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Abstract

The water resources of the western United States have enormous agricultural and municipal demands. At the same time,

droughts like the one enveloping the West in the summer of 2021 have disrupted supply of this strained and precious resource.

Historically, seasonal forecasts of cool season (November-March) precipitation from dynamical models such as North American

Multi-Model Ensemble (NMME) and the SEAS5 from the European Centre for Medium-Range Weather Forecasts have lacked

sufficient skill to aid in Western stakeholders’ and water managers’ decision making. Here, we propose a new empirical-statistical

framework to improve cool season precipitation forecasts across the contiguous United States (CONUS). This newly developed

framework is called the Statistical Climate Ensemble Forecast (SCEF) model. The SCEF framework applies a principal

component regression model to predictors and predictands that have undergone dimensionality reduction, where the predictors

are large-scale meteorological variables that have been prefiltered in space. The forecasts of the SCEF model captures 12.0%

of the total CONUS-wide standardized observed variance over the period 1982/1983-2019/2020, while NMME captures 7.2%.

Over the more recent period 2000/2001-2019/2020, the SCEF, NMME and SEAS5 models respectively capture 11.8%, 4.0%

and 4.1% of the total CONUS-wide standardized observed variance. Importantly, much of the improved skill in the SCEF, with

respect to models such as NMME and SEAS5, can be attributed to better forecasts across most of the western United States.
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Abstract9

The water resources of the western United States have enormous agricultural and mu-10

nicipal demands. At the same time, droughts like the one enveloping the West in the sum-11

mer of 2021 have disrupted supply of this strained and precious resource. Historically,12

seasonal forecasts of cool season (November-March) precipitation from dynamical mod-13

els such as North American Multi-Model Ensemble (NMME) and the SEAS5 from the14

European Centre for Medium-Range Weather Forecasts have lacked sufficient skill to aid15

in Western stakeholders’ and water managers’ decision making. Here, we propose a new16

empirical-statistical framework to improve cool season precipitation forecasts across the17

contiguous United States (CONUS). This newly developed framework is called the Sta-18

tistical Climate Ensemble Forecast (SCEF) model. The SCEF framework applies a prin-19

cipal component regression model to predictors and predictands that have undergone di-20

mensionality reduction, where the predictors are large-scale meteorological variables that21

have been prefiltered in space. The forecasts of the SCEF model captures 12.0% of the22

total CONUS-wide standardized observed variance over the period 1982/1983-2019/2020,23

while NMME captures 7.2%. Over the more recent period 2000/2001-2019/2020, the SCEF,24

NMME and SEAS5 models respectively capture 11.8%, 4.0% and 4.1% of the total CONUS-25

wide standardized observed variance. Importantly, much of the improved skill in the SCEF,26

with respect to models such as NMME and SEAS5, can be attributed to better forecasts27

across most of the western United States.28

1 Introduction29

Widespread international collaboration and model-development efforts have notice-30

ably improved precipitation forecasts at lead-times of days to weeks (Brunet et al., 2010;31

Doblas-Reyes et al., 2013; Alley et al., 2019; Benjamin et al., 2019). Bauer et al. (2015)32

termed this advancement as the “quiet revolution in weather forecasting.” Despite the33

gains observed in short-term weather forecasts, broad-scale skillful numerical seasonal34

forecasts remain elusive. The El Niño Southern Oscillation (ENSO), however, contin-35

ues to remain the dominant driver of large-scale teleconnections and predictability on36

the global scale (Ropelewski & Halpert, 1987; Redmond & Koch, 1991; Cayan et al., 1999;37

Power et al., 2013; Capotondi et al., 2015; Hoell et al., 2016; Guo et al., 2017; Kumar38

& Chen, 2017; Nigam & Sengupta, 2021). ENSO teleconnective patterns can persist for39

months, and as a result, can modulate precipitation with ENSO phase and provide some40

seasonal forecast skill relative to its unconditional distribution (Quan et al., 2006; Man-41

zanas et al., 2014).42

Over the last decade, substantial resources have been put into ensemble seasonal43

prediction systems such as North American Multi-Model Ensemble (NMME) (Kirtman44

et al., 2014b) and the SEAS5 model from the European Centre for Medium-Range Weather45

Forecasts (ECMWF) (Johnson et al., 2019b). These dynamical models have demonstrated46

skillful forecasts across regions of the contiguous United States (CONUS) where concur-47

rent ENSO teleconnections are strongest (Becker et al., 2014; Gubler et al., 2020; Roy48

et al., 2020). Despite the success of these dynamical models in forecasting cool season49

precipitation in those regions, they often fail to provide skill in the most water-critical50

regions such as the western United States.51

Across the western United States, the cool season has a profound impact on wa-52

ter resources (Udall & Overpeck, 2018; Zengchao et al., 2018; Broxton et al., 2019). The53

cool season, which in this paper we define between the months of November and March,54

is the the primary snow accumulation period across the mountainous West. Snow ac-55

cumulation in the cool season can then be used to provide more accurate estimates of56

streamflow and water resources for the spring and summer seasons.57

Building on existing ENSO teleconnections, Switanek et al. (2020) showed a robust58

statistical relationship between ENSO and cool season precipitation at surprisingly long59
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lead times across much of the western United States. For some regions such as north-60

ern California through the American Rocky Mountains, this statistical relationship was61

found to be greatest at lead/lagged (ENSO/precipitation) times of greater than one year.62

The authors subsequently built a simple statistical forecast model (the combined lead63

sea surface temperature (CLSST) model) that exploits the statistical teleconnections be-64

tween ENSO and precipitation, at multiple lead-times of up to 18 months, using the NINO3.465

sea surface temperature (SST) time series as a sole predictor. The CLSST statistical model66

from Switanek et al. (2020) was shown to provide moderately more skillful forecasts across67

CONUS than either NMME or ECMWF’s SEAS5 model. Importantly, the CLSST model68

was shown to substantially improve the forecast skill across much of the West.69

In this paper, we extend the work of Switanek et al. (2020) and develop a statis-70

tical modeling framework to further improve CONUS precipitation forecasts for the cool71

season November-March. The forecast product that we develop herein can be used di-72

rectly, or as a reference standard for other dynamically based forecast systems.73

2 Data74

Accumulated monthly precipitation was obtained from PRISM (2021). This data75

was first upscaled from its native 1/24◦ degree resolution to 1/8◦ using arithmetic av-76

eraging. Next, we summed precipitation at each 1/8◦ grid cell over the November-March77

cool season. Then, we calculated areal averages for the 204 division 4 hydrologic unit codes78

(HUC) across CONUS (Seaber et al., 1987). HUCs use six levels of spatial hierarchy to79

parse watersheds, represented by numeric codes 2 through 12 (where divisions 2 and 1280

delineate the most coarse-scale to the most fine-scale resolutions, respectively). Given81

our own discussions with water managers across the western United States and the gen-82

eral lack of spatial and temporal precision of seasonal forecasts, we have deemed precip-83

itation cool season forecasts at the division 4 HUC resolution as most appropriate and84

useful for many large-scale decisions concerning water resources. Henceforth, we use HUC85

to refer to this division 4 level of spatial resolution (refer to Figure 2, for example, to ob-86

serve the division 4 HUCs across CONUS).87

Sea surface temperature (SST) time series were computed using the NOAA Extended88

Reconstructed Sea Surface Temperature (ERSST) version 5 (Huang & coauthors, 2020).89

The SST dataset contains monthly averages at a 2◦ resolution. We used this data set90

to subsequently calculate the monthly NINO3.4 (5N-5S, 170W-120W) time series.91

Sea-level pressure (SLP), in addition to, zonal and meridional wind speeds (UWND,92

VWND) were extracted from the NCEP/NCAR Reanalyis dataset at different pressure93

heights (Kalnay & coauthors, 1996). We obtained global fields of SLP, UWND, and VWND94

at a temporal resolution of 2.5◦.95

Historical reforecasts of ensemble mean precipitation were obtained for NMME (Kirtman96

et al., 2014b, 2014a) in addition to the more recent years of real-time forecasts (Kirtman97

et al., 2014c). The reforecast data and the real-time forecasts correspond to the years98

1982-2010 and 2011-2020, respectively. These reforecasts and the real-time forecasts were99

obtained for the individual months using an October initialization date. We then cal-100

culated precipitation sums for the November-March cool season and spatially averaged101

the forecasts across each HUC. To be consistent with the procedure we used to obtain102

observed cool season precipitation at each HUC, the NMME ensemble mean values were103

resampled to 1/8◦, prior to averaging, where the 64 finer resolution grid cell anomaly val-104

ues are simply equal to that of the containing 1 degree value. Then, spatially averaged105

precipitation amounts were calculated at each HUC as the average of the 1/8◦ precip-106

itation amounts that were contained by each respective HUC shapefile.107

Seasonal forecasts from ECMWF’s long-range SEAS5 model were obtained for the108

years 1993-2020 (Johnson et al., 2019b, 2019a). Ensemble monthly averages for the in-109
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dividual months between November-March were computed where the model was initial-110

ized in October, then summed over the cold season. As with NMME, the data was re-111

sampled to 1/8◦ and averaged across the individual HUCs.112

3 Validation and skill metrics113

In this study, we make forecasts using two different cross validation approaches.114

With the first, we use a split sample test case where only the data up through and in-115

cluding 1999/2000 is used in calibration, and we predict and validate model performance116

over the 20 cool seasons in the period 2000/2001-2019/2020. In the second test, we per-117

form a ten-fold cross validation. We subsequently compare our cool season forecasts to118

those made by the NMME and ECMWF-SEAS5 models.119

The performance of the forecasts are evaluated using anomaly correlation and root120

mean square error (RMSE) (Eqs. 8.68 and 8.30 respectively from Wilks (2006)). We use121

throughout the paper the terms CONUS-average and CONUS-wide anomaly correlation122

or RMSE. CONUS-average anomaly correlation (or RMSE) is the result of first calcu-123

lating the anomaly correlation for each of the 204 HUCs, then averaging these anomaly124

correlations across all 204 HUCs. In contrast, CONUS-wide anomaly correlation first stan-125

dardizes the forecasts and observations, then calculates one anomaly correlation value126

(or RMSE) between the entire set of our forecasts and observations. For example, if we127

are forecasting the 20 cool seasons over the period, 2000/2001-2019/2020, for the 204 HUCs,128

we have 4080 (i.e., 20 x 204) samples that are used to calculate our CONUS-wide anomaly129

correlation.130

4 Methods131

Similarly to other ensemble predictions, such as NMME, we developed a model-132

ing framework that uses an ensemble of models. In contrast to the dynamical models of133

NMME or the SEAS5, however, we have developed a set of statistical models. The fore-134

casts we produce ultimately result from a weighted mean of four different statistical mod-135

els. Our proposed modeling framework outlines the methods used to develop and com-136

bine these statistical models. We term this modeling framework, the Statistical Climate137

Ensemble Forecast (SCEF) system or the SCEF model. In this paper, we focus on the138

development and the application of the SCEF model to make cool season (November-139

March) forecasts of precipitation.140

4.1 The SCEF model141

The SCEF modeling framework is a three-step process. First, the user develops a142

set of potentially skillful statistical forecast models using filtered data from key predic-143

tors such as SST, sea-level pressure, u-component wind, and v-component wind. Second,144

each individual statistical model is optimized over the calibration period. Lastly, the in-145

dividual model forecasts are merged or combined into a weighted ensemble mean. The146

SCEF model was implemented using principal component regression (PCR) and partial147

least squares regression (PLSR, similar to canonical correlation analysis (Wilks (2006),148

chapter 12)). We will show in Section 5 that both of these methods produce similar lev-149

els of skill.150

4.2 Prescreening the SCEF151

We began by exploring a range of potential predictors. Switanek et al. (2020) showed152

that a simple statistical forecast model that employs the NINO3.4 index as a sole pre-153

dictor, at multiple lead-times, provides moderately more skillful forecasts than either the154

NMME or ECMWF’s SEAS5 model over much of the US. That model, which is called155
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the CLSST model, and it is one of the statistical models that we use in the SCEF. Ad-156

ditionally, we explored potential predictor variables that were taken from the NCEP/NCAR157

reanalysis data set. We compared the skillfulness of different potential predictors using158

leave-one-out cross validation in the calibration period. Through this approach, we se-159

lected three additional predictors to be used in the SCEF; these were sea level pressure160

(SLP), and zonal and meridional winds (UWND and VWND) at a pressure level of 850161

hPa. These four statistical forecast models (i.e., CLSST, SLP, UWND, VWND) together162

comprise our SCEF modeling framework.163

During our exploratory analysis, we observed that averages of August-September164

values of SLP, UWND, and VWND provided better forecasts in our calibration period165

than using September alone. Additionally, we found better skill in our calibration pe-166

riod by upscaling the resolution of our SLP, UWND, and VWND data from 2.5◦ lati-167

tude by 2.5◦ longitude to 5.0◦ latitude by 7.5◦ longitude. This upscaling was performed168

using arithmetic averaging, and it removes a level of variability at the smallest scales which169

we expect are not predictable at seasonal time scales anyway.170

4.3 PCR implementation of the SCEF171

The CLSST is used very similarly to how it is outlined in Switanek et al. (2020).172

Here, we provide a very brief overview of the CLSST model. However, for more details,173

please refer to Switanek et al. (2020). The CLSST model uses the NINO3.4 index as a174

predictor at different lead times between 1 and 18 months prior. For each preceding month,175

m ∈ (1...18), a multiple linear regression model is fit between that month’s NINO3.4176

SST value and the number of leading principal components of precipitation which we are177

trying to predict. This model fit is performed during the calibration period, and then178

the fitted model is used to make forecasts for both the calibration and validation peri-179

ods. The forecasts in the validation period, at each HUC, are then the weighted mean180

of the forecasts from these preceding 18 months as a function of their skill in the cali-181

bration period. We had experimented with using fields of SSTs as predictors, in place182

of solely using the NINO3.4 predictor time series. However, that approach did not yield183

better forecasts than the CLSST model. Here we make a few small modifications to the184

default implementation of CLSST. These are:185

1. We use the respective calibration periods for our two cross validated cases. This186

is in contrast to 1901/1902-1980/1981 period used in the Switanek et al. (2020)187

study.188

2. The forecasts of each of the preceding 18 months, at each HUC, are weighted by189

historical skill (i.e., skill in the calibration period) alone and not with an additional190

linearly decaying weighted function. Adding the linearly decaying weighted func-191

tion was found not to improve the CONUS-wide forecast skill during the calibra-192

tion period. Therefore, we have opted to reduce model complexity and weight the193

CLSST forecasts by historical skill alone.194

3. The leading five principal components (PCs) of precipitation are being predicted,195

in contrast to the leading three. This is to be consistent with the number of prin-196

cipal components we found to be optimal for the SLP, UWND, and VWND sta-197

tistical models. The leading PCs, in our case, find the spatial patterns (eigenvec-198

tors) of precipitation across all HUCs which produce the greatest variability with199

respect to time.200

Next, the three different statistical models (SLP, UWND, and VWND) are inde-201

pendently calibrated. We started by treating four adjustable parameters as ones that202

could potentially be optimized through calibration. These are, 1) the northern-most lat-203

itude of our predictor field, 2) the southern-most latitude of our predictor field, 3) the204

number of predictor principal components (PCs) to use in our multiple linear regression205

model, and 4) the number of predictand PCs to use in our multiple linear regression model.206
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Figure 1. Sea-level pressure anomalies are plotted using the red-to-blue colorbar, where the

anomalies were calculated with respect to the period 1948-1999. The horizontal green lines show

the northern-most and southern-most latitudinal bounds that we use to constrain our predictor

data. The range of possible iterative combinations of these two parameters, given a specified

number of predictor PCs, is depicted by the black lines with green arrows on the right side of the

plot.

In an effort to reduce the number of parameters that we optimize, we fixed parameter207

4 (the number of leading predictand PCs) to five, since that number consistently pro-208

duced better results than other numbers of PCs. As a result, we now have the other three209

parameters which require optimization. The prespecified ranges we chose for the three210

parameters were [87.5◦N, 82.5◦N, 77.5◦N, 72.5◦N, where these are the latitudinal cen-211

troids] for the northern-most latitude, [12.5◦N, 7.5◦N, 2.5◦N, 2.5◦S, 7.5◦S, where again212

these are the latitudinal centroids] for the southern-most latitude (see Figure 1), and [1,...,25]213

for the number of predictor PCs. We decided at the start, that we would include all lon-214

gitudinal data in our predictor fields. Therefore, we have not included any additional pa-215

rameters governing the East-West boundaries of our predictor field.216

We begin with our predictor matrix X, whose columns are samples in time and rows
are grid points (X matrix has 72 rows by a variable number of columns), and our pre-
dictand matrix Y, whose columns are samples in time and rows are HUCs (Y matrix
is 72 x 204). X is a subset of the global field of August-September data (SLP, UWND,
or VWND), where parameters 1 and 2 control the latitudinal bounds from which we con-
strain the predictor field. Y contains our November-March precipitation amounts in the
204 HUC basins. Prior to performing any calibration, we first remove the mean from Y
with

Yj = Yraw
j − 1ȳj (1)

where Yj contains our precipitation anomalies at HUC, j, Yraw
j are our raw precipita-

tion amounts, 1 is a 72 x 1 column vector of ones, and ȳj is a 1 x 204 row vector con-
taining our mean precipitation amounts with respect to our calibration period (e.g., 1948/49-
1999/2000 when using the split sample test case). For our predictors, we remove any ex-
isting historical trends,

x̃i = xraw
i − xtrend

i (2)

where x̃i and xraw
i are respectively our detrended and raw time series of predictor val-

ues (SLP, UWND, or VWND) at grid cell, i, and xtrend
i is the least-squares trend line
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fitted with respect to the period of calibration. Next, the predictor data is weighted by
latitude,

Xi = X̃iD (3)

where D is a diagonal matrix with the diagonal elements filled with cos(φi) and φ is the
latitude of grid cell i. Then, X is decomposed over the calibration period, using singu-
lar value decomposition with the Python package numpy,

X = U1S1V1 (4)

where S1 is the diagonal matrix containing the singular values of X and U1 and V1 are
the left-singular and right-singular vectors, respectively. Similarly, decompose Y over
the calibration period such that,

Y = U2S2V2 (5)

where S2 is the diagonal matrix containing the singular values of Y and U2 and V2 are
the left-singular and right-singular vectors, respectively. Next, we calculate our princi-
pal components of X,

XPCS = XVT
1 (6)

and similarly, we calculate our principal components (PCs) of Y,

YPCS = YVT
2 (7)

Thus, we can now define our PCR model as a mulitple linear regression,

yPCSk
= Xp3

PCSβ + β0 (8)

where yPCSk
is our leading principal component, k, of our precipitation, where k ∈ (1...5),

Xp3
PCS is our matrix of leading principal components of X using the leading PCs spec-

ified by parameter 3, where p3 ∈ (1...25), and β and β0 respectively contain the regres-
sion coefficients and intercept obtained through a least-squares fit. The calibration pe-
riod is used to fit the regression coefficients of Eq. 8. Lastly, we back-transform the data
from PC space to precipitation anomaly space at each of the HUCs. This is done with

Yfcst = Y5
PCSṼ2 (9)

where Yfcst are the forecasted precipitation anomalies for the HUCs across CONUS, Y5
PCS217

are our leading five forecasted PCs, and Ṽ2 are the leading five eigenvectors from our218

decomposition in Eq. 5.219

Our goal, at this point, is to establish for each of the three models (i.e., SLP, UWND,
and VWND) which sets of parameters yield the best CONUS-average anomaly corre-
lation forecast skill in our calibration period. Therefore, we use observed precipitation
anomalies, Y, and forecasted precipitation anomalies, Yfcst, to calculate the anomaly
correlations of each parameter combination at each HUC. These values are calculated
over the calibration period. Then, CONUS-average anomaly correlations, for a specified
parameter combination, is calculated as

rp1,p2,p3 =
1

n

204∑
j=1

rj,p1,p2,p3 (10)

where rp1,p2,p3 is our CONUS-average anomaly correlation at HUC, j, p1 is our param-220

eter governing the northern-most latitude (p1 ∈ (1...4) [i.e., 87.5◦N, 82.5◦N, 77.5◦N,221

72.5◦N]), p2 is our parameter governing the southern-most latitude (p2 ∈ (1...5) [i.e.,222

12.5◦N, 7.5◦N, 2.5◦N, 2.5◦S, 7.5◦S]), and p3 is our parameter governing the number of223

leading predictor PCs (p3 ∈ (1...25)).224

Next, we want to find which parameter sets are optimal in producing the most skill-225

ful out-of-sample forecasts. Therefore, in addition to the cross validated cases that we226
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have already outlined, we also implement leave-one-out cross validation over the calibra-227

tion period itself. Here, we outline an example implementation of the SLP model with228

the split sample case:229

1. Prior to Eq. 1, we choose values for parameters 1 and 2. In the first iteration, we230

use the northern-most latitude of each of these (i.e., 87.5◦N and 12.5◦N, respec-231

tively). Then, the global field of SLP data is constrained by our chosen latitudi-232

nal bounds.233

2. Specify the value of parameter 3 which controls the number of leading PCs to use234

from our predictor matrix. In our initial iteration, only the first leading PC is used.235

3. Proceed with Eqs. 1-7.236

4. Use Eqs. 8-9 with leave-one-out cross validation to forecast the years in the cal-237

ibration period. For example, data from the years 1949/50-1999/2000 is used to238

fit the model in Eq. 8, and use Eq. 9 to make retrospective forecasts for the HUCs239

in the season November-March 1948/49. Next, the season 1949/50 is left out and240

the other 51 calibration years are used to forecast that season. Then, proceed in241

the same manner until all of the calibration years have been reforecasted. Lastly,242

fit the model in Eq. 8 to the entire calibration period (all 52 years), and use Eq.243

9 to make forecasts for the years 2000/01-2019/20.244

The steps enumerated above are repeated until we have iterated over all possible245

combinations of our three parameters (4x5x25 = 500 possible scenarios). And Eq. 10246

is then used to find the sets of parameters which produced the greatest cross-validated247

skill in our calibration period. The parameter combinations that produced the top 1%248

of CONUS-average anomaly correlations (the 5 best performing parameter combinations249

in the calibration period) are subsequently averaged to calculate ensemble mean fore-250

casts. This process is performed independently for each of the three SLP, UWND, and251

VWND statistical models.252

At this point, we have produced four sets of forecasts. These are the CLSST model
forecasts, and the forecasts resulting from our optimized ensemble mean PCR forecasts
using the SLP, UWND, and VWND fields. Lastly, we obtain the weighted mean ensem-
ble forecasts as

Yfcst
j =

Yfcst
1j w1j + Yfcst

2j w2j + Yfcst
3j w3j + Yfcst

4j w4j

w1j + w2j + w3j + w4j
(11)

where our weighted ensemble mean forecasts, Yfcst, at HUC, j, are comprised of the fore-
casts of the CLSST model, Yfcst

1j , the SLP model, Yfcst
2j , the UWND model, Yfcst

3j , and

the VWND model, Yfcst
4 , and w1j , w2j , w3j , and w4j are the weights of those models,

respectively. Prior to Eq. 11, the forecasts of Yfcst
1 , Yfcst

2 , Yfcst
3 , and Yfcst

4 , were each
independently standardized for each HUC over the calibration period (e.g., 1949/50-1999/2000
using the split sample case). The weights are defined as

w1j =

(
r1j + 1

2

)2

, w2j =

(
r2j + 1

2

)2

, w3j =

(
r3j + 1

2

)2

, w4j =

(
r4j + 1

2

)2

(12)

where r1j , r2j , r3j , and r4j are the anomaly correlations of our four statistical models253

calculated over the calibration period for HUC, j. Through calculating the Akaike in-254

formation criterion (AIC) (Akaike, 1974), we were able to confirm that the skill improve-255

ment using all four predictor models was better than any individual model or model com-256

bination.257

In addition to the split sample case, which we have used to outline the methods258

above, we also performed a 10-fold cross validated test. In the 10-fold case, for each fold259

we leave out four consecutive years for a total of ten different times. This was done over260

the 40 year period 1980/1981-2019/2020. For example, we initially left out 1980/81-1983/84,261
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and used the years 1948/49-1979/80 and 1984/85-2019/20 to fit the SLP, UWND and262

VWND models and make forecasts for those four years. Next, we did the same with the263

years 1984/85-1987/88, and so on. Otherwise, the model fitting and forecasting proce-264

dure is the same as outlined for the split sample test. However, in contrast to the split265

sample test, the standardization of the forecasts Y1, Y2, Y3, and Y4, for all HUCs, is266

performed over the period 1949/50-1979/1980.267

4.4 PLSR implementation of the SCEF268

PLSR has a potential advantage over PCR, insofar that PLSR can find statistical269

relationships between transformed predictors and predictands where the transformed pre-270

dictors may explain a low amount of variance. Using PLSR allows us to check for: 1)271

How effectively can a method such as PLSR sift through the data and pull out relevant272

predictors without any prescreening? and 2) Do we gain anything by allowing predic-273

tor projections that potentially explain less variance than through a method such as PCR?274

We implement PLSR using the Python package scikit-learn. For a detailed explaina-275

tion of PLSR, please refer to Wold et al. (2001).276

Initially, we simply calculated the skill of the PLSR weighted mean forecasts us-277

ing only the August-September average SLP, UWND, and VWND data. We leave out278

the CLSST model, since the CLSST model forecasts remain constant, and therefore, the279

difference lies in the PCR or PLSR implementation of the other three statistical mod-280

els. This initial baseline forecast was performed using our split sample test with the de-281

fault number of components (i.e., two components) in the PLS regression. The predic-282

tor data was the entire grid of global SLP, UWND, and VWND at the same 5.0◦ lat-283

itude by 7.5◦ longitude resolution.284

Next, we added complexity to the PLSR model by fitting the same three param-285

eters that we fit with PCR.286

5 Results287

The anomaly correlation forecast skill over the last 20 years for NMME, ECMWF-288

SEAS5, and the SCEF models can be seen in Figure 2. The optimized PCR and the PLSR289

implementations of the SCEF model, using the split sample cross validated case, both290

clearly outperform NMME and ECMWF-SEAS5 over the period 2000/2001-2019/2020.291

The CONUS-average anomaly correlation for the SCEF model is nearly double that of292

NMME and ECMWF-SEAS5. After accounting for field significance (Benjamini & Hochberg,293

1995; Wilks, 2016), we found 10% of the 204 CONUS HUCs to have statistically signif-294

icant forecast skill for NMME, 10% for ECMWF-SEAS5, 58% for SCEF (PCR), and 61%295

for SCEF (PLSR) (using a false discovery rate, αFDR, of 0.10, please refer to Wilks (2016)296

for details). More specfically, the SCEF model has a more dramatic improvement in fore-297

cast skill across the western United States.298

In the previous section, we discussed that one of the first things we did was to ob-299

serve how well a baseline PLSR model performed. This is an implementation of the PLSR300

model using SLP, UWND, and VWND data with no preprocessing (i.e., we are not con-301

trolling the regional limits of our predictors, and we simply use the default number of302

components, which was two). Under that set of conditions, and predicting the last 20303

years using the split sample case, the forecasts had a CONUS-average correlation of 0.230.304

That CONUS-average anomaly correlation is substantially less than what we achieve by305

fitting our three parameters across these three statistical models in the PCR framework,306

which is 0.369.307

Through fitting the same three parameters discussed in Section 4, however, the PLSR308

implementation of the SCEF model is able to achieve similar performance to that of the309
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Figure 2. Anomaly correlation skill of the split validation forecasts for the period 2000/2001-

2019/2020.

PCR implementation. This is true for our chosen skill metrics and cross validation schemes.310

Ultimately, the PCR implementation was found to perform modestly better, and as a311

result, we focus the duration of the paper on showing the SCEF model forecasts and as-312

sociated forecast skill metrics using only the PCR implementation.313

In Figure 3a, one can observe the similarity of the SCEF (PCR) forecasts them-314

selves and the skill of these forecasts (Figure 3b) when using the two different valida-315

tion cases. In the end, it is desirable to produce cross validated forecasts over a period316

greater than the 20 year period 2000/2001-2019/2020 (which is illustrated in Figure 2).317

That way, we can compare skill over a longer period of record like NMME’s, for exam-318

ple, which is 1982/1983-2019/2020. Given the relatively small sample size of the NCEP/NCAR319

Reanalyis dataset (72 cool seasons or samples), though, it is not reasonable by default320

to expect a good fit of our model parameters if we attempt to perform a split sample test321

with a validation period equal to NMME’s period of record. In that case, we would use322

the calibration period 1948/1949-1981-1982 to fit the model and we would validate over323

the period 1982/1983-2019/2020. Therefore, we needed to rely on a different cross val-324

idation scheme that allows us: 1) to have longer periods of calibration data for more ro-325

bust model fitting, and 2) compare the forecasts over a longer period of record. We used326

10-fold cross validation to overcome that challenge. However, prior to simply compar-327

ing the skill of the 10-fold cross validated SCEF model to NMME over a longer period,328

we want to be confident that the 10-fold case is not overfitting our model in such a way329

as to inflate our forecast skill with respect to the more robust split sample test. Figure330

3a shows that we do not have any systematic bias in the forecasts themselves between331

the two cross validation cases, while Figure 3b then shows that the 10-fold case is not332

overestimating or inflating the forecast skill with respect to the split sample case (i.e.,333

the scatter is well distributed about unity in Figure 3b). This now gives us the neces-334

sary confidence to move forward and compare the forecast skills of the 10-fold case of335

the SCEF model to those of NMME for the longer period of record 1982/1983-2019/2020.336

In Figure 4, we show the sensitivity of our three model parameters for each of the337

individual statistical models comprising the SCEF (PCR) framework. One can observe338

that the models are most sensitive to the number of predictor PCs, where using only the339

first few predictor PCs (left sides of the individual plots) yields much less skill. The mod-340
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Figure 3. Similarity between the forecasts and the anomaly correlations over the same period

of record, 2000/2001-2019/2020, using the split sample and 10-fold cross validation cases. a)

plots the standardized forecasts, for all HUCs, using the split sample (x-axis) versus the 10-fold

(y-axis) cross validation cases. b) compares the anomaly correlations between the split sample

(x-axis) and the 10-fold (y-axis) cross validation cases.

els can be seen to exhibit less sensitivity to the parameters controlling the northern-most341

and southern-most latitudinal bounds. The best performing combination of model pa-342

rameters are enclosed by the black boxes in Figure 4, where these are the top perform-343

ing 1% of parameter sets as calculated using the calibration data. It is also evident for344

the UWND model that the parameters reach saturation at the upper limits of our pre-345

specified boundary ranges. This appears to indicate that using larger ranges for our pa-346

rameters could yield better performance. However, we did not want to influence the per-347

formance of our model by how skillful we found it to be during validation. Therefore,348

we stick with our original prespecified parameter ranges that were chosen prior to model349

implementation.350

Figure 5 compares the anomaly correlation forecast skill of the NMME model to351

that of the SCEF model over the longer period of record 1982/1983-2019/2020. The CONUS-352

average anomaly correlation for the SCEF model is 0.361, while for NMME it is 0.271.353

Statistically significant forecast skill is observed for 52% and 77% of the basins across354

CONUS for NMME and SCEF, respectively. For the western United States, west of 100◦W,355

63% and 94% of basins have statistically significant forecast skill.356

The reduction in RMSE with respect to climatology, for the NMME and SCEF fore-357

casts, over the longer period of record, 1982/1983-2019/2020, is shown in Figure 6. RMSE358

is calculated using standardized forecasts and observations. Though, prior to calculat-359

ing RMSE, we first obtain a constant scaling factor which we apply to the forecasts. This360

scaling factor is optimized to provide the greatest reduction in RMSE for the SCEF model361

in the calibration period 1948/1949-1981/1982. The scaling factor for the SCEF model362

forecasts was 0.40. It should be noted that this scaling factor is robust and the same value363

is obtained if we had optimized in-sample over the validation period 1982/1983-2019/2020.364

Similarly, we optimized the scaling factor for NMME. Though, we cannot calculate an365

out-of-sample scaling factor for NMME, and simply optimized this value in-sample over366

the validation period 1982/1983-2019/2020. NMME’s scaling factor was 0.30. We then367

multiply all of the SCEF and NMME standardized forecasts, at all HUCs, in the vali-368
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Figure 4. Anomaly correlations skill scores are shown for the different parameter combina-

tions for the SLP, UWND and VWND statistical PCR models. These are averaged (averaged

over each of the 10 folds) anomaly correlations calculated from the calibration period for each

parameter combination. The x-axis shows the senstivity of the individual models to using dif-

ferent numbers of predictor PCs in our PCR model. Each panel from top to bottom illustrates

the sensitivity of the model to using different northern-most latitudes. And the y-axis illustrates

the sensitivity of the model to using different southern-most latitudes. The best performing

combination of model parameters (i.e., the top performing 1%) are enclosed by the black boxes.

Figure 5. Anomaly correlation skill of the forecasts for the 38 year period between 1982/83-

2019/20.
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Figure 6. Subplots a) and b) show the percentage reductions in RMSE with respect to clima-

tology. Positive values indicate forecasts that are a positive reduction, or forecasts that perform

better than climatology. The CONUS-average RMSE percentage reduction can be seen in the

bottom right of subplots a) and b). c) plots the percentage reductions in RMSE, at each HUC, of

the SCEF model versus NMME.

dation period by 0.40 and 0.30, respectively. The reductions in RMSE are subsequently369

calculated using these scaled standardized forecasts. For the NMME forecasts over the370

period 1982/1983-2019/2020, there is a CONUS-average reduction in RMSE of 3.20%371

with respect to climatology. In contrast, the SCEF forecasts provide a CONUS-average372

reduction of 5.70% with respect to climatology over the same period. The SCEF model373

forecast error reductions again show a more dramatic improvement across the West. In374

Figure 6c, we can see that both models are capable of providing better forecasts in cer-375

tain HUCs than the other model, while the SCEF model generally shows greater reduc-376

tions (i.e., more of the scatter points are situated further to the right of unity than scat-377

ter points situated to the left).378

Figure 7 shows the scatter points of the standardized forecasts versus observations,379

for all HUCs simultaneously. The relationship between NMME standardized forecasts380

and the standardized observations over the longer period of record, 1982/1983-2019/2020,381

are shown in Figure 7a. The standardized forecasts of the SCEF model versus standard-382

ized observations over the same period are shown in Figure 7b. The CONUS-wide per-383

cent reduction in RMSE with respect to climatology and the CONUS-wide anomaly cor-384

relations can be seen in the upper left-hand of the different subplots of Figure 7. Sim-385

ilarly to the CONUS-averaged results, the CONUS-wide SCEF model forecast skill clearly386

outperforms NMME. The forecasts of the SCEF and the NMME models respectively cap-387

ture 12.0% and 7.2% of the total CONUS-wide standardized observed variance over the388

period 1982/1983-2019/2020. Likewise, the cool season SCEF forecast skill over the more389

recent period 2000/2001-2019/2020 shows an even greater improvement with respect to390

NMME (Figures 7c and 7d). Not shown are the ECMWF CONUS-wide results for this391

shorter period; ECMWF has an anomaly correlation of 0.202 with a reduction in RMSE392

of 2.2%. Over this more recent period 2000/2001-2019/2020, the SCEF, NMME and SEAS5393

models respectively capture 11.8%, 4.0% and 4.1% of the total CONUS-wide standard-394

ized observed variance.Figures 7e and 7f compare the standardized forecasts of the SCEF395

and NMME models for the first 18 years of the record (i.e., 1982/1983-1999/2000). For396

this earlier period, we observe very similar forecast skill in the two models. It should be397
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Figure 7. Standardized forecasts plotted against standardized observations for all HUCs

simultaneously. The top and bottom rows plot the NMME and SCEF standardized forecasts

along the x-axis, respectively, while the standardized observations are plotted on the y-axis.

The columns show the impact of different validation periods on the forecast skill. The CONUS-

wide percentage reduction in RMSE with respect to climatology and the CONUS-wide anomaly

correlation values can be seen in the upper left of each subplot.

noted that the scales of the x and y axes in Figure 7 are different; the forecasted extremes398

are not nearly as extreme as some of the observed values.399

Figure 8 shows the 10-fold cross validated anomaly correlation skill of each of the400

models that contribute to SCEF. Each model contributes skill in different regions. The401

CONUS-average skill of the SLP and UWND models generally outperform those of the402

CLSST and VWND models. Though, importantly, the CLSST model is observed to pick403

up on skill in the central (north-to-south) region of the West. This is due to the long-404

lead statistical relationship between NINO3.4 and precipitation (Switanek et al., 2020).405

What is obvious, when comparing to Figure 5, is that the cross validated weighted en-406

semble mean forecasts of the SCEF clearly outperform any of the individual models.407

The average set of weights (Eq. 12) applied to each of the four models can be seen408

in Figure 9. Since the weights vary to some degree with respect to the chosen calibra-409

tion period, the values illustrated in Figure 9 are calculated to be the averages of the weights410

across each of the 10 folds. As can be expected, the geographic distribution of weights411

aligns quite closely with the cross validated skill of the individual models from Figure412

8.413

6 Conclusions414

This paper proposes a new statistical modeling framework, which we have called415

the Statistical Climate Ensemble Forecast (SCEF) model. The SCEF model is capable416

of producing more skillful cool season November-March precipitation forecasts than both417

the NMME and ECMWF SEAS5 models. These improvements in cool season forecast418

skill were shown for the validation periods 2000/2001-2019/2020 and 1982/1983-2019/2020419

–14–



manuscript submitted to Water Resources Research

Figure 8. The skill of the individual models, using 10-fold cross validation, over the period

1982/1983-2019/2020.

Figure 9. Model weights at each HUC established over the calibration period.
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using split validation and 10-fold cross validation, respectively. In particular, the SCEF420

model most dramatically improves forecast skill across the western United States.421

As new observational measurements add to the length of our historical records, more422

sophisticated empirical-statistical algorthims (Rasouli et al., 2012; Leng & Hall, 2020;423

Scheuerer et al., 2020) have the capacity to yield further improvements to forecast skill.424

Even with the simpler empirical-statistical techniques implemented in this paper, how-425

ever, we can provide optimism for cool season precipitation forecasts across the West.426

The main contributions of this paper are summarized as: 1) Using statistical predictors427

at long-lead times of greater than 6 months has the potential to improve forecasts over428

relying solely on predictors at short-lead times of 1-6 months. 2) Better forecasts can be429

achieved by prescreening the predictor data. Examples of this can include constraining430

the spatial extent of our predictor field, in addition to reducing the dimensionality of our431

predictor and/or predictand data by using fewer leading principal components than our432

number of samples. 3) Increasing model complexity (NMME versus SCEF) does not nec-433

essarily lead to added value.434

The results illustrated in Figure 7 raise a few intriguing questions. What explains435

the SCEF model performing so much better than NMME in the more recent period of436

2000/2001-2019/2020? Is this a data quality issue, where better observational and re-437

analysis data can lead to better forecasts? Can the difference in skill be explained by some-438

thing such as the magnitude of our predictor data during the validation period (Newman,439

2017; Huang et al., 2021; Mariotti et al., 2020)? What could explain periods of greater440

or lesser forecast skill across the western United States? More effort and continued re-441

search is required to unravel some or all of these pertinent questions.442

Compounding the difficulties presented by climate change, there has historically443

been limited forecast skill of cool season precipitation across the water-stressed western444

United States. As a result, improving these forecasts can provide invaluable decision-445

making assistance to water managers across the West. Given the devastating drought446

currently consuming the region in the summer of 2021, the West needs any and all ad-447

ditional tools to help navigate its many natural resource challenges.448
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