Particulate Oxalate-to-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations

Miguel Ricardo Hilario¹, Ewan Crosbie², Paola Angela Banaga³, Grace Betito³, Rachel Braun¹, Maria Obiminda Cambaliza⁴, Andrea Corral¹, Melliza Templonuevo Cruz⁵, Jack Dibb⁶, Genevieve Rose Lorenzo¹, Alexander MacDonald¹, Claire Robinson², Michael Shook⁷, James Simpas³, Connor Stahl¹, Edward Winstead², Luke Ziemba⁷, and Armin Sorooshian¹

November 24, 2022

Abstract

Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154 - 0.0296; R = 0.76; N = 2948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio towards higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing.

Hosted file

essoar.10508242.1.docx available at https://authorea.com/users/548953/articles/603315-particulate-oxalate-to-sulfate-ratio-as-an-aqueous-processing-marker-similarity-across-field-campaigns-and-limitations

¹University of Arizona

²Science Systems and Applications, Inc.

³Manila Observatory

⁴Ateneo de Manila University

⁵Institute of Environmental Science and Meteorology

⁶University of New Hampshire

⁷NASA Langley Research Center

Particulate Oxalate-to-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations

Miguel Ricardo A. Hilario¹, Ewan Crosbie^{2,3}, Paola Angela Bañaga^{4,5}, Grace Betito^{4,5}, Rachel A. Braun^{6,†}, Maria Obiminda Cambaliza^{4,5}, Andrea F. Corral⁶, Melliza Templonuevo Cruz^{4,7}, Jack E. Dibb⁸, Genevieve Rose Lorenzo¹, Alexander B. MacDonald⁶, Claire E. Robinson^{2,3}, Michael A. Shook², James Bernard Simpas^{4,5}, Connor Stahl⁶, Edward Winstead^{2,3}, Luke D. Ziemba², and Armin Sorooshian^{1,6}

¹ Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA, ² NASA Langley Research Center, Hampton, VA, USA, ³ Science Systems and Applications, Inc., Hampton, VA, USA, ⁴ Manila Observatory, Quezon City 1108, Philippines, ⁵ Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines, ⁶ Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA, ⁷ Institute of Environmental Science and Meteorology, University of the Philippines, Diliman, Quezon City 1101, Philippines, ⁸ Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA

Abstract

Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154 - 0.0296; R = 0.76; N = 2948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio towards higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing.