocate the use of sorted probability plot in flare forecast verification for richer822

information. A plot of this type not only reveals (overall) characteristic patterns as a whole, but also preserves the823

information of each individual sample. When integrated with interactive features, these plots are powerful tools to824

pinpoint, either attribute or blame, samples to a certain global pattern. (3) Methodical comparison. For meaningful825

results, models should be compared with the same evaluation dataset. Paired t-test should be used to claim if a model826

is better than others. This is the reason that all comparisons in this paper are made among the experiments, and no827

skill scores by other research are quoted or compared.828

On stacking —In our experiments, stacking performs similarly to the “select best” strategy but not significantly better829

in most settings. However, Guerra et al. (2020) observed most ensembles achieved a better skill score (between 5% to830

15%) than any of the members alone. We think the difference is that they consider more base learners, some of which831

involve human intervention, whereas we consider only two base learners, both of them machine learning models. On832

the positive side, stacking is noticeably better than average, which aligns with Guerra et al. (2020)’s observation. A833

promising direction is to incorporate other meta-features, so that the meta-learner is able to assign different weights834

to base learners in different situations.835

Choice of the baseline in attribution methods —Some visual attribution methods require reference input, such as Integrated836

Gradients and DeepLIFT. One naive choice is an image with all values equal to zero. Images of this sort imply a lack837

of pattern. These are the baselines mostly used for interpretation in computer vision tasks like object detection. In838

our case, the images are magnetic field component measurements, which can take on positive or negative values and839

a wide dynamic range, unlike normal images in real life. We choose the first image in the sequence as the reference,840

so that the visual attribution methods can attribute the change of prediction scores to the change of magnetic field841

configuration, which is of actual interest. There are other choices of baselines. One example is input images with842

Gaussian noise. Using this type of reference may recover the sensitivity of the network’s prediction to local changes.843

Also, the integration can take a different path other than simply linearly interpolating the reference and the input844

on the original image space, i.e., the 2D cartesian plane. A natural choice of path is the time series of active region845

magnetogram. The Riemann sum to approximate the path integral should be sufficiently accurate since the SHARP846

has a cadence of 12 minutes and the change in the magnetogram appears to be continuous. The Integrated Gradients847
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calculated with this approach have a temporal dependency on each point-in-time in the sequence and could reveal848

more information of the evolution.849

The authors would like to thank K. D. Leka for valuable discussions on the polarity artifacts of the line-of-sight850

component of the photospheric magnetic field.851
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APPENDIX987

(a) Input image (b) Grad-CAM overlaid (c) Grad-CAM map for CNN
trained on FUSED SHARP

(d) Grad-CAM map for CNN
trained on SHARP ONLY

Figure 19: Grad-CAM visualization for positive class for CNNs. Shown are representative flaring active regions

correctly detected by the CNN trained on FUSED SHARP but missed by the CNN trained SHARP ONLY.
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