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Abstract

It is well established that small scale turbulent mixing induced by breaking of waves in the interior of the ocean plays a significant

role in sustaining the deep ocean circulation and in regulation of tracer budgets such as those of heat, carbon and nutrients.

There has been significant progress in fluid mechanical understanding of the physics of breaking internal waves. Connection

of the microphysics of such turbulence to the global ocean, however, is significantly underdeveloped. We offer a theoretical-

statistical approach, heavily informed by observations, to make such a link and then by employing climatological information

show that in the global ocean, regions of optimal turbulent mixing coincide with regions that have a desirable balance of

stratification and velocity shear. This optimality depends critically on the statistics of turbulent patches. Energetic mixing

zones exhibit efficient bulk mixing that induces significant vertical density fluxes, while quiet zones (with small background

turbulence levels), while efficient in mixing, exhibit minimal vertical fluxes. The transition between the less energetic to more

energetic zones, quantifications of which we argue depends critically on turbulence statistics, implies upwelling and downwelling

of deep waters may be stronger than previously estimated, which in turn has direct implications for the ocean overturning

circulation as well as for the global budgets of heat, carbon, nutrients, and other tracers. Impact Statement Waves similar to

those observed at the beach exist throughout the ocean interior and are induced by tides, winds, currents, eddies, and other

processes. Similar to beach waves, internal waves can also roll up and break. Widespread internal-wave breaking helps drive

the ocean circulation by upwelling the densest waters that form in polar regions and sink to the ocean abyss. They also play an

important role in transport and storage of heat, carbon, and nutrients. In this work we show how well-understood concepts in

wave physics can be used in conjunction with statistics of observed ocean turbulence to improve significantly our understanding

of the impact of small-scale mixing on the global ocean, and thereby on the climate system.
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Abstract
It is well established that small scale cross-density (diapycnal) turbulent mixing induced by breaking of overturns in
the interior of the ocean plays a significant role in sustaining the deep ocean circulation and in regulation of tracer
budgets such as those of heat, carbon and nutrients. There has been significant progress in the fluid mechanical
understanding of the physics of breaking internal waves. Connection of the microphysics of such turbulence to the
larger scale dynamics, however, is significantly underdeveloped. We offer a hybrid theoretical-statistical approach,
informed by observations, to make such a link. By doing so, we define a bulk flux coefficient, Γ� , which represents
the partitioning of energy available to an ‘ocean box’ (such as a grid cell of a coarse resolution climate model),
from winds, tides, and other sources, into mixing and dissipation. Γ� depends on both the statistical distribution of
turbulent patches and the flux coefficient associated with individual patches, Γ8 . We rely on recent parameterizations
of Γ8 and the seeming universal characteristics of statistics of turbulent patches, to infer Γ� , which is the essential
quantity for representation of turbulent diffusivity in climate models. By applying our approach to climatology and
global tidal estimates, we show that on a basin scale, energetic mixing zones exhibit moderately efficient mixing that
induces significant vertical density fluxes, while quiet zones (with small background turbulence levels), although
highly efficient inmixing, exhibit minimal vertical fluxes. The transition between the less energetic tomore energetic
zones marks regions of intense upwelling and downwelling of deep waters. We suggest that such upwelling and
downwelling may be stronger than previously estimated, which in turn has direct implications for the closure of the
deep branch of the ocean meridional overturning circulation as well as for the associated tracer budgets.

Impact Statement Waves similar to those observed at the beach exist throughout the ocean interior and are
induced by tides, winds, currents, eddies, and other processes. Similar to beach waves, internal waves can
also roll up and break. Widespread internal-wave breaking helps drive the ocean circulation by upwelling
the densest waters that form in polar regions and sink to the ocean abyss. They also play an important
role in transport and storage of heat, carbon, and nutrients. In this work we show how well-understood
physical understanding can be used in conjunction with statistics of observed ocean turbulence to improve our
understanding of the impact of small-scale mixing on the global ocean, and thereby on the climate system.

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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1. Introduction

Turbulence induced by breaking density overturns in the ocean interior, such as those induced by internal
waves or boundary layer turbulence, plays a key role in regulating the global ocean circulation and
budgets of climatically important tracers such as heat, carbon and nutrients [Talley et al., 2016, Whalen
et al., 2020, Garabato and Meredith, 2022]. Such turbulence is primarily excited at the bottom of the
ocean through interaction of tides, currents and eddieswith bottom topography and at the surface through
the wind stress acting on the sea-surface [Garrett and Kunze, 2007, Nikurashin and Ferrari, 2013, Legg,
2021, Alford, 2020, Garabato and Meredith, 2022]. As an example, Fig 1 shows an observationally-
sampled abyssal high mixing zone, the Samoan Passage, where northward flow of Antarctic Bottom
Waters through a constriction generates strong turbulence through a generation of wave-induced and
hydraulically controlled density overturns [Alford et al., 2013, Carter et al., 2019]. Panel 1 highlights
the intermittency of turbulence, which renders it difficult to sample sufficiently to allow for accurate
quantification of properties of interest such as turbulent mixing. Thus, sampling poses a monumental
challenge to connecting our understanding of physics of turbulence, which occur on scales O(10−3 −
10−1)m, to the larger scale regional and global implications, which are relevant on scalesO(106−107)m.
In this sense, this problem is analogous to cloud physics: both involve micro-physics with leading order
global impacts, both occur on scales much smaller than typical climate model resolutions and thus need
to be parameterized, and both have been notoriously difficult to parameterize and contribute significantly
to inaccuracies in model solutions. In this paper we provide a novel methodology, based on recent
progress in our understanding of the microphysics of mixing [Mashayek et al., 2021, hereafter MCA21]
and statistics of wave-induced turbulence [Cael and Mashayek, 2021, hereafter CM21], to connect the
physics of small scale turbulent mixing to large scale dynamics. While we make specific choices with
regard to the physical parameterization of mixing and statistical distributions of ocean turbulence, our
choices may reasonably be thought of as placeholders, based on the best we have today. The machinery
to which we refer as a ‘recipe’, however, is a broader framework, the components of which can improve
over time, for linking physics and statistics to represent small scale mixing in ocean/climate models.

The paper is organized as follows. In §2 we review the physics of small scale turbulent mixing. In
§3 we provide an overview of the statistics of the observed ocean turbulence and argue that the chronic
undersampling of turbulence highlights the inevitability of a statistical approach. In §4.1 we introduce
a recipe that can put the physics and statistics together to infer Γ�. In §5 we showcase the application of
the methodology to an ocean basin. We finish by discussions of the results and their implications in §7.

2. Physics of wave-induced turbulence

Our understanding of the physics of wave-induced density stratified turbulent mixing has progressed
significantly over the past few decades [Peltier and Caulfield, 2003, Ivey et al., 2008, Caulfield, 2021].
A key question concerns how the total power available to turbulence, P, from winds, tides, and other
sources, is partitioned into (I) mixing,M, defined as a net vertical irreversible buoyancy flux, and (II)
dissipation into heat (due to the seawater viscosity), the rate of which is referred to as Y. The turbulent
mixing may be approximated by

M ≈ ^#2 ≈ ΓY, (1)

where #2 = − 6
d0
mId represents the density stratification, 6 is the gravitational constant and d0 is a

reference density [Osborn, 1980]1. In physical terms,M represents a net vertical mass flux as turbulence
works against gravity to lift denser waters upward. Such turbulence feeds upon the available potential
energy (APE) stored in overturns. Uponmixing, a fraction of theAPE gets converted into the background
potential energy (i.e. the potential energy that the system would acquire if it were allowed to come to
rest adiabatically), with the rest dissipating to heat and increasing the internal energy of the system

1Note that while the caveats associated with this approximation are important[Mashayek et al., 2013, Mashayek and Peltier, 2013a], they don’t
affect the premise or conclusions of this work in any major way.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Page 2 of 23

Cambridge University Press

Flow



For Peer Review

Flow E1-3

(which leads to an insignificant temperature rise due to the high heat capacity of seawater; Peltier and
Caulfield [2003]). The turbulent diffusivity, ^, is an input parameter in climate models to account for
the subgrid-scale unresolved turbulent mixing. The turbulent flux coefficient, Γ =M/Y, is often taken
to be a constant value of 0.2 for historical reasons and arguably for the lack of a universally accepted
parameterization for it. However, it is well known to be highly variable [Mashayek and Peltier, 2013b,
Gregg et al., 2018, Caulfield, 2021], with appreciable consequences for ocean circulation [de Lavergne
et al., 2015,Mashayek et al., 2017b, Cimoli et al., 2019].WhileM is often the quantity of interest from a
physical perspective, it is difficult to observe directly and is often inferred from Y (via Eq. 1) which itself
is inferred from microscale shear (i.e. spatial gradients of velocity) measured by microstructure probes
on profiling instruments, gliders, or moorings. Thus, accurate quantification of Γ is key to inferring
ocean mixing from direct observations.

Three basic turbulence scales have proven useful for parameterization of Γ based on observable
quantities. To illustrate their relevance, in Fig 1c we show their evolution over the life cycle of turbulence
breakdown of a canonical overturn. The Kolmogorov scale, ! = (a3/Y)1/4, represents the scale below
which viscous dissipation takes kinetic energy out of the system, the Ozmidov scale, !$ = (Y/#3)1/2,
is the largest (vertical) scale that is not strongly affected by stratification, and the Thorpe scale, !) , is a
geometrical scale characteristic of vertical displacement of notional fluid parcels within an overturning
turbulent patch [Dillon, 1982, Smyth and Moum, 2000, Mashayek et al., 2017a] – a is the kinematic
viscosity of seawater. The figure shows the initial accumulation of available potential energy (APE)
from background shear into the primary billow (large !) ) followed by the growth of smaller eddies
within the main billow upon feeding on its APE source (increase in !$). As turbulence grows, the
scale at which energy is taken out of the system, ! , decreases. The phase where !$ ∼ !) is the most
efficient transfer of energy from the overturn to the smaller scales, and thus is the richest dynamic range,
marked by the largest gap between !$ and ! , and thus the most efficient phase of the flow where (an
instantaneous) mixing efficiency is defined asM/(M + Y) = Γ/(1 + Γ) [Peltier and Caulfield, 2003].
Beyond this efficient phase, both !) and !$ decay, as does the turbulence.

The ratio of !$ and ! , often expressed as the buoyancy Reynolds number '41 = (!$/! )4/3,
has been widely used to quantify Γ [Bouffard and Boegman, 2013, Mashayek et al., 2017b, Gregg
et al., 2018, Monismith et al., 2018] and also to establish the global scale impacts of variations in Γ
[de Lavergne et al., 2015, Mashayek et al., 2017b, Cimoli et al., 2019]. However, some of these efforts as
well as others have also highlighted the inherent deficiency of '41 since it only includes instantaneous
information on the turbulence scales !$ and ! while not ‘knowing’ anything about either the energy
containing scale !) [Gargett and Moum, 1995, Garrett, 2001, Mashayek and Peltier, 2011b, Mater and
Venayagamoorthy, 2014, Mashayek et al., 2021] or any time dependence of the flow, although evidence
is accumulating that ‘history matters’ in stratified mixing [Caulfield, 2021]. An alternate method for
inferring mixing (or more accurately inferring Y from which diffusivity or flux may be inferred),
employed when direct inference of Y is not available, is to assume that '$) = !$/!) is a constant
(taken to be between 0.6 and 1; Dillon [1982], Ferron et al. [1998], Thorpe [2005]) and Γ=0.2. This
method, too, is inherently deficient (although in practice might be the only available option) since it
only ‘knows’ about the energy containing scale and not the dissipation scale, and so does not ‘feel’ the
width of the dynamic range of the turbulence (the so-called inertial subrange).

Building on an extensive relevant literature, recently, MCA21 extended earlier scaling relations
relating '$) to Γ and proposed a simple parameterization for Γ , on basic physical grounds, that agreed
well with observational data:

Γ8 = �
'−1
$)

1 + '
1
3
$)

, (2)

where � is a constant ranging between 1/2 and 2/3. The subscript 8 in Eq. (2) emphasizes the appli-
cability of it to individual turbulent patches as opposed to a bulk region, which typically comprises a
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multitude of turbulence events separated (in time and space) by ‘quiet’ zones. Crucially, this parame-
terization captures the fundamental time-dependent nature of overturning mixing events, allowing for
variation in '$) and hence Γ at different stages in the life cycle of a mixing event. Figure 2a, repro-
duced from MCA21, shows the agreement with a combination of data from ∼50,000 turbulent patches
gathered from six different field campaigns that sampled turbulence in different geographical locations
around the globe, at different depths and turbulence regimes, and from turbulence induced by different
processes (see Supplementary Materials for a brief description of data). Eq. 2 reduces to �/'$) in
the limit of young turbulence ('$) � 1)) and to �/'4/3

$)
in the limit of (older) decaying turbulence

('$) � 1)). While the latter has been suggested by others in the past, as reviewed in MCA21, the
former limit and the transition between the two limits were formulated in MCA21.

A nice feature of Eq. 2 is that it allows for the two ranges to merge smoothly at '$) ∼ 1. This
limit corresponds to efficient mixing when there exists an optimal balance between the stratification
and energy available to turbulence. In the young turbulence range, stratification is relatively high and
sufficient energy has not yet transferred to turbulence to work against the stratification and mix. So,
while Γ8 can be very large, it does not imply much mixing: it is large since Y is very small, not because
M is large. In fact, in the limit of laminar flow, Γ8 → ∞. On the other hand, in the decaying phase of
turbulence, stratification is somewhat eroded and soM is weaker as there is less to mix, while Y is still
finite as even an unstratified flow can have significant Y. Thus, in this limit Γ0 → 0. It is the '$) ∼ 1
limit in which the right balance of stratification and power exists and optimal mixing occurs. Since this
intermediate phase appears to lead to ‘optimal’ mixing, neither too hot nor too cold but ‘just right’,
MCA21 referred to this as ‘Goldilocks mixing’.

Here we argue that all three (time-dependent) phases of turbulence life cycle, importantly including
the young turbulence limit, are key to connecting the small-scale physics of mixing to the large-scale
ocean dynamics. While the Goldilocks mixing phase is when most of the effective turbulent flux occurs,
the young and weakly turbulence patches are important since most of the ocean interior is relatively
‘quiet’ with intermittent bursts of turbulence. We will argue that it is essential to account for the
less/non-turbulent regions, whereas historically, parameterizations have primarily focused on energetic
turbulence. This will necessitate careful analysis of the statistics of turbulent patches.

We note that while we will employ the Goldilocks paradigm of MCA21 in the forthcoming recipe,
in principle it can be replaced by alternative parameterizations for Γ8 .

3. Statistics of turbulence

3.1. Statistics of patches

Figure 2b shows the histogram of the data used in panel a separated into four quartiles in terms of Y.
The distribution shows that most turbulent patches lie within a factor of 3 of '$) = 1 and the larger the
Y, the closer to 1 the peak of '$) lies. This suggests the majority of turbulent patches are in this phase
of optimal or Goldilocks mixing. Such a clustering of data has been widely reported in the past [Dillon,
1982, Thorpe, 2005, Mater et al., 2015, Mashayek et al., 2017a] and suggests that out of the three phases
of energetic ocean turbulence events, namely ‘young’ growth, Goldilocks mixing, and ‘old’ decay, the
intermediate phase spans the larger fraction of the turbulence life cycle. This is shown quantitatively
in panels c,d of Figure 2 where life-cycle-averaged properties are plotted from turbulence life cycle
simulations of shear instabilities by Mashayek and Peltier [2013a], Mashayek et al. [2013]. Panels c,d,
together, show that for sufficiently energetic turbulence, a larger proportion of the turbulence life cycle
corresponds to the Goldilocks phase rather than to the growth and decay phases.

The parameterization (2) describes individual turbulent patches. A turbulent region within the ocean,
such as that shown in Figure 1b, hosts many patches in different stages of their evolution. MCA21 argued
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that an appropriate value for a bulk Γ may be constructed for such a region through

Γ� =
M�

Y�
≈

=∑
8=1
Γ8 × Y8
=∑
8=1
Y8

(3)

where = represents the number of patches in a region of interest and the subscript � denotes ‘Bulk’.
For example, typical resolution of climate models is O(100 km) in the horizontal and O(100 m) in the
vertical direction. Models that employ a temporally-evolving mixing parameterization2, employ Γ�=0.2
to construct a diffusivity for each grid cell. Of course there is no obvious reason why such a constant
should universally hold, and as we shall show, Γ� relies on the statistical distribution of patches within
the grid cell and their associated Γ8s. By applying Eq. 3 to four datasets, MCA21 showed that Γ� can be
close to the Goldilocks mixing (i.e. �/2 ≈ 1/3 in Eq. 2) when the region of study has the right balance
of power and stratification (where '$) ∼ 1), thereby comprising mostly Goldilocks mixing patches.
However, regions that host a higher percentage of young or weak turbulent patches can have Γ� ∼ O(1)
since young patches have large Γ8s as shown in Figure 3 in the limit of small '$) .3

3.2. Statistics of continuous profiles

Bulk mixing therefore depends on statistics of turbulent patches. However, weakly/non-turbulent waters
reside in between intermittent turbulent patches. Recently, CM21 showed that Y data from over 750 full
depth microstructure profiles from 14 field experiments (covering a wide range of depths, geographical
locations, and turbulence-inducing processes; see CM21 for details), are well-described by a log-skew-
normal distribution (Figure 4a), which has the form

5 (Y; b, l, U) = 2
lY

q

( log Y − b
l

)
i

(
U
log Y − b

l

)
, (4)

where 5 is a probability density function and q and i respectively are the probability and cumulative
density functions (PDF and CDF) of a standard Gaussian random variable. We refer the reader to CM21
for details, but here discuss the essential aspects of that paper for the problem at hand. As discussed
in CM21, the relationship between the log-skewness (\) of the distribution and the additional shape
parameter U is one-to-one. The parameters (b, l, U) are related to the log-mean, log-standard deviation,
and log-skewness (`, f, \) of a log-skew-normal random variable according to the equations:

` = b +
√
2
c
lX, (5)

where

X =
U

√
1 + U2

, f = l

√
1 − 2

c
X2, \ = (4 − c)

(√ 2
c
X

)3
/(2(1 − 2

c
X2)3/2). (6)

The log-skew-normal distribution arises from the analogue of the Central Limit Theorem for log-
normal variables: that is, the sum of log-normal variables converges to a log-skew-normal distribution
[Wu et al., 2009]. For turbulence, the log-skew-normal distribution is thought to arise because the total,
measured Y results from a combination of multiple and/or not statistically steady turbulence-generating

2Many models don’t employ such a time-varying parameterization and even those that do take the tidal power as a given and merely adjust the
diffusivity based on the evolving stratification.

3Young patches have large Γ because of small Y NOT due to largeM . Thus, while they don’t contribute much to the net turbulent flux
∑
Γ8 Y8 ,

they bias Γ� high.
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processes [Caldwell and Moum, 1995], which individually and/or instantaneously have log-normally
distributed dissipation rates.

3.3. Chronic undersampling: inevitability of a statistical approach to Γ�
The difficulty of sampling intermittent turbulence has long been recognized [Gregg, 1992], but the
problem is perhaps even worse than conventionally thought, owing to the even more heavy-tailed
nature of a log-skew-normal Y distribution than a lognormal one. This presents a severe challenge for
constraining the average Y value for an ocean volume from a limited sample set, since many samples
are required to resolve the disproportionately consequential tail. Direct numerical simulations have
established that turbulent quantities, such as Y and Γ , vary substantially over the lifetime of an
overturning event [Caulfield, 2021]. This implies that a single measurement, or even a handful of
measurements, of such an event can be a poor estimate of its time-integrated properties since they most
likely miss the most energetic phase of turbulence for each event. This underscores the need for large
measurement sets and a statistical approach to fill in the gaps and accurately estimate bulk turbulent
properties. To highlight the sampling issue, in Fig 3 we consider two examples: one based on sampling
of an individual turbulence event; and one based on sampling of the collective global dataset discussed
in Figure 4a.

Direct numerical simulations, such as that shown in Figure 1c, clearly demonstrate that turbulent
quantities such asM, Y, and Γ vary substantially over the lifetime of an overturning event. This implies
that a single measurement, or even a handful of measurements, of such an event are highly likely to be
a poor estimate of its time-integrated properties. Figure 3a shows the uncertainty and bias associated
with random samples of one4 simulation’s history (Re = 6000, Ri = 0.16) for different sample sizes.
Uncertainty is quantified by the normalized standard deviation of the sample mean for collections of
samples taken at random times along the temporal history of the overturning event. Bias is quantified
by the ratio of the median sample mean from these collections of randomly timed samples to the true
time-averaged mean of each property. Because all the properties shown are positively skewed quantities,
the sample means tend to miss the peak values and thus underestimate the time-averaged value; because
these skews are so large, means of different collections of random samples vary by e.g. more than a
factor of two for fewer than ∼16 measurements. Turbulent measurements are snapshots of events; it is
not possible to make tens of measurements of the same turbulent event. These appreciable biases and
uncertainties for characterizing individual events thus underscore the importance of the statistics of
turbulent properties.

The heavy-tailed nature of the Y distribution in Figure 4a presents a similar challenge for constraining
the average Y value for an ocean volume from a limited sample set. Figure 3b shows the same as Figure
3a but for random samples from a log-skew-normal distribution whose parameters are fit to match
the Y data from the experiments described above (b = −24.8, l = 3.91, U = 5.89) using the same
procedure as in CM21. We discard values above a chosen Y<0G threshold of 10−5 m2/s3; as with any
parameterization for the PDF of Y supported on (0,∞), the log-skew-normal allows for a non-zero
probability density for unmeasurably and/or unphysically large Y values, which are either too large to be
measured by sampling probes and/or yield impossibly large !$ values. O(1000) samples are needed to
make the underestimation bias less than ∼10%, and O(100) samples are needed to make the standard
deviation of sample means less than the true mean (i.e. < 100% relative uncertainty). (Larger/smaller
values of Y<0G increase/reduce these sample size numbers.) This further underscores the need for large
measurement sets and a statistical approach to estimate bulk turbulent properties accurately.

4Other simulations yielded similar results.
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4. A recipe for Γ�
Ingredients: Γ('$) ) for individual patches + statistics of !$, !) , and '$)

Here, we aim to exploit the log-skew-normality of Y and the statistics of '$) to construct a parame-
terization for Γ� based on the total power and the mean stratification for the region (or the grid cell) for
which Γ� is sought. To this end, first we note that !$ ∝ Y1/2 by definition; the former lies within the
'$) -based Γ parameterization in Eq. 2 and the latter is captured by Eq. 4.5 Because !$ divides Y by
another random variable and then takes a square root of their quotient, this distribution is also preserved
for !$ (Figure S1; Table S1; also see below). Here, we pair the parameterizations for the statistical
distribution of Y in Eq. 4 and Γ8 = 5 ('$) ) in Eq. 2 to obtain a parameterization for Γ�.

If, as described above, Y� is log-skew-normally distributed because it is the sum of log-normal
random variables (call these Y8), then !$ must also be so distributed. If we pass the #3 to the summed-
over Y8 , such that Y�/#3 =

∑
8

(
Y8/#3), this will introduce a correlation into the Y8/#3 being summed

over, which does not affect the log-skew-normality of their sum [Hcine and Bouallegue, 2015]. For the Y8
this introduces another variable multiplicative factor and these each should still then be log-normal, so
altogether

∑
8

(
Y8/#3) is still the sum of log-normal random variables. As the skew-normal distribution

is insensitive to multiplicative transformations – we may write any skew-normal random variable B as
B = `+f(X |=1 | +=2

√
1 − X2) [Pourahmadi, 2007] so multiplying by some factor< just changes `→ <`

and f → <f – the log-skew-normal must be equivalently insensitive to exponentiation. Thus, if Y� is
log-skew-normally distributed, then so is !$. We indeed find that all the datasets used here, as well as
their aggregate, are well-described by a log-skew-normal distribution (Kuiper’s statistic + = 0.021 for
the combined dataset and as well as the median across the individual datasets; Figure S1, Table S1).

In contrast, there is not a clear description of the probability distribution of !) . While calculating !)
is straightforward conceptually, it involves subjective choices that bias its distribution [Mater et al., 2015].
Thus, it is less practical to identify the ‘true’ distribution for !) from collections of !) measurements,
as is the equivalent identification of an underlying distribution for Y. It has recently been argued that the
size of turbulent overturns, which are thought to have a correspondence with !) , should be power-law
distributed [Smyth et al., 2019], but we find little to no evidence of this in the datasets we use here
(Table S2). Either !) is not proportional to patch size in the data sets examined here, or the patch sizes
in these datasets are not power-law distributed [Clauset et al., 2009]. The !) probability distribution
for all the datasets used here is unimodal in log-space, such that at least the bulk of the distributions are
qualitatively much closer to log-normally distributed than power-law distributed (Figure S1).

Regardless, it is the probability distribution of '$) = !$/!) that is of interest here, for which a
parameterization of !) ’s probability is not necessary. Instead, one needs a suitable description of the
conditional distribution of !) for a given !$ value, i.e. %(!) |!$). Somewhat surprisingly, we find
that the log-skew-normal distribution is again an excellent description of '$) ’s probability distribution
(+ = 0.010 for the combined dataset and the median + = 0.027 across the eight individual datasets;
Table S1), but that in this case the log-skewness is negative. '$) ’s log-skewness is in fact only positive
for the IH18 dataset (skewness ˜̀3 = 0.48). Thus, the log-skew-normal distribution is, similar to Y
and !$, a satisfactory parameterization of '$) ’s probability distribution, but by and large with a
different sign in log-skewness. The question then becomes how !$ and !) are related such that '$) ’s
distribution: i) is log-skew-normal; ii) has a negative log-skewness; and iii) is peaked at O(1). In the
absence of a theory for !) ’s probability distribution, we derive an empirical construction of %(!) |!$)
that recapitulates the probability distribution of '$) with simulated !) values. As !) appears to be
approximately log-normally distributed (Figure S1), it is justifiable to base such a construction on a
statistical scaling relationship, with multiplicative fluctuations.

The conditions (i-iii) above can occur for '$) if !) scales heteroscedastically, i.e. the fluctuations
around how !) scales with !$ are themselves also a function of !$, and the coefficients of the scaling

5Historically, Y has often been described as log-normally distributed based on a simple argument from multi-stage subdivisions of an initial
flux for 3D homogeneous isotropic turbulence [Gurvich and Yaglom, 1967], but the log-normal distribution has also been long recognized as a
quantitatively inaccurate description of measured distributions [Yamazaki and Lueck, 1990].
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relationship are close to unity. If !) ∼ Z!V$ with Z ≈ 1 and V ≈ 1, then most values of !$/!) will be
O(1). If this scaling relationship is tight when !$ is large (i.e. small fluctuations and low probability
of small !) ), this will make cases where !$/!) is very large unlikely. Conversely, if this scaling
relationship is weaker when !$ is small (i.e. larger fluctuations and comparatively higher probability of
larger !) ), this will make cases where !$/!) is very small less unlikely. Together, these heteroscedastic
effects can change the sign of the log-skewness.

As both !$ and !) are random variables, their scaling relationship can be captured by model II
regression; the heteroscedasticity of this relationship can then be captured by quantile regression, which
estimates the conditional quantiles of the response variable [Koenker and Hallock, 2001], applied to
the residuals. First applying model II regression to the combined and log-transformed (!$, !) ) dataset
(i.e. that used in Fig 2a-b), we find the best-fit scaling for these data to be !) = 1.24!1.01

$
(see Fig

4b; We use least-squares cubic regression [York, 1966] but other standard methods such as bisector
or major axis yield similar results). Then applying quantile regression to the residuals, we indeed find
that the fluctuations in !) around this scaling relationship increase as !$ decreases. This decrease is
characterized by the relationship A = A> + A1 log10 (!$), where A is the amplitude of the residuals around
the best-fit scaling, A> is the residual amplitude when !0 = 1 m, and A1 captures how the residuals
decrease as !$ increases. We calculate separate relationships for positive and negative residuals, via
quantile regression. (We use the 10th and 90th percentiles to compute A> and A1 but our results are
not sensitive to this choice.) We can then recover the joint (!$, !) ) distribution and hence the '$)
distribution by simulating the !) accordingly for a given !$. The simulated !) values yield good
agreement with the empirical '$) distribution (+ = 0.028). We define !) = [ × 1.24!1.01$

, where [ is
a log-normal random variable with ` = 0 and f ∝ !$. This results in a conditional distribution for !)
that matches the estimated scaling relationships, and is thus an approximation of the joint distribution
of the data shown in Fig 4b.

Physically, this scaling behavior has an intuitive interpretation (as illustrated in Fig 4c): !) scaling
with !$ with an exponent close to unity, such that the peak in the probability density function for '$)
is O(1), occurs because for most turbulent overturns the displacement of fluid parcels in that patch
(!) ) will be of the same order of magnitude as the vertical scale that they can be displaced given the
background stratification (!$), as discussed above. If an overturn has a small !$, this could either be
because it is a small overturn, meaning it has a similarly small !) , or a young overturn with a larger !)
but still low turbulent dissipation. If !$ is large, however, it likely corresponds to the energetic phase of
the flow (i.e. the optimal mixing phase in Fig 1c) and so !) could be reasonably expected to be similarly
large. This asymmetry in the life cycle of turbulent overturns produces this skewed, heteroscedastic
scaling in Fig 4b. Fig 4c groups the data in Fig 4b (same as that in Figs 2a-b) into the three categories
discussed above, and shows that (a) weak stratification cannot yield a high flux coefficient even at high
energy levels as there is barely much tomix, (b) low energy turbulence in presence of strong stratification
can result in a high flux coefficient, but importantly that does not imply a high flux (since flux ≈ ΓY);
note that in the limit of no turbulence, Γ → ∞ but flux tends to zero, and (c) for energetic stratified
turbulence the flux coefficient is within the conventional range (0.2-0.3). It is only the latter category
that corresponds to large effective turbulent flux.

4.1. The recipe

Altogether, these pieces can be assembled into a ‘recipe’ to compute a bulk flux coefficient as follows.
To calculate Γ� for a coarse resolution grid cell of a general circulation model, which is large enough to
enclose sufficient statistics, we imagine a total power P is available for the grid cell (from one or more
sources, such as tides, winds, etc.). Then, we follow the iterative procedure below.

1. Assume an initial value of 0.2 for Γ� and using P =M� + Y�, infer an initial value for Y�;M�

and Y� are the total mixing and dissipation in the cell.
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2. Distribute Y� over a log-skew-normal distribution of Y for individual patches, so then ΣY8 = Y� and
individual Y8 values are random log-skew-normal sample draws.

3. Calculate !$ for these patches by transforming their Y values and a specified background
stratification into a distribution for !$.

4. Simulate !) values corresponding to these !$ values according to the heteroscedastic scaling
relationship between !$ and !) .

5. Calculate Γ for these patches based on the '$) parameterization and their simulated !$ and !)
values (with a small background diffusivity added; see below).

6. CalculateM8 for individual patches based on their Γ8 .
7. Sum overM8 of all patches to computeM�.
8. Calculate Γ� =M�/Y�.
9. Back to step one and iterate until Γ� converges (usually within a few iterations).

We repeat this proceduremany times and take the average of the realizations to account for the stochas-
ticity in the process; in practice for oceanographically relevant values the variability between realizations
is negligible. In step 5 we also add a small (regularizing) background diffusivity of ^102:6A>D=3 = 10−6.5
m2/s to account for the background wave field processes not encapsulated in the '$) parameterization.
This value, which is close to the molecular diffusion coefficient of heat in seawater, was chosen accord-
ing to the inflection point on the probability density function of ^ from the combined dataset described
above, which separates the low tail of the distribution from the bulk of the data (Figure S2). Including
this ^102:6A>D=3 , mixing for each patch becomes

M8 =M102:6A>D=3 +MCDA1D;4=C = Γ8Y8 = ^102:6A>D=3 #
2 + ΓCDA1D;4=C Y8 , (7)

and so the effective total flux coefficient for individual patches may be defined as

Γ8 = ^102:6A>D=3 #
2/Y8 + ΓCDA1D;4=C , (8)

where ΓCDA1D;4=C is from Eq. (2). The advantage of adding the background mixing is that it allows for Γ
to tend to large values in the limit of weak turbulence, i.e. when there is not much turbulence due to lack
of power and/or overly strong stratification. From a physical perspective, in the limit of laminar flow,
Γ→∞ since Y vanishes butM remains finite. For example, note that Figure 2a shows high values of
Γ for observed weakly turbulent young patches.

Steps 1-5 in the above recipe involve a degree of computational expense that might prove impractical
if applied to every grid cell of a coarse resolution climate model at every time step. It is, however,
straightforward and computationally cheap to do the calculations a priori for ranges of power and
stratification relevant to the oceans, and then employ a simple lookup table in the models. We employ
this approach for the purpose of analysis to be discussed in the next section.

5. Regional/global implications

To highlight the importance of Γ� for the larger scale circulation, we next apply our recipe to the
South Atlantic Ocean. This choice is made for four reasons: (I) it is a region of tidal-shear domi-
nance; (II) it is home to the iconic Brazil Basin Tracer Release Experiment (BBTRE), the first deep
observation of bottom generated enhanced turbulent mixing [Polzin et al., 1997, Ledwell et al., 2000,
St. Laurent et al., 2001]; (III) there exist three-dimensional tidal power estimates which are con-
structed on theoretical grounds but have been verified to agree excellently with observations including
BBTRE [de Lavergne et al., 2020]; and (IV) the BBTRE data were shown to correspond to small-scale
marginally-unstable shear-induced turbulence, and hence consistent with the above-mentioned physical
and statistical paradigms laid out in CM21, MCA21.

We construct a regional map from the sum of the tidally-generated power and the contribution of
the wind-induced near-inertial shear. The former, from de Lavergne et al. [2019, 2020], estimates the
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power in the internal tide field generated through the interaction of ocean tides with ocean bathymetry.
The latter, constructed based on Alford [2020], estimates the power in the downward-propagating
wind-induced internal wave field. Figure 50-2 show the combined power plotted on three density
layers (shallow, intermediate depth, and deep).6 The deep layer, as will be shown, corresponds to
the peak cross-density (diapycnal) turbulence-induced upwelling that helps sustain the deep branch of
the ocean circulation [de Lavergne et al., 2017]. The shallow layer approximately corresponds to the
base of the subtropical wind-driven gyres, across which turbulence mixes heat, carbon, and nutrients
between the upper ocean and the deep ocean [Talley, 2011]. The patterns on the shallow layer reflect
the seasonal atmospheric storm patterns at the surface and the rough topography at the bottom (from
which internal tides radiate upwards). The patterns on the deep layer primarily represent the tidally-
generated turbulence, with little contribution from the surface generated downward propagating waves.
The intermediate layer ‘feels’ both top and bottom generated wave fields.

The power maps, together with climatological hydrographic information (i.e. #2) from the World
Ocean Circulation Experiment [WOCE; see Gouretski and Koltermann, 2004], enable us to calculate Γ�
on the WOCE grid on which the power maps in panels a-b are constructed (following de Lavergne et al.
[2020]). The resolution of the grid is half a degree in the horizontal (∼50km) and ∼110m in the vertical.
Applying our recipe to each grid cell with its local power and density stratification, we obtain the maps
of Γ� shown in Fig 53- 5 , normalized by 0.2. Since the bulk turbulent diffusivity for each grid cell may
be approximated as ^ ≈ Γ�#2/Y�, and the associated buoyancy flux is defined asM� ≈ ^#2, the ratio
Γ�/0.2 is exactly equal to the ratios of ^ andM calculated based on our recipe to their values when
calculated using Γ�=0.2. Thus, panels 3- 5 represent all three ratios and collectively show significant
spatial variations to Γ�. For example, for flux of a given quantity C between the surface ocean and the
deep ocean (where C can be heat, carbon or nutrients for example), panel 3 implies that the flux  C
can be overestimated or underestimated by more than 200% if Γ� = 0.2 is used.

In the deep ocean, turbulent mixing leads to the irreversible transformation of water masses into
lighter/denser waters (i.e. upwelling/downwelling), which facilitates a net upwelling of the dense abyssal
waters, thereby closure of the deep branch of ocean meridional circulation [Wunsch and Ferrari, 2004,
Nikurashin and Vallis, 2011, Mashayek et al., 2015, de Lavergne et al., 2016b, Ferrari et al., 2016].
The net transformation across a density layer is an integral of complex upwelling and downwelling
patterns, decided by topographic features, large scale stratification and circulation, surface forcings, and
turbulence [de Lavergne et al., 2016a, Mashayek et al., 2017b, Cimoli et al., 2019, de Lavergne et al.,
2017]. The local diapycnal conversion of water masses by turbulent mixing is expressed as [Walin,
1982, Ferrari et al., 2016]

F∗ ≈ mIM�

#2
. (9)

This quantity, plotted in Fig 60, 1 on the same deep density layer as in Fig 5c, is positive where
waters become lighter, and negative where waters become denser. Specifically, F∗ is positive whenM�

decreases with depth, for example when there is surface-intensified mixing, or in the bottom boundary
layer where a one-dimensional model would predictM� → 0 towards the ocean floor [Ferrari et al.,
2016] (the nature of such transition is poorly understood and a topic of active research). Conversely,
F∗ is negative and waters become denser when mixing increases with depth, for example in the ocean
interior near rough topography, where mixing is enhanced toward the bottom.

Fig 60 is based on the variable Γ� shown in Fig 54, obtained from our recipe using the log-skew-
normal [LSN] patch distribution in Eq. (4). The net transformation is the sum of sharp near boundary
upwelling squeezed between the bottom topography and regions of intense downwelling. Panel 1 shows
the same map as panel 0 but calculated with Γ�=0.2, while panel 3 shows the difference between
panels 0 and 1. Red regions in panel 3 imply either an increase in local upwelling or a decrease in
local downwelling whereas blue implies enhanced downwelling or diminished upwelling [see Cimoli

6Neutral density is often used instead of in-situ density as it removes the dynamically inconsequential compression of seawater due to increase
in pressure with depth. It is also common to deduct 1000 when reporting seawater density, as in Figure 5.
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et al., 2019, for a more detailed discussion of these patterns]. The change to F∗ is of the same order of
magnitude as F∗ itself. Thus, the variations in Γ� exert a leading order control over the rate and patterns
of deep upwelling and downwelling in the ocean. Panel 3 shows asymmetric anomalies across the
mid-Atlantic-ridge which can have important implications for mixing across the ridge and the broader
inter-hemispheric Atlantic Meridional Circulation as well as inter-based exchange of water masses.

The net water mass transformation rate across a density surface may be defined as the area integral
of the local transformation F∗ through [Ferrari et al., 2016]

D(W=) = −
∬
�(W=)

F∗ · n̂ 3�, (10)

where n̂ is the unit vector normal to the neutral density surface W=, and � is the surface area of the
density surface. D is measured in Sverdrups where 1Sv=106 m3/s. Figure 7a shows the net rate as a
function of neutral density (with the mean depth of the density layers shown along the right vertical
axis). In the deep ocean, Γ� enhances the net transformation rate by over 50% which is significant
(although regionally the changes can be much higher, as shown in Fig 63). In the upper ocean, where
turbulence is key to air-sea tracer fluxes and primary productivity through supply of nutrients to the
mixed layer, the change to the net upwelling from Γ� = 0.2 to variable Γ� is also significant.

Figure 71 shows the normalized histograms of Γ�/(�/2), where � was the coefficient in Eq. 2, for
various density levels. The density levels range from a shallow layer with mean depth of 490m and a
total area of 0.98 of the sea surface area to a deep layer with mean depth of 3170m and an area of 0.63
of the sea surface area. Recalling that '$) ∼ 1 corresponds to Γ6>;38;>2:B = �/2, the fact that the
histograms center around �/2 implies that for most of the ocean, the statistical distribution of patches
(within each grid cell of the climatological data) mostly comprises patches that are ‘optimally’ mixing,
in the sense discussed in detail in MCA21. This implies an optimal balance between stratification and
shear production. Or in other words, regions of strong energy supply to turbulence appear to coincide
really rather closely with the most ‘desirable’ stratification to yield optimal mixing.7 Of course, built
into this observation is the Goldilocks paradigm of Eq. (2) which is embedded within (but not essential
to) our recipe. An alternate paradigm, not imagining energetic turbulence events are in such an optimally
mixing state, would yield another distribution. For completeness, panel 2 shows the same distributions
as in panel 1 but normalized by 0.2.

6. On the sensitivity of our results to specific choices within the recipe

6.1. A note on the choice of the log skew normal distribution for Y in Eq. (4)

As was noted in §1, the hybrid theoretical-statistical framework (i.e. the recipe) laid out in this work
as a means for parameterization of small scale mixing in climate models has merit in its own rights.
Nevertheless, the choices for the ingredients, in the forms of the physical parameterization for patch-
based Γ and the statistical distributions of turbulent patches, are critical to the final estimates of Γ� and
the local diffusivity inferred from it in coarse-grid models. Central to our estimates is the assumption
that the rate of dissipation of kinetic energy has an LSN distribution, following the analysis of CM21
which was based on an extensive and diverse set of microstructure data. As discussed in CM21, (I) the
skewness of the distribution may be contextual, and (II) a log-normal distribution has traditionally been
assumed. Since the tails of such distributions correspond to the largest turbulence overturns, one should
expect the Γ� estimates to be sensitive to the choice of the distribution within the recipe. To show that
this is in fact the case, in figures 6 and 7 we also consider estimates of F∗ and D based on log-normal
(LN) distribution. Comparisons of panels 3 and 4 in Fig 6 shows the significant regional sensitivity to
the choice of the distribution. The integral of F∗, as shown in Fig 7a, also shows that in the net, and

7We use � = 2/3 in this study since it was justified on physical grounds by MCA21 and also was inferred through data regression as shown in
Figure 3a and in MCA21. With this value, Γ6>;3 = 1/3 ∼ 1.7 × 0.2 which corresponds to green in panel 1. But note that other values of � will
not change the histograms and the optimal mixing argument that we make.
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specially in the abyssal ocean, the choice of the distribution function is of leading order importance.
This highlights the need for further studying of statistical distributions of Y from field data with the
goal of quantifying the regional, depth-wise, and process-wise variations in the parameters of Eq. (4).
Analogously to the Goldilocks paradigm embodied in Eq. (2), the LSN distribution is not an essential
aspect of the recipe, but simply a base upon which to build.

6.2. A note on the log skew normal scaling for '$)
The bulk flux coefficient inferred from our recipe depends significantly on the parameters involved in
the !) -!$ scaling described in §4. Figure 4d highlights such sensitivity, by perturbing the parameters
from a baseline Γ6 estimated from the combined global dataset used in panel 1. Larger fluctuations in
!) when !$ is large can increase the bulk flux coefficient, but it asymptotes to a constant value with
decreasing fluctuations. Increasing either the scaling exponent or coefficient increases !) values for
large !$, thus increasing the bulk flux coefficient for large Y; decreasing either the scaling exponent or
coefficient drives bulk mixing to zero as '$) � 1 when Y is large. While there is significant evidence,
as reviewed earlier, that '$) possess a (seemingly universal) weakly skewed normal distribution (and
so the parameters in our scaling are unlikely to vary over the range shown in Fig 4d), consideration of
a much larger collection of observational data and deeper physical-statistical analyses are required to
better parameterize this component of the recipe in the future.

6.3. A note on our choice of parameterization for Γ8
As discussed earlier, our specific choices with regard to the physical and statistical components of the
recipe are subjective choices which should be thought of as placeholders. We acknowledge that while
our specific choice for the parameterization of Γ8 (as per Eq. 2) is rooted in physical reasoning and
seems plausible based on a wide range of oceanic datasets (as discussed in MCA21), it is one of the
existing paradigms. Alternative viewpoints, for example, have recently been expressed by Garanaik and
Venayagamoorthy [2019] and Ivey et al. [2021] and can straightforwardly be implemented in our recipe.

7. Discussion

Climate model resolutions are orders of magnitude away from resolving small scale ocean turbulence:
while model resolution is O(100 km), diapycnal mixing occurs on sub-meter scales. It is not even clear
whether resolving such mixing is an ultimate goal of ocean modeling. Thus, parameterizations that
connect the primary sources of power available to turbulence (e.g. from winds, tides, eddies, currents,
etc.) tomixing are inevitable. Connecting power tomixing requires an assumption about how it partitions
into mixing and viscous dissipation. Assuming a constant flux coefficient of 0.2, which is currently the
norm in ocean modelling, for such partitioning can only hold in one of two ways: (I) each grid cell of a
given model is always filled with turbulence processes all of which mix with Γ8 = 0.2, (II) each grid cell
hosts spatio-temporally intermittent turbulence with variable Γ8 in such a way that a time-space average
over the cell always results in Γ� = 0.2. The first possibility is obviously unrealistic, and there is no
evidence to support the latter. So, in summary, the status quo in form of using Γ� = 0.2 is unjustifiable.
In this work, we showed that it also can lead to significant inaccuracies in predicting turbulence fluxes
and diapycnally-driven upwelling and downwelling in the ocean interior.

It was suggested herein that (somewhat) established and (seemingly) universal statistical character-
istics of turbulent overturns in the ocean interior can be employed to connect the physics of small scale
mixing, in the form of parameterization of flux coefficient for individual patches, to an appropriately-
averaged bulk mixing on regional or coarse-model-grid scales. There are two aspects to our work. First,
from a model parameterization perspective, we offered a recipe which connects power sources to small
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scale mixing through a statistical-stochastical approach. Our choices of parameterization of the patch-
based flux coefficient and statistical distribution of patches both may be substituted for by alternate
paradigms or improved over time.

Second, with our specific choices of parameterization of Γ8 and statistical distributions, both of
which were informed by extensive oceanic datasets, we reached a number of physical conclusions. We
showed that in most energetically mixing regions, a given ‘box’ of the ocean is filled with turbulence
patches which optimally mix with Γ8 ∼ 1/4− 1/3. As discussed in MCA21, this range is closely related
to classical (marginal) instability criteria of stratified mixing layers. Such boxes tend to have a bulk
Γ� ∼ 0.4. While larger Γ� values may be found in the domain, such values typically correspond to
weak turbulence activity (remembering that Γ→ ∞ in the limit of laminar flow). The identification of
weakly and strongly mixing zones is key as it is the changes from one to another that sets the up and
down welling of waters.8

In the deep ocean, for example, our recipe allows for the flux (Γ� × Y�) to vary from small values
away from topography, to high values in its vicinity, and from there to zero at the seafloor. In physical
terms, the recipe allows for finite, nontrivial mixing where there is something to mix and (reassuringly)
zero mixing where there isn’t anything to mix. Using a constant value will force the model to undermix
where it should mix more effectively, and to overmix where there isn’t much to mix in reality. In climate
models which employ a universally constant Γ, the diffusivity, which is proportional to Γ/#2, blows
up at the bottom where #2 vanishes. Our recipe alleviates that problem through Γ� → 0 in that limit.
Importantly, the transition from weak turbulent flux to strong flux marks the intensity and direction of
diapycnal conversion (upwelling/downwelling patterns) and thereby exerts a control over the closure of
the diffusively-driven abyssal circulation. Quantification of such patterns and the realization of the fact
that the net abyssal upwelling is the residual of significant downwelling and upwelling is a new paradigm
in physical oceanography [Powell, 2016, Voosen, 2022], and one which partially motivated this work.

The recipe proposed in this work, the code for which is available in the Supplementary Materials,
may be used to tackle these problems in climate models as a first step with great room for improvement as
our understanding of the physics of mixing and statistical distributions of overturns improve with time.
In our view, both improvements can benefit from a closer collaboration between the fluid mechanics
and physical oceanography communities.

8. Material Sources

Panels a,b of Figure 2 and panel b of Figure 4 are based on the data used in MCA21, a brief description
of which is included in the Supplementary Materials. Panels c,d of Figure 2 are based on the simulations
of [Mashayek and Peltier, 2011a, 2013a, Mashayek et al., 2013]. Figure 4a is reproduced from CM21. In
Figure 5, the tidal power is from [de Lavergne et al., 2020] and the wind power is based on [Alford, 2020]
who provided estimates for the net wind work on the ocean, the portion of the power that is dissipated
within the surface mixed layer, and the radiation efficiency of the downward propagating wave field.
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Figure 1. (a) Bottom water temperature in the Samoan Passage, a chokepoint of abyssal ocean circula-
tion. (b) Turbulence in the passage: northward velocity (colors), potential temperature (black contours),
and dissipation rate measured by a turbulence microstructure profiler (shaded black profiles) and
inferred from Thorpe scales (blue profiles). Panels 0, 1 are from Alford et al. [2013]. (c) Evolution of
the overturn scale, !) , and upper turbulence bound, !$, as well as the viscous dissipation scale, ! ,
for an archetypal mixing process in the form of a shear instability of Kelvin Helmholtz type [Mashayek
et al., 2013]. The insets show the turbulence breakdown of the wave by showing the spanwise (out of
the page) vorticity in gray and counter-rotating streamwise (along flow) vorticity iso-surfaces in green
and purple, illustrating the hydrodynamic instabilities that facilitate a wave breakdown [Mashayek
and Peltier, 2012a,b]. Such instabilities create a turbulence cascade that transfers energy from the
energy-containing scale (!) ) to the scales where molecular dissipation erodes momentum (! ).

Cite this article:Mashayek 4C 0;. (2021). A physical-statistical recipe for representation of small scale oceanic turbulent mixing in climate models.
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Figure 2. (a) Agreement of Eq. 2 with ∼50000 turbulent patches from six different datasets covering
a variety of turbulent regimes and processes. The bar plot insets show the histogram of '$) (top
axis) and Γ for the parameterization (in red) and data (in blue) along the right vertical axis. The
value of � is obtained through regression of data to Eq. 2. Reproduced from Mashayek et al. [2021]–
See Supplementary Materials for a brief description of data. Note that the data plotted here include
observations in the Samoan Passage (shown in Fig 1b) and in the Brazil Basin (of relevance to Figs
5-7). (b) Probability density function (PDF) of '$) = !$/!) for the same data as in panel 0,
compartmentalized in terms of rate of dissipation of kinetic energy, Y. The bottom/second/third/top
quartiles have increasing modes of 0.66/0.78/0.82/0.88 respectively. Note the negative skewness of the
log-transformed PDF. Panels (c) and (d) show the temporal fraction of turbulence lifecycle, as well
as the ratio of '$) during the turbulent phase of the flow to its mean value over the whole life cycle.
Each symbol represents a life-cycle-averaged quantity from a direct numerical simulation (such as the
one in Figure 1d) for the corresponding Reynolds and Richardson numbers. All cases in panel c are
for '8 = 0.12 while all cases in panel d are for '4 = 6000. The turbulent phases of the life cycles are
defined as the times when '41 > 20 [Gibson, 1991, Smyth and Moum, 2000].
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(a) (b)

Figure 3. (a) Sampling bias and uncertainty for buoyancy flux (dashed lines), Γ × Y (solid lines),
and Y (dotted lines) for a single turbulent event (e.g. Fig 1c). Purple lines indicate the normalized
standard deviation, and yellow lines indicate the median relative underestimation, each as a function of
sample size, estimated from bootstrap resampling a direct numerical simulation (shown in Fig 1c, from
Mashayek et al. [2013]). For example, relative uncertainty is > 100% for the time-averaged buoyancy
flux of this event with fewer than∼16 samples, and the median time-averaged buoyancy flux estimate with
4 or fewer samples underestimates the buoyancy flux by a factor of two or more. (b) Sampling bias and
uncertainty for the mean Y sampled from a log-skew-normal distribution with the parameters estimated
from the dataset described in the text, discarding Y values >10−5 m2/s3. The green line indicates the
normalized standard deviation, and the orange line indicates the median relative underestimation, each
as a function of sample size, estimated from bootstrap resampling.
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Figure 4. (a) Reproduced from CM21, Y data from over 750 full depth microstructure profiles from
14 field experiments (see Cael and Mashayek [2021] for more details) are excellently characterized
by a log-skew-normal distribution. Cumulative distribution functions (CDFs) are shown in the main
plot; the upper inset shows the corresponding probability density functions and that of a log-normal
distribution (purple line) for comparison; the lower inset shows the difference between the empirical and
hypothesized log-skew-normal CDFs. (b) Regression of log10 (!) ) against log10 (!$). The middle line
captures the central scaling relationship and is estimated via model II regression as described in the text;
the outside lines capture the heteroscedasticity of the residuals and is estimated via quartile regression
as described in the text. (c) Mean quantities from the dataset in panel 1 (with error bars representing
standard deviation), grouped into three categories: (I) energetic turbulence in weak stratification, (II)
weak turbulence in strong stratification, and (III) energetic stratified turbulence; see main text for
a discussion. (d) Sensitivity of the bulk flux coefficient to the different !) -!$ scaling parameters,
perturbed from a baseline Γ6 estimated from the combined global dataset described in the text. Larger
fluctuations in !) when !$ is large can increase the bulk flux coefficient, but it asymptotes to a constant
value with decreasing fluctuations. Increasing either the scaling exponent or coefficient increases !)
values for large !$, thus increasing the bulk flux coefficient for large Y; decreasing either the scaling
exponent or coefficient drives bulk mixing to zero as '$) � 1 when Y is large. See Supplementary
Materials for information on data sources.
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Figure 5. (a-c) The combined power in the internal wave field in the South Atlantic basin, induced by
tides and winds, that is available for mixing and dissipation, plotted on various density levels. (d-f):
Γ� normalized by Γ∗ = �/2 based on Eq. 2, plotted on the same density levels as in 0 − 2. Since
 ≈ Γ�Y/#2 and the turbulent flux isM ≈  #2, Γ�/0.2 is equal to ratios of  andM based on Γ�
calculated using our recipe to their values when 0.2 is used.
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Figure 6. (a): Local diapycnal velocity (see Eq. 9) showing upwelling (in red) and downwelling (in
blue) on the deep density level 28.1, calculated using the variable Γ� recipe with a log-skew-normal
(LSN; see Eq. 4) probability function used for distributing the power in each grid cell over a statistically
significant distribution of turbulent patches. (b) The same as 0, but when Γ�=0.2 is used everywhere.
(c) The same as 0 but with a log-normal (LN) distribution used instead of LSN (i.e. U = 0 in Eq. 4). (d)
The difference between panels 0 and 1. (e) The difference between panels 2 and 1.
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Figure 7. (a) Water mass transformation (i.e. integral of F∗, as per Eq. (10)) in the same domain as
that in Figs 5,6, for Γ�=0.2 and variable Γ� with LSN and LN patch distributions. (b,c): Histogram
of the normalized Γ� on various density levels. The legend includes information on the mean depths
of density levels as well as their total area normalized by the area at the sea surface. Histograms are
normalized by Γ6>;38;>2:B = �/2 (see Eq. 2) in panel 1 and by 0.2 in panel 2.
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Turbulence patch data

The six oceanic datasets employed for the purposes of analyses in Fig 2b andFig 4b of themain text are the
same as those employed by MCA21. Here we provide a brief description and refer to MCA21 for a more
comprehensive discussion. The Tropical InstabilityWave Experiment (TIWE) dataset includes turbulent
patches sampled at the equator at 140>W in the shear-dominated upper-equatorial thermocline, between
60m and 200m depths, spanning both the upper and lower flanks of the Pacific Equatorial Undercurrent
[Lien et al., 1995, Smyth et al., 2001]. The FLUX STAT (FLX91) experiment sampled turbulence at the
thermocline (∼350-500m depth), in part generated through shear arising from downward-propagating
near-inertial waves, about 1000 km off the coast of northern California [Moum, 1996, Smyth et al.,
2001]. The IH18 experiment measured full-depth turbulence (up to ∼5300m deep) primarily generated
by tidal flow over the Izu-Ogasawara Ridge (western Pacific, south of Japan), a prominent generation
site of the semidiurnal internal tide that spans the critical latitude of 28.88N for parametric subharmonic
instability [Ijichi and Hibiya, 2018]. The Samoan Passage data are measurements of abyssal turbulence
generated by hydraulically-controlled flow over sills in the depth range 4500-5500m in the Samoan
Passage, an important topographic constriction in the deep limb of the Pacific Meridional Overturning
Circulation [see Alford et al., 2013, Carter et al., 2019, we use data from the latter]. The BBTRE data
are from turbulence induced by internal tide shear in the deep Brazil Basin (∼2500-5000m depth) and
were acquired as a part of the original Brazil Basin Tracer Release Expermient (BBTRE; Polzin et al.
[1997]), recently re-analyzed by Ijichi et al. [2020]. Also re-analyzed by Ijichi et al. [2020], we use the
data from DoMORE which focused on flow over a sill on a canyon floor in the Brazil Basin [Clément
et al., 2017, Ijichi et al., 2020].

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Dataset + (!$) + ('$) )
Combined 0.021 0.010
BBTRE 0.022 0.028
DoMORE 0.021 0.039
FLX91 0.023 0.015
Hawaii 0.011 0.021
IH18 0.008 0.027
IWISE 0.037 0.033
SP 0.015 0.017
TIWE 0.021 0.031

Table 1. Kuiper’s statistic + for the log-skew-normal approximation of the !$ and '$) distributions
of each of the datasets and the combined dataset described in the text.

Dataset Exponent =C08; (percentile) ?-value
Combined 2.20 ± 0.01 12519 (80th) <0.01
BBTRE 2.04 ± 0.03 5754 (73rd) <0.01
DoMORE 3.27 ± 0.57 178 (98th) 0.08
FLX91 3.85 ± 0.24 598 (82nd) 0.03
Hawaii 2.81 ± 0.12 1010 (90th) 0.09
IH18 2.95 ± 0.05 605 (94th) 0.13
IWISE 2.64 ± 0.21 225 (82nd) 0.07
SP 2.57 ± 0.05 3133 (76th) <0.01
TIWE 3.65 ± 0.53 322 (72nd) <0.01

Table 2. Scant evidence for power-law distributions in the Thorpe scale !) in the datasets used in this
study. Left column gives the datasets described in the text and the combined dataset that aggregates all
of these. Second column gives the power-law exponent estimate and its uncertainty, as calculated by the
method described in Clauset et al. [2009]. The same method selects a minimum !) value above which
a power-law tail is fit; the third column gives the number of samples above, and the percentile above,
this minimum !) value in each case. The fourth column gives the probability that these tail data are
power-law distributed, with the ?-values above the rule-of-thumb significance criteria of 0.1 suggested
by Clauset et al. [2009] in bold. The power-law hypothesis is rejected in all cases except IH18; in this
case, the exponent is much steeper (∼3) than those described by Smyth et al. [2019] and only ∼6%
of the data fall into this power-law tail. The cases with borderline ?-values (0.1 > ? > 0.01) also
have steep exponents and/or small tail sample sizes. Altogether these results show that the power-law
parameterization is a poor description of the total !) distribution considered here.
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Figure 1. Left: Log-skew-normal (LSN) fit to !$ data from the Brazil Basin Tracer Release Experiment
(BBTRE), shown as probability density. Orange points are the data histogram, with number of bins
equal to the (integer-rounded) square root of the sample size. Vertical line added to visualize skewness.
+ is Kuiper’s statistic (see text), evaluated on cumulative probability density. For this log-skew-normal
distribution, the log-skewness ˜̀3 = 0.48. Right: Probability distribution of combined !) dataset, and
the log-normal with the same log-mean and log-standard deviation overlaid.

Figure 2. Probability density function of diffusivity ^ for the combined dataset described in the text based
on the work of Cael & Mashayek 2021 Cael and Mashayek [2021]. Circle highlights inflection point
in cumulative distribution at 10−6.5 from which we take a background diffusivity ^102:6A>D=3 ∼ 10−6.5,
such that mixing for each patch becomes"102:6A>D=3 +"?0C2ℎ = ΓC>C0;n = ^102:6A>D=3#

2+Γ?0A0<n
and so ΓC>C0; = ^102:6A>D=3#

2 + Γ?0A0<, where Γ?0A0< is the '$) -parameterized Γ value.
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