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Abstract

Wildfire is an important but understudied natural hazard. Research on wildfire, as with other natural hazards, is all too

often conducted at a spatial scale that is too broad to identify local or even regional patterns. This study addresses these

research gaps by examining the current and future wildfire risk, considering projections of population and property value, at

the census-block level in Louisiana, a U.S. state with relatively dense population and abundant timber resources that would be

vulnerable to loss from this hazard. Here wildfire risk is defined as the product of vulnerability to the hazard (which is itself

defined as the product of burn probability, damage probability, and percent damaged) and exposure to the hazard, the latter

of which is represented here by property value. Historical data (1992-2015) suggest that the highest risk is in southwestern

inland, east-central, extreme northwestern, and coastal southwestern Louisiana. Based on existing climate and environmental

model output, this research assumes that wildfire will increase by 25 percent by 2050 in Louisiana from current values. When

combined with projections of population and property value, it is determined that the geographic distribution of risk by 2050

will remain similar to that today-with highest risk in southwestern inland Louisiana and east-central Louisiana. However, the

magnitude of risk will increase across the state, especially in those areas. These results will assist environmental planners in

preparing for and mitigating a substantial hazard that often goes underestimated.
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Abstract 

Wildfire is an important but understudied natural hazard. Research on wildfire, as with other 

natural hazards, is all too often conducted at a spatial scale that is too broad to identify local or 

even regional patterns. This study addresses these research gaps by examining the current and 

future wildfire risk, considering projections of population and property value, at the census-block 

level in Louisiana, a U.S. state with relatively dense population and abundant timber resources 

that would be vulnerable to loss from this hazard. Here wildfire risk is defined as the product of 

vulnerability to the hazard (which is itself defined as the product of burn probability, damage 

probability, and percent damaged) and exposure to the hazard, the latter of which is represented 

here by property value. Historical data (1992–2015) suggest that the highest risk is in 

southwestern inland, east-central, extreme northwestern, and coastal southwestern Louisiana. 

Based on existing climate and environmental model output, this research assumes that wildfire 

will increase by 25 percent by 2050 in Louisiana from current values. When combined with 

projections of population and property value, it is determined that the geographic distribution of 

risk by 2050 will remain similar to that today – with highest risk in southwestern inland 

Louisiana and east-central Louisiana. However, the magnitude of risk will increase across the 

state, especially in those areas. These results will assist environmental planners in preparing for 

and mitigating a substantial hazard that often goes underestimated. 
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INTRODUCTION 

Although weather-related disasters cause extensive and rapidly increasing damage worldwide, 

efforts to understand the holistic risk from these hazards are still in progress. While a growing 

amount of research is focusing on assessing risk due to flood, hurricane, tornado, and extreme 

weather events, the wildfire risk is lesser-studied and often limited to the regions that are more 

susceptible to extreme economic loss. Because wildfire is a critical ecosystem process influenced 

by a combination of natural and human factors (Lasslop and Kloster 2017), and because its 

presence and intensity can be modified by climate change (Piñol et al. 1998; Malamud et al. 

2005; Mokhov et al. 2006; Cannon and DeGraff 2009; Flannigan et al. 2009; Marlon et al. 2009; 

Moritz 2012; Enright and Fontaine 2014) it must be considered in environmental risk 

assessment. Most of the existing wildfire research in the U.S.A. focuses on the West, as it is the 

major wildfire vulnerability area (Cannon and DeGraff 2009; Ager et al. 2013; Dennison et al. 

2014; Holden et al. 2018; Ager et al. 2021). The historical record shows that the western U.S.A. 

has generally experienced increasing wildfire frequency and intensity over time (Running 2006; 

Westerling et al. 2006; Dennison et al. 2014; Higuera et al. 2015; Abatzoglou and Williams 

2016; Westerling 2016; Holden et al. 2018). Despite earlier research that suggested that wildfire 

occurrence in Mississippi had decreased since the 1920s (Grala and Cooke 2010), the volume of 

wildfire risk-related research on the U.S. Southeast deserves more attention, especially because 

of the droughts in recent years (Schubert et al. 2021), dense population, and high probability of 

risk from other wildfire-related hazards. Louisiana is particularly understudied regarding 

wildfire.  

The impacts of wildfire are three-fold: environmental, health, and property. In recent decades, 

environmental research has emphasized the importance of studying wildfire dynamism, 

variability, and the factors affecting them at the regional level (Morgan et al. 2001; Vázquez et 

al. 2002; Cleland et al. 2004; De la Riva et al. 2004; Schoennagel et al. 2004; Malamud et al. 

2005; Moreira et al. 2009; de Zea Bermudez et al. 2010; Aldersley et al. 2011; Strydom and 

Savage 2017; Colantoni et al. 2020), in part because climate change implications on ecosystems 

(Davis et al. 2019) present unique challenges for hazard management in each wildfire-regime. 

Regarding human health impacts, Louisiana has been found, along with Florida and Georgia, to 

be most affected by hospital admissions and premature deaths due to wildfire events in the 

U.S.A. (Fann et al. 2018), in addition to generally unhealthy conditions due to wildfire-related 

smoke (Kaulfus et al. 2017; Sorensen et al. 2021). Fann et al. (2018) showed a map that suggests 

that PM2.5 concentrations in Louisiana attributed to wildfire exceeded that of any other state 

except California in 2008. From a property loss perspective, wildfire impacts have been 

substantial, especially at the wildland–urban interface (WUI; Radeloff et al. 2005) – the area 

where development meets wildland vegetation. Ina holistic cost/benefit or “hedonic” approach, 

Hansen et al. (2014) found a negative effect of wildfire on property values in California, 

Colorado, and Montana, with less conclusive evidence from research based elsewhere in 

Colorado and in Alaska. Further work showed that home prices and sales rates in the Front 

Range of Colorado are influenced by wildfire risk and risk perceptions (McCoy and Walsh 

2018). Other research has examined the impacts of wildfire risk on residential property values in 

the Netherlands (Magnée 2020). Property damage in northeastern Florida due to wildfires in the 

El Niño year of 1998 was estimated at $10−12 million (Butry et al. 2001). And more recently, 

programs like FireSmart (Ergibi and Hesseln 2020) provide homeowners in the WUI with 

information to make more informed decisions for protecting their property from the wildfire 
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hazard. However, few if any Louisiana-based studies exist on the topic of wildfire and property 

losses. 

This paper presents a census-block-level property risk assessment for wildfire in Louisiana, 

U.S.A. Community level wildfire risk analysis is necessary to improve wildfire mitigation 

planning (Ager et al. 2015). The three primary objectives are to: 1) characterize the historical 

wildfire burn probability; 2) project the future wildfire burn probability; and 3) assess the future 

property loss in Louisiana due to wildfire, considering anticipated changes to climate and 

population. Integration of natural and social science approaches as shown in the three objectives 

here are needed to understand more fully the risk of wildfire, especially in light of climate 

change concerns (Ayres et al. 2016). The results will benefit foresters, property owners, and 

mitigation specialists within and beyond Louisiana as they seek new and improved ways to 

characterize and prepare for the wildfire hazard. 

BACKGROUND 

A wildfire is combustion in a natural setting, marked by flames or intense heat, ranging in 

coverage from less than 20 hectares to over 3 million hectares. Over the period from 2007 to 

2016, an annual average of 1,431 wildfires burned 14,950 acres of forestland in Louisiana, with 

most of these fires caused by arson or carelessness/negligence committed by people, exacerbated 

by human confrontation with nature (Louisiana Department of Agriculture & Forestry (LDAF) 

2021). Likewise, lightning was found to be a minor cause of wildfire in Mississippi compared to 

anthropogenic causes (Grala and Cooke 2010). Using the customary categorization of U.S. 

wildfires as large (> 300 acres) or small (< 300 acres), Louisiana wildfires tend to be small, 

averaging about 10 acres in size (LDAF 2021). At the WUI, both vegetation and the built 

environment provide fuel for fires. Wildfire does not include prescribed burns (Penman et al. 

2020) or fires started in a building. 

Natural and human-prescribed fire is often healthy (Hamilton and Salerno 2020; Hood et al. 

2020). Fire restores nutrients to the soil and provides new niches while often leaving native 

species unharmed or resilient to the disturbance, in general (Binkley et al. 2007) as well as in 

Louisiana (Jones and Chamberlain 2004; Haywood 2011; Simmons and Bossart 2020). In 

addition, fire is also useful at combatting pests, diseases, and fungal growth, allowing for the 

post-fire regrowth to establish hardier individuals. Frequent fire return intervals have been found 

to be effective means of maintaining ecosystems in Louisiana (Haywood et al. 2000; Drewa et al. 

2002; Stambaugh et al. 2011; Yeldell et al. 2017).  

Wildfire can also be a substantial hazard, including in Louisiana. As development near the WUI 

continues, more natural ecosystems, people, and property are exposed to wildfire danger 

(Theobald and Romme 2007). Aside from the obvious impacts of habitat destruction and 

potential loss of food supply, documented impacts of wildfires to ecosystems in Louisiana 

include weakened ecosystem resilience in salt marshes (Jones et al. 2020).  

The Keetch-Byram Drought Index (KBDI; Pharo and Croom 1971), which is calculated based on 

observed or simulated changes in maximum temperature and precipitation, has been used 

frequently to assess wildfire vulnerability (e.g., Liu et al. 2009; Gannon and Steinberg 2021). 

The KBDI is scaled to suggest the number of millimeters of precipitation that would be required 
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to saturate the soil (i.e., reduce the KBDI to zero). Values from 0 to 200 indicate minimal 

wildfire threat, with values of 200 to 400 suggesting that the lower litter layer is drying and 

beginning to be susceptible to drought. Values from 400 to 600, which are more typical of late 

summer and early autumn, indicate a moderate burn potential. Values of 600 to 800 are 

associated with more severe drought and active potential for burning.  

Several studies have evaluated wildfire probability with the goal of anticipating future losses, 

understanding migration and adaptive capacities, and avoiding losses due to increased frequency 

and intensity. Li et al. (2009) used an artificial neural network approach for modeling the impact 

of population density and weather parameters such as average relative humidity, wind velocity, 

and daily sunshine hours to forest fire risk in Japan. Thompson et al. (2013) introduced a 

polygon-based spatially explicit burn probability model to assess exposure of resources and 

assets to wildfire. Incorporating both natural and anthropogenic ignitions, Ager et al. (2013) 

proposed a wildfire simulation model which characterizes potential wildfire behavior in terms of 

annual burn probability and flame length by analyzing a set of social and ecological parameters 

in the Oregon and Washington national forests. Ager et al. (2014) examined the spatiotemporal 

patterns of the wildfire occurrence in Sardinia, Italy, and characterized the outcomes of both the 

probability of ignition and large fire in terms of weather, land use, anthropogenic features, and 

time of year. Based on wildfire likelihood and intensity over the 1992 to 2010 period, Dillon et 

al. (2015) developed a broad-scale wildfire potential map for the contiguous U.S.A. that can be 

used to analyze wildfire threat or risk to structures or power lines. To assess wildfire risk 

probability, Short et al. (2016) created national burn probability (BP) and conditional fire 

intensity level (FIL) estimates at a 270-m grid resolution over the contiguous U.S. using the U.S. 

Forest Service Missoula Fire Sciences Laboratory’s geospatial Fire Simulation system (FSim), 

which includes scenarios for generating wildfire-conducive weather, wildfire occurrence, fire 

growth, and fire suppression. Based on the minimum travel time algorithm, Alcasena et al. 

(2016) developed a fire simulation model to analyze the wildfire exposure of highly valued 

resources and assets in a 28,000 ha area in central Navarra, Spain. Bui et al. (2017) generated a 

GIS-based novel hybrid artificial intelligence approach to model spatial susceptibility of the 

wildfire hazard in the central highland forest region of Vietnam. Papakosta et al. (2017) built a 

probabilistic model for predicting wildfire housing loss at the mesoscale (1 km2) level 

using Bayesian network analysis, enabling the construction of an integrated model based on 

causal relationships among the influencing parameters jointly with the associated uncertainties. 

Hong et al. (2019) predicted the spatial pattern of wildfire susceptibility in Huichang County, 

China, by using the integrated probabilistic “weights-of-evidence” and knowledge-based 

“analytical hierarchy process” models. Jaafari et al. (2019a) developed a wildfire prediction 

model incorporating ten geophysical and climatological parameters to investigate the spatial 

distributions of wildfire probabilities from 32 fire events at the Zagros ecoregion of Iran. In 

recent years, use of rigorous data interpretation techniques such as geographical information 

systems (GIS), and statistical and machine learning approaches have resulted in various 

prediction models of wildfire probability (Preisler et al. 2004; Catry et al. 2010; Bui et al. 

2017; Tutmez et al. 2018; Jaafari et al. 2018, 2019a, 2019b; Hong et al. 2019). This paper will be 

the first to project the future property loss at micro-scale (census block level) in Louisiana 

considering the historical wildfire occurrence and damage data, climate, and population change.    

https://www.sciencedirect.com/science/article/pii/S0301479719305845#bib45
https://www.sciencedirect.com/science/article/pii/S0301479719305845#bib45
https://www.sciencedirect.com/science/article/pii/S0301479719305845#bib48
https://www.sciencedirect.com/science/article/pii/S0301479719305845#bib21
https://www.sciencedirect.com/science/article/pii/S0301479719305845#bib13
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STUDY AREA 

Louisiana is selected as the focus of this research for several reasons. First, the state lies in an 

area that, despite abundant rainfall, can be subjected to periods of drought (Bushra et al. 2019) 

and therefore wildfire. These wildfires can have disproportionate impacts because of the heavy 

reliance of wet-environment land uses, such as rice farming, industrial applications, and 

recreation. Second, as will be shown later in this manuscript, these periods of wildfire are 

expected to increase in frequency in the future in Louisiana as in much of the rest of the United 

States. Third, the state is relatively densely populated, particularly compared to most of the 

wildfire-vulnerable Western U.S., causing anthropogenic activity to contribute substantially to 

the hazard and human impacts of the hazard to be intensified. And fourth, in recent years 

Louisiana has ranked first among U.S. states in acreage harvested for short rotation woody crops 

in the last two agricultural censuses in 2012 and 2017 (United States Census of Agriculture 2017, 

Table 36, p. 617), making it vulnerable to economic loss due to wildfire.  

DATA 

Because wildfire outside but near Louisiana can endanger the state, a 50-km buffer to include 

adjacent Texas, Arkansas, and Mississippi is analyzed along with Louisiana. To address the first 

objective – characterizing the historical wildfire probability – historical wildfire occurrence data 

from 1992 to 2015 from Short (2017) and large wildfire burn probability from Short et al. (2020) 

are used. The second objective – projecting the future wildfire probability – relies on information 

from the fourth National Climate Assessment (U.S. Global Change Research Program 

(USGCRP) 2017). USGCRP (2017) follows the method of the Intergovernmental Panel on 

Climate Change (IPCC) by running fossil fuel emission scenarios termed “representative 

concentration pathways” (RCPs), with the scenarios numbered based on the amount of radiative 

forcing (in W m-2) anticipated in the year 2100, such that RCP8.5 is the most severe scenario. As 

in the vast majority of contemporary climate change-based research, the model results using the 

RCPs are based on the Climate Model Intercomparison Project (CMIP). Results from IPCC’s 

fifth assessment report are available in USGCRP (2017). Other scenarios account for changes in 

economic growth, environmental values, globalization, and regionalization.  

To address the objective of assessing the future property loss in Louisiana due to wildfire 

considering anticipated changes to climate and population, Louisiana census-block shapefiles are 

downloaded from the U.S. Census Bureau (2010). Likewise, population projections are based on 

data from U.S. Census Bureau (2021). LDAF detailed fire summary data for Louisiana (2007–

2017; Bret Lane, personal communication, 4/9/2018) serve as a baseline for future property loss 

due to wildfire.  

METHODOLOGY 

Method for Assessing Historical Wildfire Burn Probability 

A method of computing both large and small fire probabilities is necessary here because FSim 

focuses on large (> 300 acres) fires (Dillon et al. 2015) and fires in and near Louisiana are 

primarily classified as “small.” The wildfire probability calculation follows the method of Dillon 

et al. (2015), which uses large fire (i.e., > 300 acres) probability from FSim (Finney et al. 2011) 
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supplemented by a collection of small fire (i.e., < 300 acres) probabilities from the Fire 

Protection Agency (FPA) fire occurrence data (Short 2013). The total probability is calculated as 

the sum of large and small fire probability. 

Large wildfire burn probability raster files are downloaded from U.S. Department of Agriculture 

(Short et al. 2020). Then, the “Extract by Mask” tool in ArcGIS® is used to delineate the study 

area, yielding the large fire probabilities for the study area. To extract the small fire probabilities, 

the nationwide fire occurrence point-based shapefiles (1992–2015) from U.S. Department of 

Agriculture (Short 2017) are downloaded, and fires larger than 300 acres are removed. Small 

wildfire occurrence are then extracted for Louisiana and surroundings using the “clip” tool in 

ArcGIS. A total of 73,501 small fire records exist in Louisiana and within the 50-km buffer. 

Planar kernel density analysis (Silverman 1986) is then performed for the small fire data, to 

produce a spatial distribution of fire density, with cell size set to 270 m, to correspond to that 

used in the FSim layer, and a kernel size of 50 km (Dillon et al. 2015). The cell area (270m x 

270m = 72,900 m2) is then multiplied by the resulting kernel density of fire. To identify the small 

fire probability over the smoothed surface, the total number of fires (73,501) is divided by the 

kernel density, and this value for each pixel is divided by 24 to compute the historical (1992–

2015) annual probability. To calculate total fire annual probability, this small fire probability is 

added to the large fire probability from FSim. The 50-km buffer is then removed by masking 

with the Louisiana boundary. Finally, the wildfire burn probability of each census block 𝑝(𝑓)𝑖 is 

extracted from the raster files at the centroid of each census block.  

Method for Assessing Future Wildfire Burn Probability 

The first step in determining future wildfire burn probability is to quantify the wildfire hazard 

based on model projections. USGCRP (2017) suggests an increase in lightning-ignited wildfire 

by 2050 in the U.S. Southeast, including Louisiana (Wehner et al. 2017). However, Wehner et al. 

(2017) reports that substantial intra-regional differences in wildfire vulnerability are likely to 

exist between ecoregions, and other research acknowledges the complicated interplay between 

modeled trends in individual variables that may have compensating effects in their influence on 

future wildfire intensity and probability.  

This projected increase in wildfire vulnerability comes despite several possible mitigating 

factors. Anticipated water scarcity in a changing climate and intensifying insect infestations in a 

warming world may mitigate the wildfire hazard by reducing fuel from trees that are stunted by 

water scarcity or killed by insect infestations (Prestemon et al. 2016; Wehner et al. 2017), such 

as the southern pine beetle in Louisiana (Coleman et al. 2008). Other factors that might at first 

glance seem to mitigate future wildfire occurrence actually exacerbate the wildfire hazard. For 

example, daily precipitation totals are projected to increase by 9−13 percent for Louisiana by 

2050, amid a generally more extreme precipitation climate nationwide by 2100 (Wehner et al. 

2017). But this enhanced “per event” precipitation and sharp increase in the frequency of days 

having a greater than 90th percentile of precipitation are accompanied by substantially more 

frequent “zero precipitation days” and small precipitation totals that would fall within today’s 

zero-to-tenth-percentile (Wehner et al. 2017). The warmer atmosphere is projected to support 

more moisture before saturation is reached, but future tropical precipitation extremes are not 

simulated reliably and changes in extratropical precipitation extremes are dampened compared 

with the increases atmospheric water vapor content (e.g., O’Gorman and Schneider 2009). 
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Furthermore, the anticipated weakening of steering circulation (Vautard and Yiou 2009) that 

moves frontal and tropical weather systems will leave longer interarrival times between intense 

precipitation events. These factors contribute to the anticipated increase in wildfire in Louisiana 

and elsewhere, as longer runs of dry days are expected. 

Obviously, such changes in both precipitation intensity and interarrival times would induce 

changes in soil moisture, which in turn would change wildfire burn probability. Wehner et al. 

(2017) acknowledge that projections of seasonal precipitation deficits lack confidence, but they 

recognize that the preponderance of evidence suggests that enhanced evapotranspiration caused 

by increased temperatures will outpace the projected increasing precipitation totals. The result is 

likely to be soil desiccation through this century over much of the continental U.S., including 

Louisiana, at least under the RCP8.5 scenario. The net impact of these changes for Louisiana is 

expected to be small soil moisture decreases in autumn relative to natural variability, but large 

decreases relative to natural variability in the other three seasons (Wehner et al. 2017). These soil 

moisture forecasts are made with a “medium” degree of confidence, supporting the notion that 

wildfire intensity will increase by mid-century. Such results are corroborated by Prestemon et al. 

(2016), who used three general circulation models and three IPCC-based emission scenarios to 

conclude that median annual area of the U.S. Southeast affected by lightning-ignited wildfire 

will increase by 34 percent, human-ignited wildfires will decrease by 6 percent, and total wildfire 

will increase by 4 percent by 2056−60 compared with the years 2016−2020.     

Liu et al. (2009) modeled seasonal changes to the KBDI using the A2a economic/environmental/ 

globalization/regionalization scenario, which assumes that global population surpasses 10 billion 

by 2050, with relatively slow economic and technological development, creating global CO2 

mixing ratios of 575 parts per million (ppm) by 2050 and 870 ppm by 2100 (compared to the 

current 418 ppm). Validation of output from four general circulation models for global climate 

for the 1961‒1990 period led Liu et al. (2009) to conclude that the Hadley Centre climate model 

version 3 (Pope et al. 2000) is most effective for simulating global KBDI for the 2070‒2100 

period. In autumn and winter (September through February), decreases of 50−150 mm per three-

month period were forecasted in Louisiana, while in March through May and June through 

August, decreases of 200‒250 mm per three-month period were projected in Louisiana (Liu et al. 

2009, their Figure 5).  

The midpoint of the time series of the projection by Liu et al. (2009) is 2085, so the current 

research assumes that half of the projected changes in KBDI will occur by 2050. Thus, decreases 

of 25‒75 mm per three-month period (or 8‒25 mm per month, with 17 mm per month as the 

midpoint) are projected for each month from September through February in Louisiana by 2050. 

Decreases of 100‒125 mm per three-month period (or 33‒42 mm per month, with 38 mm per 

month as the midpoint) are projected for each month from March through August in Louisiana 

by 2050. Recent research (Krueger et al. 2017) suggests that the fraction of available water 

(FAW) is a better predictor of large growing-season wildfires than the KBDI. FAW is calculated 

as the ratio of plant available water to soil water capacity. But FAW has not yet been projected 

as confidently to 2050 as precipitation.  

To provide more detail for Louisiana based on Liu et al.’s (2009) results, average monthly 

precipitation data for 31˚N, 91.5˚W (the nearest available data point to the center of the 

Louisiana state) are input into the Web-based, Water-Budget, Interactive, Modeling Program 
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(Willmott et al. 1985; WebWIMP 2021). Results suggest that decreases in soil moisture in the 

upper-layers of 12.2 percent (February) to 46.1 percent (August) are projected. Thus, a 25 

percent decrease in available moisture in the organic matter and uppermost soil layers, and a 25 

percent increase in wildfire susceptibility across Louisiana by 2050 (𝐹2050= 1.25) is projected 

here. These projections are not without their caveats. For example, these changes do not take into 

account projected changes in global air temperature. According to Frankson et al. (2017), despite 

the fact that little surface temperature warming occurred in Louisiana over the 20th century, 

historically unprecedented warming is to be expected, under a higher emissions pathway, by 

2100. 

Method of Projecting Population 

The method of projecting population (𝑃) at the census-block (i) scale by the year 2050 follows 

that of Mostafiz et al. (2020). Because annual census-block level population estimates are 

unavailable, the process begins with parish-wide annual growth rate calculations. For each parish 

(j), the average of the annual population growth rate (𝑟𝑗) for the n-year (i.e., 40) period for which 

available annual U.S. Census Bureau estimates exist (i.e., 1980−2020) is calculated, beginning in 

year y, as described by Equation 1: 

 

𝑟𝑗 =  

∑ [
(𝑃𝑗,𝑦+1 − 𝑃𝑗,𝑦)

𝑃𝑗,𝑦
]

𝑦+𝑛
𝑦

𝑛
 

(1) 

 

After 𝑟𝑗 is determined for each of Louisiana’s 64 parishes, future population change is 

downscaled to the census block (i), assuming that 𝑟𝑗 is the same for each census block in its 

parish. Future population is then projected for each census block, assuming that currently 

unpopulated census blocks remain uninhabited through 2050. For each i, the 2010 population is 

used as the initial base (i.e., 𝑃0,𝑖 = 𝑃2010,𝑖) and future population is projected out to 2050 (i.e., 

𝑃𝑓,𝑖 = 𝑃2050,𝑖), given a n-year period within which the population changes (𝑡), as shown in 

Equation 2:  

 

𝑃𝑓,𝑖 =  𝑃0,𝑖𝑒
𝑟𝑗𝑡 (2) 

 

This approach outperforms other methods that were tested. Specifically, the extension of a trend 

line of parish-level population into the future proved impractical because several parishes show 

an insignificant trend line and low explained variance. A second methodology tested is the 

extension of the growth rate trend line to approximate the 2050 population, but this proved 

problematic for the same reason. The abrupt, sizeable, and temporary population redistributions 

both within and beyond Louisiana resulting from significant hurricanes (most notably Katrina in 

2005) are likely contributors to the low explained variance. The technique selected is least 

sensitive to these issues. 
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Method of Assessing Building/Structure Value 

To address the third objective, it is necessary to evaluate current and future building/structure 

value in each census block. The total number of buildings in each census block in 2010 (𝑁2010,𝑖) 

is computed from the U.S. Census Bureau (2010) by summing the buildings constructed during 

each time interval as reported in the shapefiles. Then this value is multiplied by the mean 

building value in 2010 in a given census block (𝑀𝑉2010,𝑖) to give the total inventory value in that 

census block (𝐼2010,𝑖), as shown in Equation 3: 

𝐼2010,𝑖 = 𝑁2010,𝑖 × 𝑀𝑉2010,𝑖 (3) 
 

The number of buildings in 2050 in a census block (𝑁2050,𝑖) is assumed to change 

proportionately to population, so the population projection described above is used to scale the 

building inventory. Total inventory value in 2050 in a census block (𝐼2050,𝑖) is then calculated as 

the product of total building inventory value in 2010 in that census block and the ratio of 2050 

population to 2010 population. 

𝐼2050,𝑖 = 𝐼2010,𝑖 ×
𝑃2050,𝑖

𝑃2010,𝑖
 (4) 

Method of Projecting Future Property Loss 

Because LDAF records show that from 2007 to 2017, 389 of the 12,979 Louisiana residences 

that were threatened by fire were damaged (Bret Lane, personal communication, 4/9/2018), a 

conditional probability of damage 𝑝(𝑑|𝑓𝑖) of 0.03 is assumed. In other words, three percent of 

buildings exposed to fire are damaged. Then, the probability of damage 𝑝(𝑑)𝑖 is calculated as 

shown in Equation 5: 

𝑝(𝑑)𝑖 = 𝑝(𝑓)𝑖 × 𝑝(𝑑|𝑓𝑖) (5) 
 

Based on LDAF advice, each damaged building is assumed to have a loss of 5 percent of the 

building value (Bret Lane, personal communication, 4/9/2018); thus, 𝑑 is 0.05. Future property 

loss due to wildfire (𝐿) in census block 𝑖 is calculated as shown in Equation 6: 

 
𝐿2050,𝑖 =  𝐼2050,𝑖 × 𝑝(𝑑)𝑖 × 𝑑 × 𝐹2050,𝑖 (6) 

 

All losses are expressed in $2010. Similarly, the historical annual property loss 𝐿1992−2015,𝑖 is 

calculated using the 2010 building inventory at each census block 𝐼2010,𝑖, the probability of 

damage 𝑝(𝑑)𝑖, and percent of damage, 𝑑. Annual per capita and per building property loss in 

2010 and 2050 by census block are calculated by dividing by the population and building count, 

respectively.  
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RESULTS 

Historical Wildfire Probability 

Historical (1992−2015) wildfire burn probability ranges from 0 in coastal southeastern census blocks to 
7.7 percent at a point in Cameron Parish (Appendix A), in the extreme coastal southwest (Figure 1A). The 
west-central, east-central, and extreme northwestern and southwestern parts of the state have the 
highest burn probability for wildfire (Figure 1A). Because planning is done at the parish level, it is also 
worthwhile to note that Washington (in extreme east-central Louisiana) is the most vulnerable parish, 
where the mean historical wildfire burn probability is 4.1 percent (Appendix A). 

Figure 1| Wildfire burn probability: (A) historical (1992−2015), and (B) projection for 2050. 

Projected Future Wildfire Probability 

By 2050 projected wildfire burn probability is anticipated to range from 0 on the southeast coast 

to 9.6 percent at a point in Cameron Parish (Figure 1B; Appendix B). The highest wildfire burn 

probability among census block centroids is expected to be 8.6 percent in census block 

221179501012000 in Washington Parish. Washington will be the most vulnerable parish, where 

the mean projected wildfire burn probability is 5.2 percent (Appendix B). Washington, St. 

Helena, Beauregard, Allen, Tangipahoa, St. Tammany, Vernon, Rapides, Livingston, and 

Calcasieu are the top ten most vulnerable parishes in Louisiana (Appendix A-B), whereas St. 

Mary, Iberia, Terrebonne, Assumption, and Lafourche are the least vulnerable parishes 

(Appendix A-B). The wildfire hazard is likely to remain concentrated in the same geographical 

areas of the state as in the historical record, but burn probabilities are likely to increase (Figure 

1A-B).  
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Projected Future Population 

Using the values calculated in Equations 1 and 2, and assuming that the 102,781 census blocks 

(from among the 203,447 total) in Louisiana that were inhabited in 2010 will remain the only 

blocks inhabited in 2050, the 2050 population density projection is generated. Population is most 

densely concentrated around New Orleans, Baton Rouge, and Shreveport, the state’s three largest 

cities (Figure 2A). By 2050, the population will remain concentrated in largely the same areas, 

but with increasing density around Lafayette, Baton Rouge, and in east-central Louisiana (Figure 

2B). Population declines are expected throughout northeastern Louisiana east of Monroe, along 

the Red River Valley from Shreveport to the area southeast of Alexandria, in the New Orleans 

area, and elsewhere (Figure 2B). Appendix C shows these values by parish.  

 

Figure 2| Population density by census block: (A) 2010, and (B) change in population density 

from 2010 to 2050. 

Historical and Projected Future Property Loss 

At the statewide level, the expanding WUI will increase the wildfire risk by 2050 as population 

and development, and therefore annual property loss due to wildfire, increase. The historical 

(1992−2015) average annual statewide property loss due to wildfire was $3,169,064 (2010$). 

Projected loss will be $6,373,907 by 2050 (2010$) due to the population growth, WUI, and 

climate change (Appendix D). Thus, the wildfire annual loss is projected to increase by 101 

percent. The maximum estimated property losses will remain concentrated near their present 

locations, namely east-central, southwestern, and northwestern Louisiana (Figure 3A-B). On a 

per capita basis, the historical (1992−2015) average annual per capita property loss due to 

wildfire was $0.70 (2010$) in Louisiana (Appendix D). Projected per capita property loss is 

$1.25 by 2050 (2010$), giving an increase in annual per capita property loss of 61 percent 

(Appendix D). The same general spatial distribution of per capita property losses (Figure 4A-B) 

occurs (and is projected to occur by 2050) as was shown for absolute losses. The historical 
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average annual per building property loss was $1.61 (2010$) whereas the projected loss will be 

$2.65 (2010$) by 2050 (Appendix D). Thus, the annual per building property loss will increase 

by 64 percent in Louisiana. Again, the spatial distribution remains similar (Figure 5A-B). 

 

Figure 3| Estimated annual property loss ($2010) due to wildfire by census block: (A) historical 

(1992−2015), and (B) 2050. 

 

Figure 4| Estimated annual per capita property loss ($2010) due to wildfire by census block: (A) 

historical (1992−2015), and (B) 2050. 
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At the parish level, St. Tammany (in east-central Louisiana) had the highest historical 

(1992−2015) overall wildfire annual property loss ($890,955), per capita property loss ($3.81), 

and per building property loss ($9.34) among the parishes (Appendix D). Changes in the wildfire 

burn probability and expansion of population are projected to change wildfire risk by 2050. 

Nevertheless, the greatest annual wildfire property loss ($2,646,673), per capita property loss 

($4.76), and per building property loss ($11.68) are expected to remain in St. Tammany Parish 

(Appendix D). 

At the census-block level, the highest historical average annual property loss due to wildfire was 

in block 221030408035041 of St. Tammany Parish ($10,764). The highest historical 

(1992−2015) average annual per building property loss ($21.34) was in census block 

221030407061032, also in St. Tammany Parish. The highest historical annual per capita property 

loss in the state was $202.76 in census block 220919511002011, in St. Helena Parish (east-

central Louisiana, northwest of St. Tammany).  

By 2050, the highest annual property loss due to wildfire is projected to be in census block 

221030408035041, in St. Tammany Parish ($31,972). The highest annual per capita property 

loss ($253.45) will be in census block 220919511002011 of St. Helena Parish. The highest 

annual per building property loss ($26.68) will be in census block 221030407061032, in St. 

Tammany Parish. 

Figure 5| Estimated annual per building property loss: (A) historical (1992−2015), and (B) 2050 

by census block in Louisiana ($2010). 

DISCUSSION 

While it is tempting to overlook the wildfire hazard in a state that receives abundant rainfall, is 

susceptible to so many other, more calamitous hazards, and often suffers from other more 

pressing economic hardships, the wildfire hazard in Louisiana is formidable, and is expected to 

become more destructive in coming decades. Thus, adequate resources should be devoted to 
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preventing and mitigating the hazard, including but not limited to, educating the public on the 

dangers of carelessness with managed fires. Additional resources will be needed to combat the 

anticipated increased risk. The fact that no major spatial shifts in the wildfire hazard were found 

simplifies planning for the wildfire hazard over the coming decades. The hope is that any 

reductions in ability to acquire resources to prevent or mitigate the hazard are offset by 

improvements and innovations in technology to detect and combat the fires. If the risk does 

indeed remain roughly proportionate to the population increase, resources to combat the risk 

should be available, assuming that other economic and demographic factors also change 

proportionately. For example, the vulnerability to wildfire under the uncertain and complex 

conditions of response during the COVID-19 pandemic would almost certainly exacerbate losses 

(Thompson et al. 2021).  

LIMITATION 

As in any research, this work has some caveats that should be acknowledged. One set of 

limitations involves the population projection methodology, which ignores abrupt changes in the 

future, such as migrations prompted by hurricanes or other natural disasters, economic 

depression, or other extreme events. Another limitation is the assumption, necessitated by data 

availability, of equal population growth rates for every census block within a parish. In addition, 

population growth may not follow an exponential growth curve. This research also does not 

consider changes in economic and demographic characteristics by 2050, which might alter the 

ability for taxes to cover additional mitigation and prevention strategies. Unfortunately, the 

absence of reliable demographic projections for Louisiana based on more elaborate modeling 

makes these assumptions necessary. 

The lack of consideration of other non-population-related features can also limit the reliability of 

the findings. This work does not consider land cover change, which might change the future 

potential destructiveness of the fires. Furthermore, in calculating the losses, building 

replacement/renovation/restoration cost rather than building value could have given additional 

information that would have assisted in some aspects of planning, such as for setting fire 

insurance premiums. 

SUMMARY AND CONCLUSION 

This research has developed a method for analyzing historical and future property losses to 

wildfire in Louisiana, a U.S. state with relatively dense population, rich timber resources, and a 

likely increasing susceptibility to long periods without rainfall. In contrast to most work on 

spatial distribution of hazards, the analysis is done at the census-block level, which provides a 

more suitable areal unit of analysis than the parish (i.e., county) because of the wide disparities 

in population, property, and (in some cases) natural vulnerability to the hazard. The results 

suggest that the present areas of maximum risk – west-central, east-central, and extreme 

northwestern and southwestern coastal Louisiana – will remain the most vulnerable areas to this 

often-overlooked hazard in 2050. However, annual loss, both on an absolute and per capita basis, 

are expected to increase substantially, as the population growth, WUI and climate change 

combine to exacerbate the risk.  
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Future research should be conducted to extend a similar methodology to other hazards in other 

places, such as earthquakes, sinkholes, lightning, and hail. In a more general sense, improved 

population, economic, and demographic forecasts are needed, so that current and future risk to 

natural hazards, including wildfire, can be assessed more accurately. As climate models become 

more accurate, the reliability of future projections for natural hazard risk will improve in their 

mission of protecting lives and property. 
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SUPPLEMENTARY MATERIALS 
 

Appendix A: Historical (1992–2015) Wildfire Burn Probability (%) in 2050, by Louisiana Parish. 

 

Parish 

Point-based Parishwide 

Min Max Mean Standard 

Deviation 

Acadia 0.01 1.18 0.16 0.18 

Allen 1.20 6.22 3.77 1.28 

Ascension 0.01 1.04 0.36 0.24 

Assumption 0.00 0.05 0.01 0.01 

Avoyelles 0.06 1.23 0.29 0.21 

Beauregard 2.01 5.39 3.87 0.47 

Bienville 0.82 1.52 1.17 0.14 

Bossier 0.71 2.06 1.14 0.24 

Caddo 0.65 3.20 1.59 0.56 

Calcasieu 0.13 6.48 1.82 1.07 

Caldwell 0.45 1.64 0.99 0.27 

Cameron 0.00 7.70 1.52 1.61 

Catahoula 0.07 1.24 0.53 0.31 

Claiborne 1.11 1.56 1.37 0.11 

Concordia 0.06 0.46 0.18 0.08 

De Soto 0.61 1.72 0.83 0.20 

East Baton Rouge 0.05 2.92 0.64 0.54 

East Carroll 0.06 0.36 0.21 0.07 

East Feliciana 0.15 3.67 1.72 0.86 

Evangeline 0.25 5.23 1.73 1.06 

Franklin 0.07 0.78 0.24 0.14 

Grant 1.18 2.07 1.74 0.20 

Iberia 0.00 0.02 0.00 0.00 

Iberville 0.00 0.36 0.03 0.04 

Jackson 0.84 1.22 1.03 0.08 

Jefferson 0.00 0.93 0.13 0.18 

Jefferson Davis 0.04 2.52 0.72 0.56 

Lafayette 0.01 0.09 0.02 0.01 

Lafourche 0.00 0.08 0.01 0.01 

LaSalle 0.32 2.01 1.45 0.37 

Lincoln 0.85 1.33 1.07 0.12 

Livingston 0.51 4.41 2.15 0.95 

Madison 0.06 0.33 0.13 0.06 

Morehouse 0.30 0.96 0.64 0.14 
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Natchitoches 0.82 1.74 1.13 0.15 

Orleans 0.08 2.31 0.93 0.54 

Ouachita 0.37 0.89 0.64 0.13 

Plaquemines 0.00 0.24 0.03 0.05 

Pointe Coupee 0.03 0.17 0.08 0.03 

Rapides 0.47 6.13 2.43 1.46 

Red River 0.65 1.03 0.83 0.08 

Richland 0.22 0.67 0.34 0.07 

Sabine 0.81 2.16 1.35 0.30 

St. Bernard 0.00 2.00 0.24 0.21 

St. Charles 0.00 0.49 0.05 0.06 

St. Helena 2.17 4.75 3.97 0.48 

St. James 0.01 0.50 0.10 0.10 

St. John the Baptist 0.01 1.47 0.46 0.37 

St. Landry 0.03 0.76 0.17 0.13 

St. Martin 0.00 0.06 0.01 0.01 

St. Mary 0.00 0.01 0.00 0.00 

St. Tammany 0.92 5.60 3.15 0.89 

Tangipahoa 1.22 4.76 3.55 0.96 

Tensas 0.06 0.68 0.18 0.12 

Terrebonne 0.00 0.02 0.00 0.00 

Union 0.65 1.22 0.89 0.12 

Vermilion 0.00 0.53 0.04 0.06 

Vernon 1.34 6.11 3.08 1.12 

Washington 3.19 6.93 4.14 0.69 

Webster 0.97 1.54 1.34 0.10 

West Baton Rouge 0.02 0.19 0.07 0.04 

West Carroll 0.19 0.56 0.39 0.07 

West Feliciana 0.06 1.39 0.34 0.26 

Winn 1.10 1.98 1.48 0.21 
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Appendix B: Projected Wildfire Burn Probability (%) in 2050, by Louisiana Parish. 

NAME 

Point-based Parishwide 

Min Max Mean Standard 

Deviation 

Acadia 0.01 1.47 0.20 0.22 

Allen 1.50 7.77 4.71 1.60 

Ascension 0.02 1.30 0.45 0.30 

Assumption 0.00 0.06 0.01 0.01 

Avoyelles 0.08 1.54 0.36 0.26 

Beauregard 2.51 6.73 4.83 0.59 

Bienville 1.03 1.89 1.47 0.17 

Bossier 0.89 2.57 1.43 0.31 

Caddo 0.81 4.00 1.99 0.70 

Calcasieu 0.16 8.10 2.28 1.33 

Caldwell 0.56 2.05 1.23 0.33 

Cameron 0.00 9.62 1.90 2.01 

Catahoula 0.09 1.55 0.67 0.38 

Claiborne 1.39 1.95 1.71 0.14 

Concordia 0.08 0.58 0.22 0.10 

De Soto 0.77 2.15 1.03 0.24 

East Baton Rouge 0.06 3.65 0.80 0.67 

East Carroll 0.07 0.45 0.26 0.09 

East Feliciana 0.18 4.58 2.15 1.08 

Evangeline 0.31 6.54 2.16 1.32 

Franklin 0.08 0.98 0.29 0.17 

Grant 1.47 2.59 2.17 0.25 

Iberia 0.00 0.02 0.00 0.00 

Iberville 0.01 0.45 0.04 0.05 

Jackson 1.05 1.53 1.29 0.10 

Jefferson 0.00 1.16 0.16 0.23 

Jefferson Davis 0.05 3.15 0.89 0.69 

Lafayette 0.01 0.11 0.03 0.02 

Lafourche 0.00 0.10 0.01 0.01 

LaSalle 0.40 2.51 1.81 0.47 

Lincoln 1.06 1.67 1.34 0.16 

Livingston 0.64 5.52 2.69 1.18 

Madison 0.08 0.41 0.16 0.07 

Morehouse 0.38 1.20 0.80 0.18 

Natchitoches 1.02 2.18 1.42 0.18 

Orleans 0.10 2.89 1.16 0.67 

Ouachita 0.46 1.12 0.80 0.16 
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Plaquemines 0.00 0.31 0.04 0.06 

Pointe Coupee 0.04 0.22 0.09 0.03 

Rapides 0.59 7.66 3.04 1.83 

Red River 0.81 1.29 1.04 0.10 

Richland 0.27 0.83 0.43 0.09 

Sabine 1.02 2.70 1.69 0.37 

St. Bernard 0.00 2.50 0.30 0.26 

St. Charles 0.00 0.61 0.07 0.08 

St. Helena 2.71 5.94 4.96 0.60 

St. James 0.01 0.62 0.13 0.12 

St. John the Baptist 0.01 1.84 0.57 0.47 

St. Landry 0.04 0.95 0.21 0.16 

St. Martin 0.00 0.07 0.02 0.01 

St. Mary 0.00 0.02 0.00 0.00 

St. Tammany 1.15 7.01 3.94 1.11 

Tangipahoa 1.52 5.95 4.44 1.20 

Tensas 0.08 0.85 0.23 0.15 

Terrebonne 0.00 0.03 0.01 0.00 

Union 0.81 1.52 1.11 0.15 

Vermilion 0.00 0.66 0.05 0.08 

Vernon 1.68 7.64 3.85 1.40 

Washington 3.99 8.67 5.18 0.87 

Webster 1.21 1.93 1.67 0.13 

West Baton Rouge 0.03 0.24 0.08 0.04 

West Carroll 0.24 0.70 0.49 0.09 

West Feliciana 0.08 1.74 0.43 0.32 

Winn 1.38 2.47 1.85 0.27 
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Appendix C: Louisiana Parish Population in 2010, Projected Population by 2050, Density in 2010, 

Projected Density by 2050, and Projected Change in Population Density. 

Parish 
Population 

(2010) 

Population 

(2050) 

Density 

(per km2) 

(2010) 

Density 

(per km2) 

(2050) 

Density 

Change 

(2010−2050) 

(per km2) 

Acadia 61,773 67,309 36.3 39.5 3.3 

Allen 25,764 30,554 13.0 15.4 2.4 

Ascension 107,215 278,635 136.7 355.3 218.6 

Assumption 23,421 22,875 24.8 24.2 (0.6) 

Avoyelles 42,073 40,710 18.8 18.2 (0.6) 

Beauregard 35,654 45,242 11.8 15.0 3.2 

Bienville 14,353 11,471 6.7 5.4 (1.4) 

Bossier 116,979 183,706 52.1 81.8 29.7 

Caddo 254,969 238,795 105.1 98.4 (6.7) 

Calcasieu 192,768 233,579 68.0 82.4 14.4 

Caldwell 10,132 9,248 7.2 6.6 (0.6) 

Cameron 6,839 5,253 1.4 1.0 (0.3) 

Catahoula 10,407 7,741 5.4 4.0 (1.4) 

Claiborne 17,195 15,467 8.7 7.8 (0.9) 

Concordia 20,822 17,145 10.8 8.9 (1.9) 

De Soto 26,656 28,631 11.5 12.4 0.9 

East Baton Rouge 440,171 526,522 361.4 432.3 70.9 

East Carroll 7,759 4,397 6.8 3.8 (2.9) 

East Feliciana 20,267 20,074 17.2 17.0 (0.2) 

Evangeline 33,984 33,924 19.3 19.3 (0.0) 

Franklin 20,767 17,005 12.6 10.3 (2.3) 

Grant 22,309 29,701 13.0 17.3 4.3 

Iberia 73,240 78,687 27.4 29.5 2.0 

Iberville 33,387 33,263 19.7 19.7 (0.1) 

Jackson 16,274 14,727 10.8 9.8 (1.0) 

Jefferson 432,552 409,450 260.1 246.2 (13.9) 

Jefferson Davis 31,594 30,585 18.5 17.9 (0.6) 

La Salle 14,890 13,171 8.7 7.7 (1.0) 

Lafayette 221,578 361,856 317.8 519.0 201.2 

Lafourche 96,318 112,609 25.3 29.6 4.3 

Lincoln 46,735 54,630 38.2 44.6 6.5 

Livingston 128,026 314,726 71.5 175.7 104.3 

Madison 12,093 8,268 7.2 4.9 (2.3) 

Morehouse 27,979 19,510 13.4 9.3 (4.1) 

Natchitoches 39,566 37,548 11.8 11.2 (0.6) 

Orleans 343,829 310,135 379.5 342.3 (37.2) 
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Ouachita 153,720 167,523 93.9 102.4 8.4 

Plaquemines 23,042 21,107 3.5 3.2 (0.3) 

Pointe Coupee 22,802 20,338 14.9 13.3 (1.6) 

Rapides 131,613 125,227 37.3 35.5 (1.8) 

Red River 9,091 7,174 8.7 6.9 (1.8) 

Richland 20,725 18,611 14.2 12.7 (1.4) 

Sabine 24,233 22,705 9.2 8.7 (0.6) 

St. Bernard 35,897 59,835 6.4 10.7 4.3 

St. Charles 52,780 74,669 51.3 72.6 21.3 

St. Helena 11,203 11,570 10.6 10.9 0.3 

St. James 22,102 21,233 33.1 31.8 (1.3) 

St. John the Baptist 45,924 60,827 43.3 57.3 14.0 

St. Landry 83,384 80,465 34.3 33.1 (1.2) 

St. Martin 52,160 68,297 24.7 32.3 7.6 

St. Mary 54,650 41,198 18.8 14.2 (4.6) 

St. Tammany 233,740 555,517 82.4 195.8 113.4 

Tangipahoa 121,097 204,995 55.4 93.8 38.4 

Tensas 5,252 2,529 3.2 1.5 (1.6) 

Terrebonne 111,860 129,437 20.7 24.0 3.3 

Union 22,721 23,720 9.7 10.1 0.4 

Vermilion 57,999 70,768 14.5 17.7 3.2 

Vernon 52,334 47,403 15.1 13.6 (1.4) 

Washington 47,168 48,685 26.9 27.8 0.9 

Webster 41,207 35,843 25.9 22.5 (3.4) 

West Baton Rouge 23,788 33,301 45.1 63.1 18.0 

West Carroll 11,604 9,567 12.4 10.2 (2.2) 

West Feliciana 15,625 19,823 14.2 18.0 3.8 

Winn 15,313 12,352 6.2 5.0 (1.2) 

Louisiana 4,533,372 5,661,868 33.4 41.7 8.3 
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Appendix D: Historical (1992−2015) Annual Average and 2050-Projected Property Loss, per Capita 

Property Loss, and per Building Property Loss, by Louisiana Parish ($2010). 

Parish 

Annual Property Loss 
Annual Per Capita 

Property Loss 

Annual Per Building 

Property Loss 

Historical 

(1992−2015) 

Projected 

 (2050) 

Historical 

(1992−2015) 

Projected 

 (2050) 

Historical 

(1992−2015) 

Projected 

 (2050) 

Acadia 3,330 4,531 0.05 0.07 0.13 0.16 

Allen 40,186 59,537 1.56 1.95 4.13 5.18 

Ascension 45,125 146,601 0.42 0.53 1.11 1.38 

Assumption 95 116 0.00 0.01 0.01 0.01 

Avoyelles 7,718 9,344 0.18 0.23 0.43 0.54 

Beauregard 75,366 119,506 2.11 2.64 5.01 6.28 

Bienville 8,127 8,154 0.57 0.71 1.05 1.35 

Bossier 86,676 170,150 0.74 0.93 1.76 2.20 

Caddo 203,036 237,777 0.80 1.00 1.81 2.27 

Calcasieu 150,068 227,269 0.78 0.97 1.83 2.29 

Caldwell 5,183 5,923 0.51 0.64 1.04 1.31 

Cameron 6,678 6,434 0.98 1.22 1.86 2.38 

Catahoula 2,490 2,311 0.24 0.30 0.51 0.65 

Claiborne 10,635 11,978 0.62 0.77 1.37 1.73 

Concordia 2,300 2,372 0.11 0.14 0.25 0.31 

De Soto 12,567 16,856 0.47 0.59 1.02 1.28 

East Baton Rouge 181,900 271,983 0.41 0.52 0.97 1.21 

East Carroll 439 313 0.06 0.07 0.15 0.19 

East Feliciana 18,926 23,453 0.93 1.17 2.36 2.96 

Evangeline 20,656 25,776 0.61 0.76 1.41 1.77 

Franklin 2,046 2,100 0.10 0.12 0.23 0.28 

Grant 18,805 31,288 0.84 1.05 2.12 2.67 

Iberia 156 209 0.00 0.00 0.01 0.01 

Iberville 806 1,003 0.02 0.03 0.06 0.08 

Jackson 10,491 11,901 0.64 0.81 1.37 1.73 

Jefferson 59,273 70,131 0.14 0.17 0.31 0.39 

Jefferson Davis 7,096 8,606 0.22 0.28 0.53 0.67 

La Salle 11,035 12,223 0.74 0.93 1.68 2.15 

Lafayette 4,166 8,505 0.02 0.02 0.04 0.06 

Lafourche 227 331 0.00 0.00 0.01 0.01 

Lincoln 30,976 45,269 0.66 0.83 1.59 1.99 

Livingston 183,701 564,408 1.43 1.79 3.66 4.58 

Madison 463 395 0.04 0.05 0.10 0.12 

Morehouse 9,039 7,884 0.32 0.40 0.73 0.91 
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Natchitoches 26,919 31,936 0.68 0.85 1.45 1.82 

Orleans 129,056 145,573 0.38 0.47 0.68 0.85 

Ouachita 65,159 88,753 0.42 0.53 1.01 1.26 

Plaquemines 1,746 2,000 0.08 0.09 0.18 0.23 

Pointe Coupee 1,418 1,580 0.06 0.08 0.13 0.16 

Rapides 152,642 181,654 1.16 1.45 2.74 3.43 

Red River 3,716 3,670 0.41 0.51 0.90 1.13 

Richland 2,815 3,165 0.14 0.17 0.33 0.41 

Sabine 23,772 27,926 0.98 1.23 1.68 2.13 

St. Bernard 7,119 14,834 0.20 0.25 0.42 0.53 

St. Charles 927 1,639 0.02 0.02 0.05 0.06 

St. Helena 28,355 36,557 2.53 3.16 5.51 6.91 

St. James 1,245 1,495 0.06 0.07 0.15 0.18 

St. John the Baptist 5,370 8,887 0.12 0.15 0.31 0.38 

St. Landry 7,569 9,136 0.09 0.11 0.21 0.27 

St. Martin 567 927 0.01 0.01 0.03 0.03 

St. Mary 25 24 0.00 0.00 0.00 0.00 

St. Tammany 890,955 2,646,673 3.81 4.76 9.34 11.68 

Tangipahoa 359,699 761,153 2.97 3.71 7.18 8.99 

Tensas 1,009 603 0.19 0.24 0.30 0.39 

Terrebonne 67 96 0.00 0.00 0.00 0.00 

Union 12,120 15,802 0.53 0.67 1.07 1.34 

Vermilion 367 559 0.01 0.01 0.01 0.02 

Vernon 67,130 76,099 1.28 1.61 3.13 3.93 

Washington 113,349 146,112 2.40 3.00 5.39 6.75 

Webster 29,302 31,884 0.71 0.89 1.52 1.90 

West Baton Rouge 1,410 2,466 0.06 0.07 0.15 0.19 

West Carroll 2,204 2,273 0.19 0.24 0.44 0.55 

West Feliciana 4,144 6,579 0.27 0.33 0.81 1.05 

Winn 9,107 9,215 0.59 0.75 1.26 1.62 

Louisiana 3,169,063 6,373,906 0.70 1.13 1.61 2.65 
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FIGURE CAPTIONS 

Figure 1|  Wildfire burn probability: (A) historical (1992−2015), and (B) projection for 2050. 

Figure 2|  Population density by census block: (A) 2010, and (B) change in population density 

from 2010 to 2050. 

Figure 3|  Estimated annual property loss ($2010) due to wildfire by census block: (A) historical 

(1992−2015), and (B) 2050. 

Figure 4|  Estimated annual per capita property loss ($2010) due to wildfire by census block: (A) 

historical (1992−2015), and (B) 2050. 

Figure 5|  Estimated annual per building property loss: (A) historical (1992−2015), and (B) 2050 

by census block in Louisiana ($2010). 

 


