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Abstract

The stochastic discrete fracture network (SDFN) model is a practical approach to model complex fracture systems in the

subsurface. However, it is impossible to validate the correctness and quality of an SDFN model because the comprehensive

subsurface structure is never known. We utilize a pixel-based fracture detection algorithm to digitize 80 published outcrop

maps of different scales at different locations. The key fracture properties, including fracture lengths, orientations, intensi-

ties, topological structures, clusters and flow are then analyzed. Our findings provide significant justifications for statistical

distributions used in SDFN modellings. In addition, the shortcomings of current SDFN models are discussed. We find that

fracture lengths follow multiple (instead of single) power-law distributions with varying exponents. Large fractures tend to have

large exponents, possibly because of a small coalescence probability. Most small-scale natural fracture networks have scattered

orientations, corresponding to a small κ value (κ<3) in a von Mises–Fisher distribution. Large fracture systems collected in

this research usually have more concentrated orientations with large κ values. Fracture intensities are spatially clustered at

all scales. A fractal spatial density distribution, which introduces clustered fracture positions, can better capture the spatial

clustering than a uniform distribution. Natural fracture networks usually have a significant proportion of T-type nodes, which

is unavailable in conventional SDFN models. Thus a rule-based algorithm to mimic the fracture growth and form T-type nodes

is necessary. Most outcrop maps show good topological connectivity. However, sealing patterns and stress impact must be

considered to evaluate the hydraulic connectivity of fracture networks.
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Abstract15

The stochastic discrete fracture network (SDFN) model is a practical approach to model16

complex fracture systems in the subsurface. However, it is impossible to validate the cor-17

rectness and quality of an SDFN model because the comprehensive subsurface structure is18

never known. We utilize a pixel-based fracture detection algorithm to digitize 80 published19

outcrop maps of different scales at different locations. The key fracture properties, including20

fracture lengths, orientations, intensities, topological structures, clusters and flow are then21

analyzed. Our findings provide significant justifications for statistical distributions used in22

SDFN modellings. In addition, the shortcomings of current SDFN models are discussed.23

We find that fracture lengths follow multiple (instead of single) power-law distributions with24

varying exponents. Large fractures tend to have large exponents, possibly because of a small25

coalescence probability. Most small-scale natural fracture networks have scattered orienta-26

tions, corresponding to a small κ value (κ < 3) in a von Mises–Fisher distribution. Large27

fracture systems collected in this research usually have more concentrated orientations with28

large κ values. Fracture intensities are spatially clustered at all scales. A fractal spatial29

density distribution, which introduces clustered fracture positions, can better capture the30

spatial clustering than a uniform distribution. Natural fracture networks usually have a31

significant proportion of T-type nodes, which is unavailable in conventional SDFN models.32

Thus a rule-based algorithm to mimic the fracture growth and form T-type nodes is nec-33

essary. Most outcrop maps show good topological connectivity. However, sealing patterns34

and stress impact must be considered to evaluate the hydraulic connectivity of fracture35

networks.36

1 Introduction37

Fractures, a general concept of discontinuities in geology, includes joints, faults, pressure38

solution seams and deformation bands. They are ubiquitous in crust rocks and usually39

comprise complex networks. Fracture networks control many physical properties of rocks,40

such as stiffness, strength, permeability [Adler and Thovert, 1999]. Therefore, they have a41

significant impact on many engineering fields, such as hydrology, waste disposal, geothermal42

exploitation, mining, and petroleum reservoir exploitation [Berkowitz, 2002; Dverstorp et al.,43

1992; Hyman et al., 2015; Dong et al., 2019; He et al., 2021].44

However, the three-dimensional, small-scale structures of subsurface fractures are largely45

inaccessible with current technologies (seismic surveys, well logging, field observations, etc.).46

Furthermore, complex and irregular fracture shapes [Gertsch, 1995], rough fracture surfaces47

[Zimmerman et al., 1991], turtuosity of flow paths in a fracture and stress impact on the48
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fracture permeability [Cook et al., 1990; Tsang, 1984] make it extremely difficult to char-49

acterize fracture networks in great detail. A stochastic discrete fracture network model50

(SDFN) [Robinson, 1983; Andresen et al., 2013; Wilcock, 1996; Zhu et al., 2019] is possi-51

bly the only practical approach to model complex fracture systems in the subsurface. In a52

stochastic discrete fracture network model, fractures are represented explicitly with simple53

geometries, such as line segments in 2D and polygons or ellipses in 3D.54

Different distributions are implemented to characterize the key geometric properties55

of the fracture network, including fracture lengths, orientations, and positions of fracture56

centers. Different researchers propose exponential, gamma, log-normal and power-law dis-57

tributions to describe fracture lengths [Priest and Hudson, 1976; Davy, 1993; Rouleau and58

Gale, 1985; Sornette and Sornette, 1999]. Field observations and analogue experiments sug-59

gest the prevalence of power-law distribution [Segall and Pollard, 1983a; Sornette et al.,60

1993]. The orientation of fractures is usually described by a von Mises–Fisher distribution61

[Song et al., 2001; Whitaker and Engelder , 2005]. Uniform and fractal spatial density dis-62

tribution are commonly applied to describe positions of fracture centers [Bour and Davy,63

1997; Darcel et al., 2003]. A fractal dimension characterizes a fractal spatial density distri-64

bution. In 2D, the fractal spatial density distribution generates clustered fracture positions65

and brings clustering effects when the fractal dimension is smaller than 2. It reduces to a66

uniform distribution when the fractal dimension equals 2. Similarly, in 3D, the correspond-67

ing limiting dimension for uniform fracture distribution is 3. A uniform spatial density68

distribution is easy for implementation but usually unrealistic. Through outcrop obser-69

vations, natural fracture systems usually show clustering effects [Bonnet et al., 2001; Zhu70

et al., 2018]. Table. 1 summarizes key geometric properties of fracture networks and their71

commonly adopted statistical distributions.72

A stochastic discrete fracture network cannot characterize details of fracture geometry,74

but it can preserve the essential topological structure of a fracture network, which deter-75

mines the overall hydraulic diffusivity in fluid flow through low permeability formations76

[Zhu et al., 2021a]. Important flow results, such as flow rate or flow-based permeability,77

are sensitive to fracture configurations. Therefore, it is necessary to investigate fracture78

configurations before incorporating impacts of detailed fracture properties, such as rough-79

ness, curved shapes, and stress impacts. However, actual subsurface fracture networks are80

unavailable with current technologies. Therefore, it is impossible to validate the correctness81

and quality of SDFN models. The confidence of SDFN models depends on whether statisti-82

cal distributions are representative of real fracture networks. Those statistical distributions83

are usually summarized from available datasets, including outcrop maps[Ukar et al., 2019;84

Bisdom et al., 2014], wellbore images[Williams and Johnson, 2004], and seismic maps [Prioul85
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Table 1. Distributions of different fracture geometric properties73

Property Distribution Reference

Length

Exponential

Gamma

Lognormal

Power-law

Priest and Hudson [1976]; Nur [1982]

Davy [1993]; Sornette and Sornette [1999]

Priest and Hudson [1981]; Rouleau and Gale [1985]

Segall and Pollard [1983a]; Sornette et al. [1993]

Orientation von Mises–Fisher distribution Song et al. [2001]; Kemeny and Post [2003]

Position
Uniform

Fractal

Berkowitz [1995]; Bour and Davy [1997]

Darcel et al. [2003]; Zhu et al. [2018]

and Jocker , 2009]. Outcrop maps are essential datasets because they are widely spread and86

provide abundant information on geometric properties of fractures, such as fracture lengths,87

orientations, and intersection relationships. However, outcrop maps require a significant88

human effort to recognize and detect fractures before summarizing statistics. Geologists89

usually analyze a few outcrop maps at a given region and hardly extend their findings to90

more general conditions, considering the tremendous time cost for fracture interpretations.91

Therefore, a synthetic analysis of fracture geometries with a large number of outcrop maps92

from different scales and locations is unavailable.93

To reduce the human effort of interpreting outcrop maps, we have proposed an auto-94

matic fracture interpretation algorithm [Zhu et al., 2020], which automatically interprets95

typical plan-view maps of fracture networks from a variety of resources, such as seismic96

reflection horizons, satellite images, aerial photos, etc. The method comprises two stages:97

(1) conversion of a multi-bit per pixel raw outcrop image to a binary map that preserves98

fracture geometry and connectivity. This stage is denoted as fracture recognition, which is99

completed by using a deep-learning architecture, U-net [Ronneberger et al., 2015]. (2) re-100

placement of the binary fracture images with line segments or polylines. This stage is named101

fracture detection, which is completed with a pixel-based fracture detection algorithm. The102

algorithm is further optimized in this research and discussed in detail in the following sec-103

tion. The deep-learning-based fracture recognition needs many training images, which are104

unavailable in this research. Therefore, we focus on the fracture detection algorithm and105

utilize the algorithm to digitize 80 outcrop maps from published literature.106
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Commonly used lineament detection methods include Hough transform [Wang and107

Howarth, 1990], Segment Tracing Algorithm [Koike et al., 1995] and more methods are108

available in a detailed review paper [Ahmadi and Pekkan, 2021]. Those lineament detection109

methods are usually sensitive to curved shapes of real fracture traces, thus not suitable for110

complex fracture systems. Our proposed pixel-based detection algorithm instead is robust,111

accurate and efficient. All pixels in a fracture trace is recorded, and key information of112

the fracture trace is available, including fracture lengths, orientations, positions and the113

abutment relationship between fractures.114

The outcrop maps are collected from different locations with varying scales from mil-115

limeters to tens of kilometers. We synthetically analyze distributions of fracture lengths,116

orientations, intensities, topological structures,clusters and flow from those outcrop maps.117

The findings on fracture geometries provide significant supports and justifications for SDFN118

modelling, and we also point out shortcomings and possible improvements of the commonly119

adopted SDFN techniques. The analysis on clusters and flow investigates the connected120

fractures and their permeability considering stress impacts.121

The structure of the paper is organized as follows: Section 2 introduces detailed al-122

gorithms used in detecting fractures from binary outcrop maps. Section 3 analyzes distri-123

butions of fracture lengths, orientations, intensities, their topological structures, clusters124

and flow. Section 4 discusses insights for stochastic discrete fracture network modeling.125

Important findings and conclusions are summarized in Section 5.126

2 Fracture detection127

A successful interpretation of fractures from a raw outcrop image requires two stages128

[Zhu et al., 2020]: fracture recognition and fracture detection. Deep learning technique, such129

as U-net [Ronneberger et al., 2015; Santoso et al., 2019; Zhu et al., 2020], and mathematic130

methods, such as shearlet transform [Reisenhofer , 2014], are suitable for fracture recogni-131

tion and separate fracture geometries from complex environments. This research collects132

published binary outcrop maps recognized by different geologists; therefore, the fracture133

recognition process is irrelevant. A fracture detection process is required to convert binary134

outcrop maps to line segments or polylines for further in-depth investigations. In our ap-135

proach, we use a pixel-based fracture detection method that is robust, accurate and efficient.136

The method is composed of four main steps.137

Step 1 Convert a binary image to its skeleton (1-pixel wide image). A Matlab function,138

‘bwskel’ (skeletonization operations on binary images), can easily convert a binary139

image to its skeleton. An example is shown in Fig. 2(b). Outcrops have experienced140
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server weathering and stress-release during the upward movement, which significantly141

changes fracture apertures. Therefore, the aperture information from an outcrop142

map is generally unreliable. The skeletonization loses the aperture information but143

preserves the topological structure of the fracture network, which is essential for the144

flow behaviour in the subsurface.145

Step 2 Find initial pixels and intersection pixels of fractures. In the skeleton image, an initial146

pixel is defined as a pixel with only one neighbouring pixel, and an intersection pixel147

is defined as a pixel with at least three neighbouring pixels. The pixel with only148

two neighbouring pixels is named a transit pixel. Fig. 2(c) shows a sketch map of149

different types of pixels. The green square points represent initial pixels. The blue150

circle points represent intersection pixels. The red triangle points represent merged151

intersection pixels. We merge the blue adjacent intersection pixels to their centroid152

point (red triangle point).153

Step 3 Track the trace of a fracture (Type 1 fracture) constrained by a pair of initial pixels154

or an initial pixel and a merged intersection pixel. The tracking starts at an unvisited155

initial pixel and stops at the other initial pixel or an isolated intersection pixel (after156

which there is no valid subsequent pixel) encountered during the tracking. Record all157

the pixels in a specific fracture trace. The tracking continues until all initial pixels158

are visited. The green lines marked in Fig. 2(d) are the results of the tracking.159

Step 4 Track the trace of a fracture (Type 2 fracture) constrained by a pair of merged160

intersection pixels. The tracking starts at a merged intersection pixel and stops at161

the first merged intersection pixel encountered during the tracking. Record all the162

pixels in a specific fracture trace. The tracking process is implemented on all merged163

intersection pixels. The red lines marked in Fig. 2(d) are the results of the tracking.164

Fig. 1 presents a flow chart of the fracture detection algorithm for a clear demonstration.167

By recording all pixels in a specific fracture trace, we can capture the fracture curvature168

by representing the fracture with a polyline (Fig.2(d)). The degree of a polyline in each169

fracture can be decided as required, and the maximum degree is the number of pixels in the170

fracture trace. The most troublesome part of tracking the trace of a fracture in Step 3 is to171

find the correct pixel when encountering an intersection pixel. Three steps are implemented172

in the algorithm. First, find the closest merged interaction pixel, and the algorithm searches173

for possible pixels at a given distance (the pixels intersecting the yellow box in Fig. 2(c)).174

Second, the algorithm finds the pixel which fits best the trend of the trace. Third, if the pixel175

found in the second step does not deviate significantly from the trend, this pixel is selected176

as the next pixel. Otherwise, the tracking stops for this trace and the current intersection177

pixel links to its closest merged intersection pixel. In this case, the trace is constrained178
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Figure 1. Flow chart of the fracture detection algorithm. Nb is the number of neighboring

pixels.

165

166

by an initial pixel and a merged intersection pixel. The current intersection pixel is the179

isolated intersection pixel mentioned in Step 3. The deviation criterion is adjustable for180

different outcrop maps, and the size of the yellow box is dynamically adjusted from 1 to181

3-pixel lengths. Similar procedures are applied to track the trace of a fracture constrained182

by a pair of merged intersection points.183

The process to find the next pixel can also be used to find branches originating from one184

merged intersection pixel, where the number of branches defines the T-type and X-type in-185

tersections. If the number of branches is two or three, the corresponding merged intersection186

pixel is a T-type intersection. When the number of branches is two, the merged interaction187

pixel is a V-type intersection, where two tips coincide. Here, we do not distinguish these two188

types and regard both of them as T-type intersections because the probability of a V-type189

interaction occurring in a natural network is negligible [Sanderson and Nixon, 2015]. When190
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the number of branches is more than three, the corresponding merged intersection pixel is191

an X-type intersection. T-type and X-type intersections are used for topological analysis in192

the next section.193

Fig. 3 shows one example of the digitized outcrop maps from the Achnashellach Cul-200

mination field area (Fig. 7B and 7D in [Watkins et al., 2015]). Detected fracture traces are201

overlapped with the original outcrop map in Fig. 2(c), which shows accurate detection re-202

sults. The synthetic analysis of geometric properties and topological structures of fractures203

are obtained with digitized outcrop maps and presented in the following section.

Binary image Skeleton image Initial and intersection pixels Detected fracture traces

(a) (b) (c) (d)

Figure 2. (a) A binary fracture map; (b) Skeleton image of the binary fracture map in (a); (c)

Initial and intersection pixels of the skeleton image; Green squares represent initial pixels. Blue

circles represent intersection pixels. Red triangles represent merged intersection pixels. (d) Fracture

traces interpreted with our detection algorithm; The green line segments are the traces found in

Step 3 (Type 1 fracture), and the red line segments are the traces found in Step 4 (Type 2

fracture).

194

195

196

197

198

199

204

3 Synthetic analysis of fracture geometries and topological structures207

We implement the fracture detection algorithm on 80 published outcrop maps [Duffy209

et al., 2017; Prabhakaran et al., 2021; Bertrand et al., 2015; Thiele et al., 2017; Odling,210

1997; Jafari, 2011; Gillespie et al., 1993; Segall and Pollard, 1983b; Holland et al., 2009;211

Bisdom, 2016; Barton, 1995; Watkins et al., 2015; Healy et al., 2017; Becker et al., 2018;212

Odling et al., 1999; Wyller , 2019]. These outcrop maps are collected from different parts of213

the world as shown in Fig. 4 and they have a wide range of scales from millimeters to tens214

of kilometers. Their geometric patterns are summarized and analyzed in detail, including215

fracture lengths, orientations, intensities and topological structures.216
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(a) (b) (c)

Binary image Initial and intersection pixels Detected fracture traces

Figure 3. Digitized fracture outcrop map at Achnashellach Culmination field area (Fig. 7B and

7D in [Watkins et al., 2015])

205

206

USUS Turkey

Brazil

Australia

Ireland UKGermany

Oman

Norway

Spain

Figure 4. A world map showing locations of collected outcrops208

3.1 Length distribution217

Exponential, log-normal and power-law distribution are usually adopted to describe218

fracture length, and power-law distribution is prevalent [Segall and Pollard, 1983a; Sornette219

et al., 1993]. However, an in-depth explanation of the origin of power-law distribution is220

insufficient [Davy et al., 2013; Sano et al., 1981].221

Makarov [2007] found the universal fractality of solids through the process of destruc-222

tion in load solids, which leads brittle fracture and plastic deformation to be self-similar at223

different scales and in turn, their lengths follow a power-law distribution. However, many224
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experiments and outcrop observations show the opposite process, where large fractures are225

formed from the linkage and coalescence of numerous small, isolated fractures [Cartwright226

et al., 1995; Soliva and Benedicto, 2004; Otsuki and Dilov, 2005]. Such linkage and coa-227

lescence happen in a wide range of scales (mm-km). Cladouhos and Marrett [1996] and228

Olson [2007] simulated the fracture growth and linkage process and observed a power-law229

distribution of fracture lengths.230

Researchers also observed two-/three dimensional power-law distribution in outcrop235

maps [Davy, 1993], where the full-length distributions are separated into two/three regions236

and described with a power-law distribution with different exponents. A typical length237

distribution from the real outcrop map at Achnashellach Culmination field area (Fig. 7B238

in [Watkins et al., 2015]) is shown in Fig. 5. For clarity, the fracture length is set as the239

number of pixels of each fracture trace instead of line segments after converting a fracture240

trace to a polyline. The cumulative length distribution shows varying slopes, and a two- or241

three-dimensional power-law distribution is insufficient to describe the length distribution.

10
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(a) (b)

Figure 5. (a) Length distribution of outcrop maps from Achnashellach Culmination field area

(Fig. 7B in [Watkins et al., 2015]). The red curve is the result of a fourth-order polynomial fitting.

(b) The red curve refers to the derivative of the fourth-order polynomial fitting in (a). The blue

curve refers to the derived coalescence probability based on Eq. 4.

231

232

233

234

242

Here, we propose a simplistic model (Appendix A and B) to explain a possible origin

of a power-law distribution for fracture lengths based on the self-similar characteristics of

natural fractures and their coalescence. The model reproduces the iterative growth process

of natural fractures, and we conclude that the fracture lengths should follow a power-law
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distribution at a later generation.

( NN

(1− p)N0
) = ( lN

l0
)

ln(p)
ln(ns)−1, (1)

where NN is the number of fractures with a fracture length of lN at the N th generation;

N0 is the initial number of fractures; lN is the fracture length at the N th generation; l0 is

the initial length of fractures; p is the coalescence probability at each generation; ns is the

number of small fractures coalesced to form a large fracture. A simpler expression of Eq. 1

is:

NN ∼ l−aN , (2)

where a = 1− ln(p)
ln (ns) .243

The coalescence probability varies between 0 and 1 and the number of coalesced small244

fractures ns usually varies between 2 and 5 [Cartwright et al., 1995; Soliva and Benedicto,245

2004;Otsuki and Dilov, 2005], so ln(p)
ln (ns) term is always negative. The corresponding exponent246

should always be larger than 1, which is consistent with outcrop observations [Bonnet et al.,247

2001].248

If the length distribution follows a power-law distribution, the cumulative distribution

function (CDF) of fracture lengths should also follow a power-law distribution

CN ∼ l1−aN , (3)

If p and ns are constant for each generation, the cumulative length distribution should249

be a single power-law distribution with the exponent equal to 1− a. However, this scenario250

is over-idealized, and Fig. 5(a) shows a curved CDF with varying slopes. Suppose that we251

regard each short growth period as a straight line segment. In that case, the varying slopes252

indicate fracture lengths in different short segments following a power-law distribution with253

different values of exponents. The variation of exponents comes from variations of p and ns.254

Due to the finite range effect [Pickering et al., 1995], the exponent obtained from255

CDF fitting is biased. We adopt the iterative method introduced in Pickering et al. [1995]256

with 1 ∼ 3 iterations to remove the majority of bias. The number of iterations is case-257

dependent, and usually, 3 is a good option. An intermediate range of fracture lengths is258

chosen for the fitting because data points of large and small fracture lengths are inaccurate.259

To be specific, [0.1 0.8] of the full range is selected. Large fracture trace length is usually260

affected by censoring effects [Riley, 2005; Priest and Hudson, 1981; Pickering et al., 1995],261

where the trace length is less than or equal to that of an entire trace. Small fracture trace262

length is inaccurate because of two possible reasons. One is the incomplete sampling or263

truncation because of limited resolutions of the sampling method. The second one is the264
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misinterpretation of close and small fractures caused by the limited resolution of published265

outcrop maps. Therefore, an intermediate range of lengths is more appropriate for the266

fitting.267

We fit the cumulative length distribution with a fourth-degree polynomial and get268

their derivatives, corresponding to 1 − a at each short growth period. The slope of fitted269

polynomials is shown in Fig. 5(b). With fracture lengths increasing, the slope gets smaller,270

which corresponds to a smaller value of ln(p)/ ln(ns). If we set ns = 3 and keep constant,271

Eq. 4 is the formula to calculate the coalescence probability at different length scales, and272

the corresponding values of p are shown in Fig. 5(b).273

p = exp(k × logns), (4)

where k is the slope of the cumulative length distribution.274

The coalescence probability decreases with increasing fracture lengths. This observation275

is valid for most collected outcrops (51 out of 80), indicating that large fractures are less276

likely to merge and form a larger fracture. The decreasing coalescence probability may277

attribute to the fact that relative fracture intensity is small in large fracture systems, and278

the stress condition required for the coalescence of large fractures is tough.279

3.2 Orientation distribution280

A von Mises–Fisher distribution usually describes the orientation of fractures [Song281

et al., 2001; Kemeny and Post, 2003; Whitaker and Engelder , 2005]. If a random D-282

dimensional vector ~x follows a von Mises–Fisher distribution, the corresponding probability283

distribution function is:284

p(~x | ~µ, κ) = CDexp(κ~µT~x), (5)

where CD(κ) is285

CD(κ) = κD/2−1

2πD/2ID/2−1(κ) , (6)

where Iν denotes the modified Bessel function of the first kind at the order of ν; The286

parameters ~µ and κ are the mean direction and concentration parameter respectively. κ287

controls the concentration degree of the distribution around the mean direction ~µ. When288

κ = 0, the von Mises–Fisher distribution degenerates to a uniform distribution. When κ is289

large, the distribution becomes very concentrated around the angle ~µ.290
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Here, we focus on the two-dimensional outcrop maps. Fig. 6 shows rose diagrams of293

two outcrop maps at the Achnashellach Culmination field area (Fig. 7B and 7D in [Watkins294

et al., 2015]). Fractures with different orientations possibly belong to different fracture sets295

because of different stress states during the geologic history [Laubach, 1988; Tuckwell et al.,296

2003]. In each fracture set, the orientation is highly concentrated and usually has a large κ297

value [Kemeny and Post, 2003]. To distinguish fracture sets on an outcrop map is nontrivial298

because the fracture orientation is only one of the important factors to distinguish different299

fracture sets and the abutting and overprinting criteria between fractures are essential as300

well [Weismüller et al., 2020]. More importantly, the stress history and fracture orientations301

in the subsurface is usually inaccessible. Therefore, we regard each outcrop map as an302

integrated fracture system instead of investigating each fracture set. The corresponding κ303

values for outcrop maps in Fig. 6 are 2.3 and 2.9, respectively. The small value of κ make the304

orientation distribution close to a uniform distribution, which is a widely used assumption305

in many SDFN modelling cases [Bour and Davy, 1997; Berkowitz, 1995; Darcel et al., 2003;306

Zhu et al., 2018].

(a) (b)

Figure 6. Orientation distribution of outcrop maps at Achnashellach Culmination field area

(Fig. 7B and 7D in [Watkins et al., 2015])

291

292

307

Summarized κ value for all 80 outcrop maps are presented versus the outcrop scale311

in a double-log scale in Fig. 7(a). Most small-scale outcrop maps have their orientations312

scattered and yield a small κ value (κ < 3), which indicates that fracture systems may be313

composed of many fracture sets with different orientations. Large outcrops tend to have more314

concentrated orientations, and the largest outcrop has the most concentrated orientation315

with κ = 100.2. The correlation coefficient between the outcrop scale and κ in a double-316
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Figure 7. (a) Concentration parameters, κ, of 80 published outcrop maps; (b)Concentration

parameters, κ, of 76 published outcrop maps by removing four anomalous data points (green points

in (a))

308

309

310

log scale is 0.48, implying a positive correlation between these two parameters.However,317

the positive correlation is mainly caused by four anomalous data points (large-scale faults),318

which are marked in green. Fig. 7(b) shows κ values after removing four anomalous data319

points, and the correlation coefficient is close to zero. Usually, it is difficult to collect outcrop320

maps at large scales, which makes outcrop maps of large faults insufficient. With available321

datasets in this research, large faults tend to have concentrated orientations. If this trend is322

valid in reality, it can partially explain the small coalescence probability of large fractures323

because they are concentrated in orientations and are difficult to intersect each other.324

3.3 Fracture intensity325

Natural fractures are not uniformly distributed, but spatially clustered [Darcel et al.,

2003; Zhu et al., 2018]. Commonly used methods to measure the spatial clustering of fracture

networks include one-dimensional sampling, which measures the spacing between fractures

in a given fracture set or two-dimensional sampling, which maps fracture traces exposed on

the outcrop. Here we adopt the two-dimensional sampling. We divide outcrop maps into

small boxes and calculate the fracture intensity in different boxes to measure the spatial

clustering of the fracture network. The box intensity is defined as:

P i21 = Li
Ai
, (7)

where P i21 follows the notation of fracture intensity proposed by Dershowitz et al. [1992],328

and it means the length of fracture traces per unit area in the box i; Li is the total length329

of fracture traces in the box i; Ai is the area of the box i. The box size should choose330
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properly. If the box size is too small (Fig. 8a), the detailed structure of a fracture network331

is captured, but the void space between fractures are uncovered, so the spatial clustering332

cannot be measured. If the box size is too large (Fig. 8c), then the domain is over-averaged,333

and spatial variations of box intensities are insignificant. A proper box size can make most334

void space inside the fracture network covered, and the spatial variations of box intensities335

are preserved. Through trial and error, 30 pixels is a proper box size for most outcrop maps336

in this research, and one example is shown in Fig. 8b.
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Figure 8. Box intensities of fracture outcrop map at Achnashellach Culmination field area

(Fig. 7B in [Watkins et al., 2015]) with different box sizes
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327

337

The spatial variations of the box intensity reveal the spatial clustering of fractures. We

use the coefficient of variation (CV) to measure the spatial clustering of a fracture network.

CV = σ

µ
, (8)

where σ is the standard deviation of box intensities; µ is the mean value of box intensities.338

For a few outcrop maps with sparse fractures, boxes with a size of 30 pixels cannot340

cover the most void space and 100 pixels is a better choice for the box size. However,341

CV values calculated for those outcrop maps with box sizes of 30 and 100 pixels are close.342

Therefore, we take a box size of 30 pixels for all outcrop maps in this research. Fig. 9343

presents the compilation of all CV values for 80 published outcrop maps. The correlation344

coefficient between CV and the scale is almost 0, indicating that spatial clustering can exist345

in all fracture networks regardless of the scale. The maximum, minimum, and mean values346
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Figure 9. The coefficient of variations of box intensities of all 80 published outcrop maps339

of CV are 0.68, 0.20 and 0.51, receptively. The standard deviation of CV is 0.1, implying347

an insignificant variation of CV in different outcrop maps.348

Spatial clustering can be attributed to impacts of all types of fracture geometries,349

such as fracture positions, lengths and orientations. It is difficult to separate contributions350

from each factor. To focus on the impact of fracture positions, we generate two stochastic351

fracture networks with their fracture centers following a fractal and uniform spatial density352

distribution, respectively. We keep the other geometric parameters the same and investigate353

the spatial distribution of their box intensities. Fig. 10 (a) and (b) show the two stochastic354

fracture networks and their box intensities are shown in Fig. 10 (c) and (d). These two355

fracture networks have their lengths follow a power-law distribution with the exponent equal356

3.0, and orientations follow a von Mises-Fisher distribution with κ = 1.5. The CV values for357

the two fracture networks are 0.26 and 0.65, receptively. The fracture network with uniform358

distributed fracture centers has the CV smaller than most outcrop maps. In contrast, the359

fracture network with clustered center positions has a much larger CV and is closer to360

reality. This observation suggests that natural fracture networks may have clustering effects361

caused by their clustered positions. However, fracture lengths and orientations may have362

significant impacts on CV as well. Therefore, more detailed and strict variable control363

should be implemented in future research to evaluate each geometric parameter’s impact364

comprehensively.365
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Figure 10. (a) and (b) are examples of stochastic discrete fracture networks generated by in-

house DFN modelling software, HatchFrac. (c) and (d) are box intensities of fracture network

(a) and (b), respectively. Two stochastic discrete fracture networks have their lengths follow a

power-law distribution with the exponent of 3.0. Fracture orientations follow a von Mises–Fisher

distribution with κ = 1.5. Positions of fracture centers follow a uniform (left) and fractal (right)

spatial density distribution receptively. The fractal dimension used in the right subfigure is 1.8.

The termination criterion is the formation of a spanning cluster, which connects four sides of the

domain.
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3.4 Topological structures374

Fracture connectivity is essential for fluid flow in complex fracture networks, and it de-375

pends on fracture lengths, orientations, and fracture intensities [Zhu et al., 2021a]. However,376

topology analysis can bring more insights on the connectivity compared with individual ge-377

ometrical parameters [Sanderson and Nixon, 2015]. Barton and Hsieh [1989] introduced a378

ternary diagram to characterize connectivity, on which the relative frequencies of the three379

node types present in a system are plotted as a point. In this research, fracture apertures are380

not considered; therefore, a ternary diagram is sufficient to describe topological structures381
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of fracture networks. The three node types include isolated tips (I-type), crossing fractures382

(X-type), and abutments or splays (T-type). Following Sanderson and Nixon [2015], we383

adopt CB, the average number of connections per branch, as the measure of connectivity.384

CB = 3×NT + 4×NX

NB
, (9)

where NT is the number of T-type nodes; NX is the number of X-type nodes; and NB is the

number of branches, which is calculated by:

NB = 1
2(NI + 3NT + 4NX), (10)

where NI is the number of I-type nodes.385

CB is a dimensionless number varying between 0 and 2, and a larger value indicates388

better connectivity. Fig. 11 (a) presents the ternary diagram of all 80 outcrop maps, and389

the colour map refers to the connectivity index CB. The contour line of CB is denoted in390

the figure.
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Figure 11. (a) Ternary diagram of three types of nodes, I-type, T-type and X-type; The contour

lines of CB are shown in different colors. (b) Connectivity indexes of all 80 published outcrop maps

386

387

391

Fracture networks with a higher proportion of T-type and X-type nodes have better392

connectivity. Most natural outcrops have good connectivity because their CB value is signif-393

icant. More importantly, most natural fracture networks have a large proportion of T-type394

nodes. T-type nodes are essential to improve the connectivity of a natural fracture system395

[Dershowitz and Einstein, 1988; Barton and Hsieh, 1989; Odling, 1997], because a high pro-396

portion of T-type nodes can lead to fewer dead-ends within each connected cluster. Fig. 11397

(b) shows the plot between the connectivity index CB and the scale. The correlation coef-398

ficient is -0.42, indicating a moderate negative correlation between these two parameters.399
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Large scale fracture networks usually have weaker connectivity compared with small-scale400

fracture networks under the data collection in this research. One crucial factor is that large401

fracture systems are more likely to have concentrated orientations, as discussed in the pre-402

vious section on fracture orientations. Such concentrated orientations make large fractures403

difficult to link each other and form more complex and better-connected fracture networks.404

3.5 Clusters and flow analysis405

Topological analysis can quantify the connectivity of fracture networks but cannot ex-406

plicitly demonstrate the flow pathways. Fluid flow happens in connected instead of isolated407

fractures for low permeability formations; therefore, it is necessary to check clusters in out-408

crop maps. With the DFN modelling software, HatchFrac [Zhu et al., 2019, 2021a], we can409

check and label clusters of those outcrop maps after the digitization. Fig. 12 shows different410

clusters in outcrop maps from Spireslack open cast coal pit, south of Glasgow in Scotland411

(Fig. 7 in Healy et al. [2017]). We use different neighbouring colours to distinguish different412

clusters. In Fig. 12, no spanning cluster is formed. A spanning cluster connects all bound-413

aries of the outcrop map. Local clusters have different sizes and yield good local instead of414

global connectivity. Fig. 13 shows clusters in outcrop maps at Achnashellach Culmination415

field area (Fig. 7B and 7D in Watkins et al. [2015]). Spanning clusters are formed in both416

outcrop maps, which are marked in red. 63 out of 80 natural outcrop maps have formed417

a spanning cluster, and this percentage is higher for small-scale outcrop maps, indicating418

good global connectivity of fracture networks in outcrop maps.419

(a) (b)

Figure 12. Fracture outcrop map at the Spireslack open cast coal pit, south of Glasgow in

Scotland (Fig. 7 in Healy et al. [2017]). Different colors are applied to distinguish different clusters.

420

421
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(a) (b)

Figure 13. Fracture outcrop map at Achnashellach Culmination field area (Fig. 7B and 7D in

Watkins et al. [2015]). Red line segments are the largest spanning cluster; Green line segments are

local clusters.

422

423

424

If all fractures are open and have a large aperture, fractures in the spanning cluster425

can provide a highly permeable pathway for any fluid flow. However, over geologic time,426

compression and cementation can cause the closure and sealing of fractures, which together427

significantly reduce the fracture permeabilities [Ito and Zoback, 2000; Im et al., 2018]. Under428

today’s stress field or having severe stress perturbation, such as hydraulic fracturing, crit-429

ically orientated fractures can be critically stressed and slide [Barton et al., 1995]. Sliding430

of critically stressed fractures induces shear displacement and enlarges the fracture aper-431

ture because of roughness [Yeo et al., 1998; Kim and Inoue, 2003]. Non-critically stressed432

fractures are probably sealed and impermeable after a long geological history. In Fig. 14,433

we assume the principal stress S1 = 1 as the reference, with the orthogonal principal stress434

S2 = 0.6S1 and pore pressure Pp = 0.5S1. The Coulomb failure criterion [Coulomb, 1773]435

is adopted for simplicity to distinguish critical and non-critical stressed fractures [Im et al.,436

2018; Mattila and Follin, 2019; Evans, 2005]:437

τ = µ(Sn − Pp), (11)

where µ is the coefficient of friction along the fracture plane, Pp is local pore pressure, and438

τ and Sn are respectively shear and normal stresses on a fracture.439

In Fig. 14, red fractures are critically stressed and highly permeable due to sliding;444

blue fractures are mechanically stable and non-permeable because of sealing. Non-critically445

stressed fractures could also be partially sealed and yield complex sealing patterns. However,446

this is out of the scope of this research, and relevant results can be found in our previous447

[Zhu et al., 2021b] and future researches. The stress state of each fracture is shown in448

a Mohr’s diagram in Figs. 14(c,d). Red crosses refer to stress states of critically stressed449

fractures, and blue dots are stress states of mechanically stable fractures.450

–20–



Confidential manuscript submitted to Water Resource Research

S1

S2

(a) (b)

(d)(c)

Figure 14. Fracture outcrop map at Achnashellach Culmination field area (Fig. 7B and 7D in

Watkins et al. [2015]). Red line segments are critically stressed fractures and blue line segments

are mechanically stable fractures. The stress state of each fracture plane is shown in the Mohr’s

diagram. The subdomain (green square) is selected for the flow simulation.

440

441

442

443

To explicitly demonstrate the impact of fractures on the formation permeability, we456

implement a full-scale, embedded discrete fracture matrix simulation with UNCONG sim-457

ulator [Li et al., 2015] and calculate the formation permeability in different scenarios. We458

cut a square subdomain (green square) from Fig. 14(a) for a convenient implementation,459

and the size of the subdomain is set as 100 m × 100 m. We prescribe a constant pressure460

boundary condition, where the pressure at the inflow boundary (the left-hand side) is set to461

2 bar, and all the other boundaries (the remaining three sides) have zero bar. The pressure462

difference yields a macroscopic pressure gradient of 2 kPa/m, which constrains the Reynolds463

number to a realistic range, O(10−3). The upper and lower boundary are impermeable. The464

matrix has a permeability of 0.1 mD since we are considering a low permeability formation.465

Critically stressed fractures are assumed to have an aperture of 500 micrometers, which466

yield a permeability of 20,833 mD based on the cubic law [Kochina et al., 1962]. Three sce-467
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narios are considered to demonstrate the impact of fractures on the formation permeability:468

i. no fractures; ii. critically stressed fractures have a permeability of 20,833 mD, and non-469

critically stressed fractures are impermeable (Fig. 15(a)); iii. both critically stressed and470

non-critically stressed fractures have a permeability of 20,833 mD (Fig. 15(b)). We set the471

formation permeability of the first scenario as the reference Kref = 1. The pressure distri-472

bution of three scenarios are presented in Fig. 15(c-e). If all fractures are highly permeable,473

fractures can significantly increase the formation permeability by 362%. However, if only474

critically stressed fractures are permeable, then the increase is only 8% and insignificant.475

Although the topological connectivity of the fracture network in the chosen subdomain is476

good, hydraulic connectivity is not guaranteed. Fractures can be essential for fluid flow in477

low permeability formations. However, their impacts still depend on many factors, including478

topological connectivity, sealing patterns, global and local stress conditions.

(c) (d) (e)K=1.0 Kref K=1.08 Kref K=3.62 Kref

(a) (b)

Figure 15. (a) Fracture permeability with stress impact; (b) Fracture permeability without

stress impact (all fractures are open); (c-e) pressure distribution of the formation in different sce-

narios: (c) no fracture; (d) critically stressed fractures have a permeability of 20,833 mD, and

non-critically stressed fractures are impermeable; (e) both critically stressed and non-critically

stressed fractures have a permeability of 20,833 mD.

451

452

453

454

455

479

4 Discussions480

Through digitizing published natural outcrop maps with the pixel-based fracture de-481

tection algorithm, we systematically investigate geometric patterns of fractures, including482

fracture lengths, orientations, fracture intensities and topological structures. The geometric483
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patterns are essential for discrete fracture network modelling since the critical strategy of484

SDFN modelling is to describe fracture geometries with stochastic distributions. The valida-485

tion of such discrete fracture networks is impossible because the comprehensive information486

about the subsurface structures is inaccessible with current technologies. The confidence of487

SDFN models thus depends on the justification of chosen stochastic distributions.488

A power-law distribution usually describes fracture lengths. However, this research489

shows that fracture lengths may not follow a single power-law distribution but multiple490

power-law distributions with varying exponents. The simplistic model we proposed explains491

a possible origin of the power-law distribution concerning fracture growth and linkage. The492

derived power-law exponents of fracture lengths are larger than 1, consistent with most493

outcrop observations. Two parameters adopted in the simplistic model, the coalescence494

probability and the number of coalesced minor fractures, can successfully explain the vari-495

ation of power-law exponents for fractures with different lengths. The exponent is usually496

large for long fractures, possibly attributed to a small coalescence probability caused by497

concentrated orientations, sparse fractures and high requirements on stress conditions.498

Over a long geologic history of subsurface rocks, varying stress states can generate frac-499

ture sets with different orientations. Each fracture set has concentrated orientations, thus500

has a large κ value. However, the stress history is hardly known, and most SDFN models501

regard all sets of fractures belong to an integrated fracture system and describe their orienta-502

tions with a uniform distribution. From observations in this paper, most small-scale fracture503

systems (< 100 m) have their orientation distribution closer to a uniform distribution. The504

corresponding concentration degree κ is smaller than 3 in a von Mises–Fisher distribution.505

However, large fracture systems usually have more concentrated orientations with a large506

κ value as observed in the collected datasets in this research. A positive correlation exists507

between the scale and concentration degree (κ). Concentrated orientations of large fracture508

systems usually make them difficult to intersect and merge, thus make large fractures have509

a small coalescence probability.510

Fracture intensities are not spatially uniform but clustered. Spatial clustering can511

improve the local connectivity but hardly contribute to the global connectivity [Zhu et al.,512

2018]. Such spatial clustering can exist in all fracture networks regardless of scales, possibly513

attributed to fracture lengths, orientations and fracture positions. Evaluating the impact514

of each geometric parameter on spatial clustering needs more strict variable control and515

detailed investigations, which is beyond the scope of this paper and will be discussed in516

future research. A fractal spatial density distribution generates clustered positions and517

significantly increase the spatial clustering of the system. Therefore, a fractal spatial density518
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distribution can better capture the spatial clustering of fracture systems compared with a519

uniform spatial density distribution.520

The topological analysis finds that most natural fracture networks have a significant521

proportion of T-type nodes and good connectivity. However, commonly adopted SDFN522

models cannot generate T-type nodes but only X-type and I-type nodes. A random trun-523

cation of branches at X-type nodes to form T-type nodes is undesirable for developing524

realistic fracture networks, because the abutment relationship reveals the growth history of525

fractures. Therefore, it is necessary to mimic the fracture growth process and form T-type526

intersections. Detailed numerical simulation based on fracture mechanics is inapplicable for527

discrete fracture networks with massive fractures. Rule-based fracture growth process [Davy528

et al., 2013] is more appropriate for the implementation. Rules, such as nuclei distributions,529

growth criteria, growth velocities, and termination criteria, can be summarized from classic530

theories, experiments, and numerical simulations. Then, growth rules can be incorporated531

in an SDFN model at each time step to mimic the growth process.532

Furthermore, 63 out of 80 natural outcrop maps have formed a spanning cluster, indi-533

cating good global connectivity of exposed fracture networks. However, fracture networks534

in the subsurface are three-dimensional. Outcrops are only cross-section maps of the corre-535

sponding 3D structures with the ground as the cross-sectional plane. If the rock types and536

structural settings of the surface outcrops and subsurface formations are similar, outcrops537

can be regarded as relevant to the subsurface formation. However, weathering, stress-release538

during the upward movement and complex surface topography can cause outcrops to differ539

from the subsurface systems significantly [Ukar et al., 2019]. Therefore, 2D outcrop maps540

cannot completely characterize the real subsurface fracture networks. The correlation be-541

tween the connectivity in 2D and 3D will be systematically investigated in the near future.542

In 2D outcrop maps, good topological connectivity (formation of the spanning cluster) can-543

not ensure good hydraulic connectivity because fracture permeability can be significantly544

reduced, attributing to the compression and sealing. Therefore, considering sealing pat-545

terns and global and local stress states is necessary to evaluate the flow contribution from546

fractures in low permeability formations.547

In a nutshell, several improvements listed above are available for current stochastic548

discrete fracture network models to be more representative.549

5 Conclusions550

We have analyzed fracture geometries in detail with 80 published outcrop maps. The551

findings and observations from this research are essential to construct a representative dis-552
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crete fracture network, and a meaningful DFN model is a premise for investigations of553

complex flow behaviours in the subsurface. The key conclusions from our research are:554

• A pixel-based fracture detection algorithm can interpret binary outcrop maps as poly-555

lines. The algorithm is robust, accurate and efficient.556

• For most outcrop maps, fracture lengths follow multiple power-law distributions in-557

stead of a single one. Our simplistic model successfully explains a possible origin558

of the multiple power-law distributions, attributing to variations of the coalescence559

probability, p, and the number of coalesced fractures, ns, at different generations.560

Large fractures usually have large exponents, possibly because of a small coalescence561

probability.562

• Natural fracture systems are usually composed of many fracture sets with differ-563

ent orientations, which results in small κ values in a von Mises–Fisher distribution.564

Most small-scale fracture systems have their concentration parameter κ smaller than565

3. Large fracture systems usually have more concentrated orientations with large κ566

values.567

• Fracture intensities are usually spatially clustered instead of uniformly distributed in568

fracture systems at all scales. A fractal spatial density distribution can better capture569

spatial clustering through generating clustered fracture positions.570

• Natural fracture networks are usually well connected with a significant proportion571

of T-type intersections. However, the conventional DFN modelling method cannot572

generate T-type intersections. Thus, developing a rule-based algorithm, which mimics573

fracture growth and forms T-type nodes, is necessary.574

• Most natural outcrop maps form a spanning cluster, indicating good topological con-575

nectivity. However, good topological connectivity cannot ensure good hydraulic con-576

nectivity of fracture networks in the outcrop map. Compression and sealing over577

geological time can significantly reduce fractures’ permeability. However, current578

stress states or stress perturbations (like hydraulic fracturing) can essentially change579

the mechanical state of fractures and their permeability and must be included to580

evaluate the impact of fractures on the subsurface flow.581

• 2D outcrops can only be regarded as cross-section maps of 3D subsurface fracture582

networks after experiencing server weathering and stress-release. More researches583

are necessary to link the properties, such as fracture intensity and connectivity, in584

different dimensions.585
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A: A simplistic model591

We propose a simplistic model to demonstrate a possible origin of the power-law dis-592

tribution of fracture lengths. The basic assumptions are listed:593

• Initial fractures are small fractures with constant length, l0, and the number of initial594

fractures is N0;595

• Large fractures grow from the coalescence of small fractures. ns is number of small596

fractures, which coalesce and form one large fracture;597

• The length of coalesced fracture equal ns × li−1. The overlapping and underlapping598

structures are ignored;599

• A constant coalescence probability, p, applies on each generation and decides the600

number of small fractures coalesced to form large fractures in each generation.601

• At the ith generation, Ni−1×p
ns

fractures will coalesce and form the ith generation602

fractures with length li. The number of remained fractures at the i− 1 generation is603

denoted as Ni−1(remain) and those fractures are observable with length li−1, which is604

equal to Ni−1 × (1− p)605

At the initial state (n = 0), we have606

 N0 = N0

l0 = l0
(A.1)

At the first generation, n = 1


N1 = N0×p

ns

l1 = nsl0

N0(remain) = N0(1− p)

(A.2)

where N0(remain) is the remained fractures at the initial state.607
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At the second generation, n = 2
N2 = N1×p

ns
= ( p

ns
)2N0

l2 = n2
sl0

N1(remain) = N1(1− p) = N0×p
ns

(1− p)

(A.3)

At the N th generation, n = N
NN = NN−1×p

ns
= ( p

ns
)NN0

lN = nNs l0

NN−1(remain) = NN−1(1− p) = ( p
ns

)N−1(1− p)N0

(A.4)

Take the logarithm of the first two equations in Eqs.(4), we have ln(NN

N0
) = N ln( p

ns
)

ln( lNl0 ) = N ln(ns)
(A.5)

Therefore, we have

ln(NN
N0

) = ln( lN
l0

) ln( p
ns

)/ ln(ns) (A.6)

which is equal to

ln(NN
N0

) = ln{( lN
l0

)ln( p
ns

)/ ln(ns)} (A.7)

Therefore,

(NN
N0

) = ( lN
l0

)
ln(p)

ln(ns)−1 (A.8)

Therefore, we see that the length of fractures at different generations (or different scales)608

follow a power-law distribution, and the exponent should be smaller than -1 (when p equals609

1).610

However, what we observe in reality is the remained fractures. With the similar proce-

dures, the number of fractures remained at the N th generation follow a power law distribu-

tion.
NN(remain)

(1− p)N0
= ( lN

l0
)

ln(p)
ln(ns)−1 (A.9)

Since both NN and NN(remain) follow a power-law distribution with the same exponent,611

but different coefficients, we do not distinguish these two parameters and denote the number612

of fractures with length lN as NN for the following discussion.613

• When p = 0, which corresponds to the initial state, we have

(NN
N0

) = ( lN
l0

)−∞ = 0 (A.10)
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therefore, the number of all fractures larger than l0 is zero and we only have fractures614

at the initial state.615

• When p = 1, which corresponds to the case where all small fractures are coalesced to

form large fractures. We have

(NN
N0

) = ( lN
l0

)−1 = l0
lN

(A.11)

therefore,

NN = l0
lN
×N0 (A.12)

This scenario has the exponent of 1 and the number of fractures remained at all616

previous generations is zero.617

• Because of complex stress states and interactions between fractures (such as stress

shadow), the coalescence probability cannot be 1. If we take p = 0.7 and ns = 3 , we

have the exponent

a = −({ln(0.7)/ ln(3)} − 1) = 1.32 (A.13)

If p = 0.3 and ns = 3 , the exponent is about 2.1; If p = 0.1 and ns = 3 , the exponent618

is about 3.1; If p = 0.01 and ns = 3 , the exponent is about 5.9. Therefore, a larger619

exponent may suggest a smaller coalescence probability.620

These derivations can explain why fracture lengths of different scales follow a power-law621

distribution and provide a possible range for the exponent [1,∞]. The exponent depends622

on the coalescence probability and the number of coalesced fractures, but it has to be larger623

than 1. Bonnet et al. [2001] provided a compilation of power-law exponents for fracture624

length distributions of different outcrop maps. Only one map has their exponent equal to625

0.9 (table 2 in [Bonnet et al., 2001]). A possible reason is that their length measurement is626

inaccurate, and the fitting is not perfect because the outcrop map shows a km-scale fault627

system.628

B: Cumulative length distribution629

Furthermore, we can derive the cumulative length distribution by the integration of the

length distribution.

CN ∼
∫ lN

lmin

l−adl = (1− a){l1−aN − l1−amin} (B.1)

therefore:

cN ∼ l1−aN (B.2)

where a = ln(p)
ln (ns) − 1630
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From collected length data, we can see that the cumulative length distribution does

not follow a single power-law distribution but multiple power-law distributions. The expo-

nents become larger when fracture lengths increase. The larger exponent means a smaller

coalescence probability. Therefore, the coalescence probability, p, should be a function of

the fracture length

p = p(l, others) (B.3)

From collected data, we know ∂p
∂l < 0.631
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