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Abstract

It is well established that small scale turbulent mixing induced by breaking of waves in the interior of the ocean plays a significant

role in sustaining the deep ocean circulation and in regulation of tracer budgets such as those of heat, carbon and nutrients.

There has been significant progress in fluid mechanical understanding of the physics of breaking internal waves. Connection

of the microphysics of such turbulence to the global ocean, however, is significantly underdeveloped. We offer a theoretical-

statistical approach, heavily informed by observations, to make such a link and then by employing climatological information

show that in the global ocean, regions of optimal turbulent mixing coincide with regions that have a desirable balance of

stratification and velocity shear. This optimality depends critically on the statistics of turbulent patches. Energetic mixing

zones exhibit efficient bulk mixing that induces significant vertical density fluxes, while quiet zones (with small background

turbulence levels), while efficient in mixing, exhibit minimal vertical fluxes. The transition between the less energetic to more

energetic zones, quantifications of which we argue depends critically on turbulence statistics, implies upwelling and downwelling

of deep waters may be stronger than previously estimated, which in turn has direct implications for the ocean overturning

circulation as well as for the global budgets of heat, carbon, nutrients, and other tracers. Impact Statement Waves similar to

those observed at the beach exist throughout the ocean interior and are induced by tides, winds, currents, eddies, and other

processes. Similar to beach waves, internal waves can also roll up and break. Widespread internal-wave breaking helps drive

the ocean circulation by upwelling the densest waters that form in polar regions and sink to the ocean abyss. They also play an

important role in transport and storage of heat, carbon, and nutrients. In this work we show how well-understood concepts in

wave physics can be used in conjunction with statistics of observed ocean turbulence to improve significantly our understanding

of the impact of small-scale mixing on the global ocean, and thereby on the climate system.
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Abstract
It is well established that small scale turbulent mixing induced by breaking of waves in the interior of the ocean
plays a significant role in sustaining the deep ocean circulation and in regulation of tracer budgets such as those
of heat, carbon and nutrients. There has been significant progress in fluid mechanical understanding of the physics
of breaking internal waves. Connection of the microphysics of such turbulence to the global ocean, however,
is significantly underdeveloped. We offer a theoretical-statistical approach, heavily informed by observations, to
make such a link and then by employing climatological information show that in the global ocean, regions of
optimal turbulent mixing coincide with regions that have a desirable balance of stratification and velocity shear.
This optimality depends critically on the statistics of turbulent patches. Energetic mixing zones exhibit efficient
bulk mixing that induces significant vertical density fluxes, while quiet zones (with small background turbulence
levels), while efficient in mixing, exhibit minimal vertical fluxes. The transition between the less energetic to more
energetic zones, quantifications of which we argue depends critically on turbulence statistics, implies upwelling
and downwelling of deep waters may be stronger than previously estimated, which in turn has direct implications
for the ocean overturning circulation as well as for the global budgets of heat, carbon, nutrients, and other tracers.

Impact Statement Waves similar to those observed at the beach exist throughout the ocean interior and are
induced by tides, winds, currents, eddies, and other processes. Similar to beach waves, internal waves can
also roll up and break. Widespread internal-wave breaking helps drive the ocean circulation by upwelling the
densest waters that form in polar regions and sink to the ocean abyss. They also play an important role in
transport and storage of heat, carbon, and nutrients. In this work we show how well-understood concepts in
wave physics can be used in conjunction with statistics of observed ocean turbulence to improve significantly
our understanding of the impact of small-scale mixing on the global ocean, and thereby on the climate system.

1. Introduction

Turbulence induced by breaking waves in the ocean interior plays a key role in regulating the global
ocean circulation and budgets of climatically important tracers such as heat, carbon and nutrients [Talley
et al., 2016]. Internal waves are primarily excited at the bottom of the ocean through interaction of
tides, currents and eddies with bottom topography and at the surface through the wind stress acting on

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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the sea-surface [Garrett and Kunze, 2007, Nikurashin and Ferrari, 2013, Legg, 2021, Alford, 2020].
Figure 1a,b shows sample regions in the Southern Ocean where all such sources are in play, exciting an
energetic internal wave field. When the vertical shear induced by the waves is sufficiently strong (panel
c), it leads to wave breaking and turbulence (panels d and e). Ocean turbulence is highly intermittent in
time and space and thus difficult to sample sufficiently to allow for accurate quantification of properties
of interest such as turbulent mixing. Thus, sampling poses a monumental challenge to connecting our
understanding of physics of turbulence, which occur on scales O(10−3 − 10−1)m, to the larger scale
regional and global implications, which are relevant on scales O(106−107)m. In this sense, this problem
is analogous to cloud physics: both involve micro-physics with leading order global impacts, both occur
on scales much smaller than typical climate model resolutions and thus need to be parameterized, and
both have been notoriously difficult to parameterize and contribute significantly to inaccuracies in model
solutions. In this paper we provide a novel methodology, based on recent progress in our understanding
of the microphysics of mixing [Mashayek et al., 2021b, hereafterMCA21] and statistics of wave-induced
turbulence [Cael and Mashayek, 2021, hereafter CM21], to connect the physics of small scale turbulent
mixing to large scale deep ocean circulation and upper ocean fluxes of tracers.

2. Physics of wave-induced turbulence

Our understanding of the physics of wave-induced density stratified turbulent mixing has progressed
significantly over the past few decades [Peltier and Caulfield, 2003, Ivey et al., 2008, Caulfield, 2021].
A key question is how the total power available to turbulence, P is partitioned into mixing,M, defined
as a net vertical irreversible density flux, and dissipation into heat (due to the seawater viscosity), the
rate of which is referred to as Y.

Figure 1d shows the life cycle of a canonical wave’s breakdown into turbulence. The top row shows
the mixing of dense water with the lighter overlying water. The bottom row shows the density flux which
is positive once averaged over the turbulence life cycle, implying an upward flux of dense waters raising
the center of mass. The turbulent mixing may be approximated by

M ≈ ^#2 ≈ ΓY, (1)

where #2 = − 6
d0
mId represents the density stratification, 6 is the gravitational constant and d0 is a

reference density [Osborn, 1980]1. The turbulent diffusivity, ^, is an input parameter in climate models
to account for the subgrid-scale unresolved turbulent mixing. The turbulent flux coefficient, Γ =M/Y,
is often taken to be a constant value of 0.2 for historical reasons and arguably for the lack of a universally
accepted parameterization for it. However, it is well known to be highly variable [Mashayek and Peltier,
2013b, Gregg et al., 2018], with appreciable consequences for ocean circulation [de Lavergne et al.,
2015, Mashayek et al., 2017c, Cimoli et al., 2019]. WhileM is often the quantity of interest from a
physical perspective, it is difficult to observe directly and is often inferred from Y (via Eq. 1) which itself
is inferred from micro-scale shear (i.e. spatial gradients of velocity) measured by microstructure probes
on profiling instruments, gliders, or moorings. Thus, accurate quantification of Γ is key to inferring
ocean mixing from direct observations.

The density flux in the bottom row of Figure 1d is composed of large scale features associated with a
primary overturning eddy which is the source of energy toM and Y, and smaller features comprise the
turbulence cascade of eddies. Three basic turbulence scales have proven useful for parameterization of
Γ based on observable quantities. The Kolmogorov scale, ! = (a3/Y)1/4, represents the scale below
which viscous dissipation takes kinetic energy out of the system, the Ozmidov scale, !$ = (Y/#3)1/2, is
the maximum (vertical) scale that is not strongly affected by stratification, and the Thorpe scale, !) , is a
geometrical scale characteristic of vertical displacement of notional fluid parcels within an overturning
turbulent patch [Dillon, 1982, Smyth and Moum, 2000, Mashayek et al., 2017a] – a is the kinematic

1Note that while the caveats associated with this approximation are important[Mashayek et al., 2013, Mashayek and Peltier, 2013a], they don’t
change the primary conclusions of this work.
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viscosity of seawater. Panel (e) in Figure 1 shows time evolution of these scales for the turbulence event
shown in panel (d).

Together, panels d and e show the initial accumulation of available potential energy (APE) from
background shear into the primary billow (large !) ) followed by the growth of smaller eddies within
the main billow upon feeding on its APE source (increase in !$). As turbulence grows, the scale at
which energy is taken out of the system, ! , decreases. The phase where !$ ∼ !) is the most efficient
transfer of energy from the overturn to the smaller scales, is the richest, highest dynamic range turbulence
(marked by the largest gap between !$ and ! ), and is thus the most efficient phase of the flow where
(instantaneous) mixing efficiency is defined asM/(M + Y) = Γ/(1 + Γ) [Peltier and Caulfield, 2003].

The ratio of !$ and ! , often expressed as the buoyancy Reynolds number '41 = (!$/! )4/3,
has been widely used to quantify Γ [Bouffard and Boegman, 2013, Mashayek et al., 2017c, Gregg
et al., 2018, Monismith et al., 2018] and also to establish the global scale impacts of variations in Γ
[de Lavergne et al., 2015, Mashayek et al., 2017c, Cimoli et al., 2019]. However, some of these efforts as
well as others have also highlighted the inherent deficiency of '41 since it only includes instantaneous
information on the turbulence scales !$ and ! while not ‘knowing’ anything about either the energy
containing scale !) [Gargett and Moum, 1995, Mashayek and Peltier, 2011c, Mashayekhi, 2013, Mater
and Venayagamoorthy, 2014, Mashayek et al., 2021b] or any time dependence of the flow, although
evidence is accumulating that ‘history matters’ in stratified mixing [Caulfield, 2021]. An alternate
method for inferring mixing, employed when direct inference of Y is not available, is to assume that
'$) = !$/!) is a constant (taken to be between 0.6 and 1) and Γ = 0.2 [Dillon, 1982, Thorpe, 2005].
This assumption allows for an indirect inference of Y, and thereby of Γ. This method is inherently
deficient (although in practice might be the only available option) since it only ‘knows’ about the energy
containing scale and not the the dissipation scale, and so knows nothing about the dynamic range of the
turbulence.

Recently, MCA21 [Mashayek et al., 2021b] proposed a simple parameterization for Γ based on basic
physical grounds that agreed well with observational data:

Γ = �
'−1
$)

1 + '
1
3
$)

, (2)

where � is a constant ranging between 1/2 and 2/3. Crucially, this parameterization captures the
fundamental time-dependent nature of shear-driven mixing events, allowing for variation in '$) and
hence Γ at different stages in the life cycle of a mixing event. Figure 2a, reproduced fromMCA21, shows
the agreement with a combination of data from ∼50,000 turbulent patches gathered from six different
field campaigns that sampled turbulence in different geographical locations around the global, at different
depths and turbulence regimes, and from turbulence induced by different processes (seeMaterials for a
brief description of data). Eq. 2 reduces to �/'$) in the limit of young turbulence ('$) � 1)) and to
�/'−4/3

$)
in the limit of (older) decaying turbulence ('$) � 1)). While the decaying turbulence limit

of Eq. 2 was suggested by others in the past, as discussed in MCA21, the young turbulence limit and
the transition between the two limits were formulated by MCA21.

A nice feature of Eq. 2 is that it allows for the two ranges to merge smoothly at '$) ∼ 1. This
limit corresponds to efficient mixing when there exists an optimal balance between the stratification
and energy available to turbulence. In the young turbulence range, stratification is relatively high and
sufficient energy has not yet transferred to turbulent eddies to work against the stratification and mix.
So, while Γ can be very large, it does not imply much mixing: it is large since Y is very small, not
becauseM is large. In fact, in the limit of laminar flow, Γ → ∞. On the other hand, in the decaying
phase of turbulence, stratification is somewhat eroded and soM is weaker as there is less to mix, while
Y is still finite as even an unstratified flow can have significant Y. Thus, in this limit Γ → 0. It is the
'$) ∼ 1 limit in which the right balance of stratification and power exists and optimal mixing occurs.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
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Since this intermediate phase appears to lead to ‘optimal’ mixing, neither too hot nor too cold but ‘just
right’, MCA21 referred to this as ‘Goldilocks mixing’.

In this paper we will show that all three (time-dependent) phases of turbulence life cycle, importantly
including the young turbulence limit, are key to connecting the small-scale physics of mixing to the
large-scale ocean dynamics. While the Goldilocks mixing phase is when most of the effective turbulent
flux occurs, the young and weakly turbulence patches are important since most of the ocean interior
is relatively ‘quiet’ with intermittent bursts of turbulence. We will argue that it is essential to account
for the less/non turbulent regions whereas historically parameterizations have primarily focused on
energetic turbulence. This will necessitate careful analysis of the statistics of turbulent patches.
On dimensional grounds, recently Mashayek et al. [2021a, hereafter MCBC21] argued that Eq. (2) may
also be expressed in terms of the buoyancy Reynolds number '41 = (!$/! )4/3 = Y/a#2, and the
gradient Richardson number '8 = #2/(2, where ( is the vertical shear of horizontal velocity:

Γ = �
'−1
$)

1 + '
1
3
$)

= �
'4∗

1
1/2'8∗

1 + '4∗
1

, (3)

where

'4∗1 =
'41

'41<
, '8∗ =

'8

'8<
, (4)

where '8< and '41< are the values of '8 and '41 where the Goldilocks mixing phase occurs, i.e.
where '$) ∼ 1. MCBC21 argued that by normalizing '41 and '8 with their values evaluated at
'$) ∼ 1, similar to Eq. (2), Eq. (3) represents two limits of the young/growing turbulence ('4∗

1
� 1)

and fossilizing/decaying turbulence ('4∗
1
� 1). The two limits are smoothly connected at '4∗

1
≈ '8∗ ≈

'$) ∼ 1, i.e. at some critical/marginal values of '41 and '8 at which '$) ∼ 1, within the Goldilocks
mixing phase.

Using oceanic datasets and building on earlier works, MCBC21 argued that both '41< and '8< can
vary (potentially co-dependently) from experiment to experiment: this is not surprising as intensity of
stratified turbulence is known to be dependent on both Reynolds and Richardson numbers. Of relevance
to this work, however, is the mere notion that there exists a critical Richardson number that corresponds
to '$) ∼ 1. So, the fact that '$) ∼ 1 corresponds to optimal mixing for individual patches (as
discussed) and also to regions of optimal mixing on global scale (to be discussed) implies that in such
regions there exists an optimal balance between stratification and shear to keep '8 at, or at least near, a
marginal value or critical value '8<.

3. Statistics of turbulence

3.1. Statistics of patches

Figure 2b shows the histogram of the data used in panel a separated into four quartiles in terms of Y.
The distribution shows that most turbulent patches lie within a factor of 3 of '$) = 1 and the larger
the Y, the closer to 1 the peak of '$) lies. This suggests the majority of turbulent patches are in
this phase of optimal or Goldilocks mixing. Such a clustering of data has been widely reported in the
past [Dillon, 1982, Thorpe, 2005, Mater et al., 2015, Mashayek et al., 2017a] and suggests that out of
the three phases of energetic ocean turbulence events, namely ‘young’ growth, Goldilocks mixing, and
‘old’ decay, the intermediate phase spans the larger fraction of the turbulence life cycle. This is shown
quantitatively in panels c,d of Figure 2 where life-cycle-averaged properties are plotted from turbulence
life cycles simulated by direct numerical simulations such as that in Figure 1. Panels c,d, together, show
that for sufficiently energetic turbulence (i.e. sufficiently high Reynolds number2 and sufficiently low

2Reynolds number in the simulations is defined as '4 =*3/a, where U is a characteristic flow velocity scale and 3 is the characteristic vertical
scale of shear.
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Flow E1-5

'8), a larger proportion of the turbulence life cycle corresponds to the Goldilocks phase rather than to
the growth and decay phases.

The parameterization (2) describes individual turbulent patches. A turbulent region within the ocean,
such as that shown in Figure 1b-c based on an observationally-tuned numerical simulation, hosts many
patches in different stages of their evolution. MCA21 argued that an appropriate value for a bulk Γ for
a region, such as those in Figures 1b-c, may be constructed for such a region through

Γ� =
MC>C

YC>C
≈

=∑
8=1
Γ8 × Y8
=∑
8=1
Y8

(5)

where = represents the number of patches in a region of interest. For example, typical resolution of
climate models is O(100 km) in the horizontal and O(100 m) in the vertical direction. Models that
employ a time variable mixing parameterization3, employ Γ = 0.2 to construct a diffusivity for each grid
cell. The more appropriate value, however, would be the Y-weighted Γ average, i.e. Γ�, which would
rely on the statistical distribution of patches within the grid cell and their individual Γ. By applying
Eq. 5 to four datasets, MCA21 showed that Γ� can be close to the Goldilocks mixing (i.e. �/2 ≈ 1/3
according to Eq. 2) when the region of study has the right balance of power and stratification (where
'$) , '4

∗
1
, '8∗ ∼ 1), thereby comprising mostly Goldilocks mixing patches. However, regions that host

a higher percentage of young or weak turbulent patches can have Γ� ∼ O(1) since young patches have
large Γ as shown in Figure 3 in the limit of small '$) .4

3.2. Statistics of continuous profiles

Bulk mixing therefore depends on statistics of turbulent patches. However, weakly/non-turbulent waters
reside in between intermittent turbulent patches. Recently Cael and Mashayek [2021, hereafter CM21],
showed that Y data from over 750 full depthmicrostructure profiles from 14 field experiments (covering a
wide range of depths, geographical locations, and turbulence-inducing processes; see CM21 for details),
are well-described by a log-skew-normal distribution (Figure 4a), which has the form

5 (Y; b, l, U) = 2
lY

q

( log Y − b
l

)
i

(
U
log Y − b

l

)
, (6)

where 5 is a probability density function and q and i respectively are the probability and cumulative
density functions (PDF and CDF) of a standard Gaussian random variable. As discussed in CM21, the
relationship between the log-skewness (\) of the distribution and the additional shape parameterU is one-
to-one. The parameters (b, l, U) are related to the log-mean, log-standard deviation, and log-skewness
(`, f, \) of a log-skew-normal random variable according to the equations:

` = b +
√
2
c
lX, (7)

where

X =
U

√
1 + U2

, f = l

√
1 − 2

c
X2, \ = (4 − c)

(√ 2
c
X

)3
/(2(1 − 2

c
X2)3/2). (8)

3Many models don’t employ such a time-varying parameterization and even those that do take the tidal power as a given and merely adjust the
diffusivity based on the evolving stratification.

4Young patches have large Γ because of small Y NOT due to largeM . Thus, while they don’t contribute much to the net turbulent flux
∑
Γ8 Y8 ,

they bias Γ� high.
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E1-6

The log-skew-normal distribution arises from the analogue of the Central Limit Theorem for log-
normal variables: that is, the sum of log-normal variables converges to a log-skew-normal distribution
[Wu et al., 2009]. For turbulence, the log-skew-normal distribution is thought to arise because the total,
measured Y results from a combination of multiple and/or not statistically steady turbulence-generating
processes [Caldwell and Mourn, 1995], which individually and/or instantaneously have log-normally
distributed dissipation rates.

3.3. Chronic undersampling: inevitability of a statistical approach to Γ�
The difficulty of sampling intermittent turbulence has long been recognized [Gregg, 1992], but the
problem is worse than thought owing to the even more heavy-tailed nature of of a log-skew-normal
Y distribution than a lognormal one. This presents a severe challenge for constraining the average Y
value for an ocean volume from a limited sample set since many samples are required to resolve the
disproportionately consequential tail. To illustrate, simulations like those in Figure 1d,e demonstrate
that turbulent quantities such as Y and Γ vary substantially over the lifetime of an overturning event.
This implies that a single measurement, or even a handful of measurements, of such an event can be
a poor estimate of its time-integrated properties since they most likely miss the most energetic phase
of turbulence for each event. This underscores the need for large measurement sets and a statistical
approach to fill in the gaps and accurately estimate bulk turbulent properties. To highlight the sampling
issue, we consider two examples: one based on sampling of an individual turbulence event; and one
based on sampling of the collective global dataset discussed in Figure 4.

DNS simulations, such as that shown in Figure 1 or those shown in Figure 2, clearly demonstrate that
turbulent quantities such asM, Y, and Γ vary substantially over the lifetime of an overturning event.
This implies that a single measurement, or even a handful of measurements, of such an event are highly
likely to be a poor estimate of its time-integrated properties. Figure 3a shows the uncertainty and bias
associated with random samples of one5 simulation’s history (Re = 6000, Ri = 0.16) for different sample
sizes. Uncertainty is quantified by the normalized standard deviation of the sample mean for collections
of samples taken at random times along the temporal history of the overturning event. Bias is quantified
by the ratio of the median sample mean from these collections of randomly timed samples to the true
time-averaged mean of each property. Because all the properties shown are positively skewed quantities,
the sample means tend to miss the peak values and thus underestimate the time-averaged value; because
these skews are so large, means of different collections of random samples vary by e.g. more than a
factor of two for fewer than ∼16 measurements. Turbulent measurements are snapshots of events; it is
not possible to make tens of measurements of the same turbulent event. These appreciable biases and
uncertainties for characterizing individual events thus underscore the importance of the statistics of
turbulent properties.

The heavy-tailed nature of the Y distribution in Figure 4a presents a similar challenge for constraining
the average Y value for an ocean volume from a limited sample set. Figure 3b shows the same as Figure 3a
but for random draws from a log-skew-normal distribution whose parameters are fit to match the Y data
from the experiments described above (b = −24.8, l = 3.91, U = 5.89) using the same procedure as in
CM21. We discard values above a chosen Y<0G threshold of 10−5 m2/s3; as with any parameterization
for the PDF of Y supported on (0,∞), the log-skew-normal allows for a non-zero probability density
for unmeasurably and/or unphysically large Y values, which are either too large to be measured by
sampling probes and/or yield impossibly large !$ values. O(1000) samples are needed to make the
underestimation bias less than ∼10%, and O(100) samples are needed to make the standard deviation of
sample means less than the true mean (i.e. < 100% relative uncertainty). (Larger/smaller values of Y<0G
increase/reduce these sample size numbers.) This further underscores the need for large measurement
sets and a statistical approach to estimate bulk turbulent properties accurately.

5Other simulations yielded similar results.
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4. A recipe for Γ�
Ingredients: Γ('$) ) for individual patches + statistics of !$, !) , and '$)

Here we aim to exploit the log-skew-normality of Y and the statistics of '$) to construct a parameter-
ization for Γ� based on the total power and the mean stratification for the region (or the grid cell) for
which Γ� is sought. To this end, first we note that !$ ∝ Y1/2 by definition; the former lies within the
'$) -based Γ parameterization in Eq. 2 and the latter is captured by Eq. 6.6 Because !$ divides Y by
another random variable and then takes a square root of their quotient, this distribution is also preserved
for !$ (Figure S1; Table S1; also see below). Here we pair the parameterizations for the statistical
distribution of Y in Eq. 6 and Γ = 5 ('$) ) in Eq. 2 to obtain a parameterization for Γ�.

If, as described above, Y is log-skew-normally distributed because it is the sum of log-normal random
variables (call these n8), then !$ must also be so distributed. If we pass the #3 to the summed-over
n8 , such that Y/#3 = ∑

8

(
n8/#3), this will introduce a correlation into the n8/#3 being summed over,

which does not affect the log-skew-normality of their sum [Hcine and Bouallegue, 2015]. For the n8
this introduces another variable multiplicative factor and these each should still then be log-normal, so
altogether

∑
8

(
n8/#3) is still the sum of log-normal random variables. As the skew-normal distribution

is insensitive to multiplicative transformations – we may write any skew-normal random variable B as
B = `+f(X |=1 | +=2

√
1 − X2) [Pourahmadi, 2007] so multiplying by some factor< just changes `→ <`

and f → <f – the log-skew-normal must be equivalently insensitive to exponentiation. Thus, if Y is
log-skew-normally distributed, then so is !$ =

(
Y/#3

) 1
2 . We indeed find that all the eight datasets used

here, as well as the aggregated dataset, are well-described by a log-skew-normal distribution (Kuiper’s
statistic + = 0.021 for the combined dataset and as well as the median across the individual datasets;
Figure S1, Table S1).

In contrast, there is not a clear description of the probability distribution of !) . While calculating !)
is straightforward conceptually, it involves subjective choices that bias its distribution [Mater et al., 2015].
Thus, it is less practical to identify the ‘true’ distribution for !) from collections of !) measurements
as is the equivalent identification of an underlying distribution for Y. It has recently been argued that the
size of turbulent overturns, which are thought to have a correspondence with !) , should be power-law
distributed [Smyth et al., 2019], but we find little to no evidence of this in the datasets we use here
(Table S2). Either !) is not proportional to patch size in the data sets examined here, or the patch sizes
in these datasets are not power-law distributed [Clauset et al., 2009]. The !) probability distribution
for all the datasets used here is unimodal in log-space, such that at least the bulk of the distributions are
qualitatively much closer to log-normally distributed than power-law distributed (Figure S1).

Regardless, it is the probability distribution of '$) = !$/!) that is of interest here, for which a
parameterization of !) ’s probability is not necessary. Instead, one needs a suitable description of the
conditional distribution of !) for a given !$ value, i.e. %(!) |!$). Somewhat surprisingly, we find
that the log-skew-normal is again an excellent description of '$) ’s probability distribution (+ = 0.010
for the combined dataset and the median + = 0.027 across the eight individual datasets; Table S1),
but that in this case the log-skewness is negative. '$) ’s log-skewness is in fact only positive for the
IH18 dataset (skewness ˜̀3 = 0.48). Thus, the log-skew-normal distribution is, similar to Y and !$, a
satisfactory parameterization of '$) ’s probability distribution, but by and large with a different sign in
log-skewness. The question then becomes how !$ and !) are related such that '$) ’s distribution is: i)
log-skew-normal; ii) with a negative log-skewness; and iii) peaked at $ (1). In the absence of a theory
for !) ’s probability distribution, we derive an empirical construction of %(!) |!$) that recapitulates
the probability distribution of '$) with simulated !) values. As !) appears to be approximately log-
normally distributed (Figure S1), it is justifiable to base such a construction on a statistical scaling
relationship, with multiplicative fluctuations.

6Historically, Y has often been described as log-normally distributed based on a simple argument from multi-stage subdivisions of an initial
flux for 3D homogeneous isotropic turbulence [Gurvich and Yaglom, 1967], but the log-normal distribution has also been long recognized as a
quantitatively inaccurate description of measured distributions [Yamazaki and Lueck, 1990].
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E1-8

The conditions (i-iii) above can occur for '$) if !) scales heteroscedastically, i.e. the fluctuations
around how !) scales with !$ are themselves also a function of !$, and the coefficients of the scaling
relationship are close to unity. If !) ∼ Z!V$ with Z ≈ 1 and V ≈ 1, then most values of !$/!) will be
$ (1). If this scaling relationship is tight when !$ is large (i.e. small fluctuations and low probability
of small !) ), this will make cases where !$/!) is very large unlikely. Conversely, if this scaling
relationship is weaker when !$ is small (i.e. larger fluctuations and comparatively higher probability of
larger !) ), this will make cases where !$/!) is very small less unlikely. Together these heteroscedastic
effects can change the sign of the log-skewness.

As both !$ and !) are random variables, their scaling relationship can be captured by model II
regression; the heteroscedasticity of this relationship can then be captured by quantile regression, which
estimates the conditional quantiles of the response variable [Koenker and Hallock, 2001], applied to
the residuals. First applying model II regression to the combined and log-transformed (!$, !) ) dataset
(Figure 5b), we find the best-fit scaling for these data to be !) = 1.24!1.01$

. (We use least-squares cubic
regression [York, 1966] but other standard methods such as bisector or major axis yield similar results.)
Then applying quantile regression to the residuals, we indeed find that the fluctuations in !) around
this scaling relationship increase as !$ decreases. This decrease is characterized by the relationship
A = A> + A1 log10 (!$), where A is the amplitude of the residuals around the best-fit scaling, A> is the
residual amplitude when !0 = 1 m, and A1 captures how the residuals decrease as !$ increases. We
calculate separate relationships for positive and negative residuals, via quantile regression. (We use the
10th and 90th percentiles to compute A> and A1 but our results are not sensitive to this choice.) We
can then recover the joint (!$, !) ) distribution and hence the '$) distribution by simulating the !)
accordingly for a given !$. The simulated !) values yield good agreement with the empirical '$)
distribution (+ = 0.028). We define !) = [ × 1.24!1.01$

, where [ is a log-normal random variable with
` = 0 and f ∝ !$. This results in a conditional distribution for !) that matches the estimated scaling
relationships, and is thus an approximation of the joint distribution of the data shown in Figure 5b.

Physically, this scaling behavior has an intuitive interpretation. !) scaling with !$ with an exponent
close to unity, such that the peak in the probability density function for '$) is$ (1), occurs because for
most turbulent overturns the displacement of fluid parcels in that patch (!) ) will be of the same order
of magnitude as the vertical scale that they can be displaced given the background stratification (!$), as
discussed above. If an overturn has a small !$, this could either be because it is a small overturn,meaning
it has a similarly small !) , or a young overturn with a larger !) but still low turbulent dissipation. If
!$ is large, however, !) would be reasonably expected to be similarly large. This asymmetry in the life
cycle of turbulent overturns produces this skewed, heteroscedastic scaling in Figure 5b.

4.1. The recipe

Altogether, these pieces can be assembled into a ‘recipe’ to compute a bulk flux coefficient as follows.
To calculate Γ� for a coarse resolution grid cell of a general circulation model, which is large enough to
enclose sufficient statistics, we imagine a total power % is available for the grid cell (from one or more
sources, such as tides, winds, etc.). Then

1. We assume an initial value of 0.2 for Γ� and using % =M� + E infer an initial value for E;M�

and E are the total mixing and dissipation in the cell.
2. Distribute E over a log-skew-normal distribution of Y for individual patches so then ΣY = E and

individual Y values are random log-skew-normal sample draws.
3. Calculate !$ for these patches by transforming their Y values and a specified background

stratification into a distribution for !$.
4. Simulate !) values corresponding to these !$ values according to the heteroscedastic scaling

relationship between !$ and !) .
5. Calculate Γ for these patches based on the '$) parameterization and their simulated !$ and !)

values (with a small background diffusivity added; see below).
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Flow E1-9

6. CalculateM for individual patches based on their Γ
7. Sum overM of all patches to computeM�.
8. Calculate Γ� =M�/E
9. Back to step one and iterate until Γ� converges (usually within a few iterations).

We repeat this procedure many times and take the average of the repetitions to account for the
stochasticity in the process; in practice for oceanographically relevant values the variability between
repetitions is negligible. In step 4 we also add a small (regularizing) background diffusivity of
^102:6A>D=3 = 10−6.5 m2/s to account for the background wave field processes not encapsulated
in the '$) parameterization. This value, which is close to the molecular diffusion coefficient of
heat in seawater, was chosen according to the inflection point on the probability density function
of ^ from the combined dataset described above, which separates the low tail of the distribution
from the bulk of the data (Figure S2). Including this ^102:6A>D=3 , mixing for each patch becomes
"102:6A>D=3+"?0C2ℎ = ΓC>C0;n = ^102:6A>D=3#

2+Γ?0A0<n and soΓC>C0; = ^102:6A>D=3#2+Γ?0A0<,
where Γ?0A0< is the '$) -parameterized Γ value. The advantage of adding the background mixing is
that it allows for Γ to tend to large values in the limit of weak turbulence, i.e. when there is not much
turbulence due to lack of power and/or overly strong stratification. From a physical perspective, in the
limit of laminar flow, Γ→ ∞ since Y vanishes butM remains finite. Note that Figure 2a shows high
values of Γ for observed weakly turbulent young patches.

Steps 1-5 involve a degree of computational expense that might prove impractical if applied to every
grid cell of an Earth SystemModel at every time step. It is, however, straightforward and computationally
cheap to do the calculations a priori for ranges of power and stratification relevant to the oceans, and
then employ a simple lookup table in the models. We employ this approach for the purpose of analysis
to be discussed in the next section.

5. Regional/global implications

To highlight the importance of the appropriately estimated bulk Γ� for the larger scale circulation, we
next apply our recipe to the the South Atlantic Ocean. This choice is made for four reasons: (I) it is a
region of tidal-shear dominance; (II) it is home to the iconic Brazil Basin Tracer Release Experiment
(BBTRE), the first deep observation of bottom generated enhanced turbulent mixing [Polzin et al.,
1997, Ledwell et al., 2000, St. Laurent et al., 2001]; (III) there exist three-dimensional tidal power
estimates which are constructed on theoretical grounds but have been verified to agree excellently with
observations including BBTRE [de Lavergne et al., 2020]; and (IV) the BBTRE data were shown to
correspond to small-scale marginally-unstable shear-induced turbulence, and hence consistent with the
above-mentioned physical and statistical paradigms laid out in CM21, MCA21 and MCBC21.

We construct a regional map from the sum of the tidally-generated power and the contribution of
the wind-induced near-inertial shear. The former, from de Lavergne et al. [2019, 2020], estimates the
power in the internal tide field generated through the interaction of ocean tides with ocean bathymetry.
The latter, constructed based on Alford [2020], estimates the power in the downward-propagating
wind-induced internal wave field. Figure 5a-c show the power plotted on three density layers (shallow,
intermediate depth, and deep).7 The deep layer, as will be shown, corresponds to the peak cross-density
(diapycnal) turbulent mixing that helps sustain the deep branch of the ocean circulation [de Lavergne
et al., 2017]. The shallow layer approximately corresponds to the base of the subtropical wind-driven
gyres across which turbulence mixes heat, carbon, and nutrients between the upper ocean and the deep
ocean [Talley, 2011]. The patterns on the shallow layer reflect the seasonal atmospheric storm patterns
at the surface and the rough topography at the bottom (from which internal tides radiate upwards). The
patterns on the deep layer primarily represent the tidally-generated turbulence with little contribution

7Neutral density is often used instead of in-situ density as it removes the dynamically inconsequential compression of seawater due to increase
in pressure with depth. It is also common to deduct 1000 when reporting seawater density as in Figure 5.
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E1-10

from the surface generated downward propagating waves. The intermediate layer ‘feels’ both top and
bottom generated wave fields.

The power maps, together with climatological hydrographic information (i.e. #2) from the World
Ocean Circulation Experiment [WOCE; see Gouretski and Koltermann, 2004], enable us to calculate
Γ� on theWOCE grid on which the power maps in panels a-b are constructed. The resolution of the grid
is half a degree in the horizontal (∼50km) and ∼110m in the vertical. Applying our recipe to each grid
cell with its local power and density stratification, we obtain the maps of Γ� shown in panels d-f of the
figure. We normalized the maps by the value of 0.2, the value generically applied in climate models to
split the power intoM and Y8. Since the bulk turbulent diffusivity for each grid cell may be defined as
 ≈ Γ�#2/n , and the associated buoyancy flux is defined as F ≈  #2, the ratio Γ�/0.2 is exactly equal
to the ratios of  and F calculated based on our recipe to their values when calculated using Γ� = 0.2.
Thus, panels d-f represent all three ratios and collectively show not only that mixing can vary by up to
a factor of 4 regionally, but also that there are significant spatial patterns to the variations. For example,
if one is interested in the flux of quantity C between the surface ocean and the deep ocean (where C
can be heat, carbon or nutrients for example) panel d shows that the flux  C can be overestimated or
underestimated by more than 200% if physics and statistics of breaking waves are ignored.

In the deep ocean, internal wave-driven turbulence leads to the irreversible transformation of water
masses which facilitates upwelling of dense waters and closure of the deep branch of ocean meridional
circulation [Nikurashin and Vallis, 2011, Mashayek et al., 2015, de Lavergne et al., 2016b, Ferrari et al.,
2016]. The net transformation along a density layer consists of a complex pattern of upwelling and down-
welling defined based on topographic features, large scale stratification, and turbulence [de Lavergne
et al., 2016a, Mashayek et al., 2017c, Cimoli et al., 2019, de Lavergne et al., 2017]. To show this, we
note that water moves across density surfaces at the diapycnal velocity:

ẽ =
mIM
#2

. (9)

This quantity, plotted in Figure 5g on the deep density layer, is positive/negative where waters become
lighter/denser–note that a variable Γ� based on our recipe is used for panel 6. Specifically, ẽ is positive
whenM decreases with depth, for example when there is surface-intensified mixing, or in the bottom
boundary layer where a one-dimensional model would predictM → 0 towards the ocean floor [Ferrari
et al., 2016] (what actually happens in real ocean boundary layers is not yet known). Conversely, ẽ is
negative and waters become denser when mixing increases with depth, for example in the ocean interior
near rough topography, where mixing is enhanced toward the bottom. The net transformation over
W = 28.1 in panel 6 is therefore the sum of sharp near boundary upwelling squeezed between the bottom
topography and regions of intense downwelling. Panel ℎ shows the same map as panel 6 but calculated
with Γ� = 0.2, while panel 8 shows the difference between panels 6 and ℎ. Red regions in panel 8 imply
either an increase in local upwelling or a decrease in local downwelling whereas blue implies enhanced
downwelling or diminished upwelling [see Cimoli et al., 2019, for a more detailed discussion of these
patterns]. The change to ẽ is of the same order of magnitude as ẽ itself. Thus, the variations in Γ� exert a
leading order control over the rate and patterns of deep upwelling and downwelling in the ocean. Panel
8 shows an interesting asymmetric variations across mid-ocean ridges which has important implications
for mixing across the ridge and the broader inter-hemispheric Atlantic Meridional Circulation as well
as inter-based exchange of water masses.

The net water mass transformation rate across a density surface may be defined as the area integral
of the local transformation ẽ through

D(W=∗ ) = −
∬
�(W=∗ )

ẽ · n̂ 3�, (10)

8This is the approach used in models that employ an evolving tidal mixing parameterization rather than a fixed diffusivity.
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Flow E1-11

where n̂ is the unit vector normal to the neutral density surface W=∗ , and � is the surface area of the
density surface. D is measured in Sverdrups where 1Sv=106 m3/s. Figure 5j shows the net rate as a
function of neutral density with the mean depth of the density layers shown in panel : . In the deep
ocean Γ� enhances the net transformation rate by over 50% which is significant (although regionally
the changes can be much higher as shown in panel 8). In the upper ocean, however, the change to the net
is also equally important.

Figure 5l shows the normalized histograms of Γ�/(�/2), where � was the coefficient in Eq. 2, for
various density levels. The density levels range from a shallow layer with mean depth of 490m and a
total area of 0.98 of the sea surface area to a deep layer with mean depth of 3170m and an area of 0.63
of the sea surface area. Recalling that '$) ∼ 1 corresponds to Γ6>;38;>2:B = �/2, the fact that the
histograms center around �/2 implies that for most of the ocean, the statistical distribution of patches
(within each grid cell of the climatological data) mostly comprises patches that are optimally mixing.
This implies an optimal balance between stratification and shear (remembering '$) ∼ '4∗1 ∼ '8

∗ ∼ 1
in the Goldilocks regions). Or in other words, regions of strong shear coincide with the most ‘desirable’
stratification to yield optimal mixing.9 For completeness, panel < shows the same distributions as in
panel ; but normalized by 0.2.

6. Discussion

Most turbulent patches are characterized by an optimal balance between density stratification (#2)
and velocity shear ((). In this ’Goldilocks’ state, where neither #2 or ( are too weak nor too strong,
turbulent mixing is most efficient. This was shown in the data presented in Figure 2a,b, in agreement
with data published in other aforementioned works (see MCA21 for a review). Figure 5 showed that this
result extends to the global scale as well: regions of high turbulence generation (hence enhanced shear)
coincide with desirable stratification for optimal mixing. The coincidence of regions of Goldilocks
mixing with energetically turbulent regions points to a deeper underlying physical implication: for such
a balance to exist, the ocean circulation should restratify the turbulent zones at rates that optimize
the balance of stratification and shear and keeps them at a desirable marginally-unstable state (where
'$) ∼ '4∗

1
∼ '8∗ ∼ 1). If stratification is too strong for a given power injection, it will suppress

turbulence and conversely, if the stratification is too weak in a high power injection region, it will get
eroded rapidly. In the former scenario, energy builds up until a burst of a cascade of hydrodynamic
instabilities [Mashayek and Peltier, 2012a,b] releases the stored available potential energy andmoves the
system to a near critical state. In the latter state, the larger scale circulation replenishes the stratification
until the flow becomes marginally unstable. Therefore, the coincidence of stratification and shear
(manifested as '8∗ ∼ 1) is not accidental, but instead due to the fine balance between the processes that
build stratification with those that erode it.

Given that ocean mixing is a key driver of ocean circulation itself, the variability of Γ� may provide
a self-optimizing mechanism to the diffusively-driven branch of ocean circulation. It also provides the
system with the ability to sustain internal variability driven by mixing. Such a feedback mechanism
is entirely absent from all Earth System Models. Not only is its inclusion important for understanding
the present day climate, but it could also be key to allowing the ocean and the climate system to adapt
properly to changes in ocean stratification and power that are induced by changes to surface winds, air-
sea buoyancy exchanges, and changes to tidal power (due for example to changes in sea levels and ice
shelves in the polar regions). We conclude by highlighting the need for: (I) better understanding of how
the Goldilocks ocean stratified mixing is linked with the larger scale horizontal and meridional ocean
circulation patterns; and (II) what the implications are once this feedback is included in climate models.

The recipe proposed in this work, the code for which is available in the SupplementaryMaterials, may
be used to tackle these problems in climate models as a first step. On regional scales, observations can be

9We use � = 2/3 in this study since it was justified on physical grounds by MCA21 and also was inferred through data regression as shown in
Figure 3a and in MCA21. With this value, Γ6>;3 = 1/3 ∼ 1.7 × 0.2 which corresponds to green in panels 3 − 5 of Figure 5. But note that other
values of �will not change the histogram in panel ; and the optimal mixing argument that we make.
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parameterized in terms of the log-skew-normal distribution of CM21 and our recipe to improve mixing
estimates, though uncertainties may be appreciable depending on sample size. Understanding how the
!$ − !) scaling parameters change with space and time warrants further research as it is clearly critical
to developing our recipe further, most importantly the scaling exponent relating !$ and !) (Figure 4d).

7. Materials

Panels a-c in Figure 1 are produced from a higher-resolution of the observationally-tuned simulations
of [Mashayek et al., 2017b] and panels d,e are based on simulations of [Mashayek et al., 2013]. Panels
a,b of Figure 2 and panel b of Figure 4 are based on the data used in MCA21, a brief description of
which is included in the Supplementary Materials. Panels c,d of Figure 2 are based on the simulations
of [Mashayek and Peltier, 2011b,a, 2013a, Mashayek et al., 2013]. Figure 4a is reproduced from CM21,
based on 14 microstructure field experiments discussed therein. In Figure 5, the tidal power is from
[de Lavergne et al., 2020] and the wind power is based on [Alford, 2020] who provided estimates for
the net wind work on the ocean, the portion of the power that is dissipated within the surface mixed
layer, and the radiation efficiency of the downward propagating wavefield.
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Figure 1. (a) A sector of the Southern Ocean in which strong westerly winds at the surface and
interaction of Antarctic Circumpolar Current system (ACC; illustrated by the black lines) with rough
topography create an energetic internal wave field. From an observationally forced and tuned high
resolution numerical simulation. (b) A zoomed out 3D view of the wave field in the Drake Passage which
is particularly energetic due to the geometric constriction on the ACC flow. Red/blue patterns represent
positive/negative vertical motion. (c) Regions of high vertical shear (i.e. vertical gradient of horizontal
velocity) which are susceptible to wave breaking and turbulence. (d) Turbulence life cycle of a shear-
induced breaking internal wave; the top row shows the evolution of density (with heavier water in ‘red’
mixing with overlying lighter water in ‘blue’, resulting in a mixed density in ‘green’) while the lower
row shows the evolution of the vertical turbulent flux of density. (e) Evolution of three key turbulent
length scales: the overturn scale (!) ), the turbulent eddy scale (!$), and the dissipation scale (! ).
See Materials for information on data sources.
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Figure 2. (a) Agreement of Eq. 2 with ∼49000 turbulent patches from six different datasets covering a
variety of turbulent regimes and processes. The bar plot insets show the histogram of '$) (top axis)
and Γ for the parameterization (in red) and data (in blue) along the right vertical axis. The value of � is
obtained through regression of data to Eq. 2. Reproduced from Mashayek et al. [2021b]–See Materials
for a brief description of data. (b) probability density function (PDF) of '$) = !$/!) for the same
data as in panel a, compartmentalised in terms of rate of dissipation of kinetic energy, Y. The mode of
the PDF increases from 0.78 to 0.92 as additional Y-quartiles are included. Note the negative skewness
of the log-transformed PDF. Panels (c) and (d) show the temporal fraction of turbulence life cycle as
well as the ratio of '$) during turbulent phase of the flow to its mean value over the whole life cycle.
Each symbol represents a life-cycle-averaged quantity from a direct numerical simulation (such as the
one in Figure 1d) for the corresponding Reynolds and Richardson numbers. All cases in panel c are for
'8 = 0.12 while all cases in panel d are for '4 = 6000. Turbulent phase of the life cycles are defined
as the times when '41 > 20 [Gibson, 1991, Smyth and Moum, 2000]. See Materials for information on
data sources.
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(a) (b)

Figure 3. (a) Sampling bias and uncertainty for buoyancy flux (dashed lines), Γ× Y (solid lines), and Y
(dotted lines) for a single turbulent event. Purple lines indicate the normalized standard deviation, and
yellow lines indicate the median relative underestimation, each as a function of sample size, estimated
from bootstrap resampling a DNS simulation. For example, relative uncertainty is > 100% for the
time-averaged buoyancy flux of this event with fewer than ∼16 samples, and the median time-averaged
buoyancy flux estimate with 4 or fewer samples underestimates the buoyancy flux by a factor of two or
more. (b) Sampling bias and uncertainty for the mean Y sampled from a log-skew-normal distribution
with the parameters estimated from the dataset described in the text, discarding Y values >10−5 m2/s3.
Green line indicates the normalized standard deviation, and orange line indicates the median relative
underestimation, each as a function of sample size, estimated from bootstrap resampling.
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Figure 4. (a) Reproduced from CM21, Y data from from over 750 full depth microstructure profiles from
14 field experiments (see Cael and Mashayek [2021] for more details) are excellently characterized by a
log-skew-normal distribution. Cumulative distribution functions (CDFs) are shown in main plot; upper
inset shows the corresponding probability density functions and that of a log-normal distribution (purple
line) for comparison; lower inset shows the difference between the empirical and hypothesized log-skew-
normal CDFs. (b) Regression of log10 (!) ) against log10 (!$). Middle line captures the central scaling
relationship and is estimated via model II regression as described in the text; outside lines capture the
heteroscedasticity of the residuals and is estimated via quartile regression as described in the text. (c)
(d) Sensitivity of the bulk flux coefficient to the different !) -!$ scaling parameters, perturbed from a
baseline Γ6 estimated from the combined global dataset described in the text. Larger fluctuations in
!) when !$ is large can increase the bulk flux coefficient, but it asymptotes to a constant value with
decreasing fluctuations. Increasing either the scaling exponent or coefficient increases !) values for
large !$, thus increasing the bulk flux coefficient for large Y; decreasing either the scaling exponent
or coefficient drives bulk mixing to zero as '$) � 1 when Y is large. See Materials for information on
data sources.
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Figure 5. (a-c) The combined powers in the internal wave fields induced by tides and winds that is
available to mixing and dissipation for the South Atlantic basin, plotted on various density levels. (d-f):
Γ normalized by Γ∗ = �/2 based on Eq. 2, plotted on same density levels as in 0−2. Since  ≈ Γ�n/#2
and turbulent flux is F ≈  #2, Γ�/0.2 is equal to ratios of  and F based on Γ� calculated using our
recipe to their values when Γ� = 0.2 is used. (g): Local diapycnal velocity (see Eq. 9) showing upwelling
(in red) and downwelling (in blue) on the deep 28.1 calculated using a variable Γ�. (h) same as 6 but
for the bulk Γ� = 0.2. (i) difference between 6 and ℎ. (j) Water mass transformation (i.e. integral of
4̃, as per Eq. 10) calculated for Γ� = 0.2 and variable Γ� calculated using our recipe. For reference,
mean depth of isopycnals are also shown in panel : . (l,m): Histogram of the normalized Γ� on various
density levels. The legend includes information on the mean depths of density levels as well as their total
area normalized by the area at the sea surface. Histograms are normalized by Γ6>;38;>2:B = �/2 (see
Eq. 2) in panel ; and by 0.2 in panel <. See Materials for information on data sources.
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Turbulence patch data

The six oceanic datasets employed for the purposes of analyses in Fig 2b andFig 4b of themain text are the
same as those employed by MCA21. Here we provide a brief description and refer to MCA21 for a more
comprehensive discussion. The Tropical InstabilityWave Experiment (TIWE) dataset includes turbulent
patches sampled at the equator at 140>W in the shear-dominated upper-equatorial thermocline, between
60m and 200m depths, spanning both the upper and lower flanks of the Pacific Equatorial Undercurrent
[Lien et al., 1995, Smyth et al., 2001]. The FLUX STAT (FLX91) experiment sampled turbulence at the
thermocline (∼350-500m depth), in part generated through shear arising from downward-propagating
near-inertial waves, about 1000 km off the coast of northern California [Moum, 1996, Smyth et al.,
2001]. The IH18 experiment measured full-depth turbulence (up to ∼5300m deep) primarily generated
by tidal flow over the Izu-Ogasawara Ridge (western Pacific, south of Japan), a prominent generation
site of the semidiurnal internal tide that spans the critical latitude of 28.88N for parametric subharmonic
instability [Ijichi and Hibiya, 2018]. The Samoan Passage data are measurements of abyssal turbulence
generated by hydraulically-controlled flow over sills in the depth range 4500-5500m in the Samoan
Passage, an important topographic constriction in the deep limb of the Pacific Meridional Overturning
Circulation [see Alford et al., 2013, Carter et al., 2019, we use data from the latter]. The BBTRE data
are from turbulence induced by internal tide shear in the deep Brazil Basin (∼2500-5000m depth) and
were acquired as a part of the original Brazil Basin Tracer Release Expermient (BBTRE; Polzin et al.
[1997]), recently re-analyzed by Ijichi et al. [2020]. Also re-analyzed by Ijichi et al. [2020], we use the
data from DoMORE which focused on flow over a sill on a canyon floor in the Brazil Basin [Clément
et al., 2017, Ijichi et al., 2020].

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Dataset + (!$) + ('$) )
Combined 0.021 0.010
BBTRE 0.022 0.028
DoMORE 0.021 0.039
FLX91 0.023 0.015
Hawaii 0.011 0.021
IH18 0.008 0.027
IWISE 0.037 0.033
SP 0.015 0.017
TIWE 0.021 0.031

Table 1. Kuiper’s statistic + for the log-skew-normal approximation of the !$ and '$) distributions
of each of the datasets and the combined dataset described in the text.

Dataset Exponent =C08; (percentile) ?-value
Combined 2.20 ± 0.01 12519 (80th) <0.01
BBTRE 2.04 ± 0.03 5754 (73rd) <0.01
DoMORE 3.27 ± 0.57 178 (98th) 0.08
FLX91 3.85 ± 0.24 598 (82nd) 0.03
Hawaii 2.81 ± 0.12 1010 (90th) 0.09
IH18 2.95 ± 0.05 605 (94th) 0.13
IWISE 2.64 ± 0.21 225 (82nd) 0.07
SP 2.57 ± 0.05 3133 (76th) <0.01
TIWE 3.65 ± 0.53 322 (72nd) <0.01

Table 2. Scant evidence for power-law distributions in the Thorpe scale !) in the datasets used in this
study. Left column gives the datasets described in the text and the combined dataset that aggregates all
of these. Second column gives the power-law exponent estimate and its uncertainty, as calculated by the
method described in Clauset et al. [2009]. The same method selects a minimum !) value above which
a power-law tail is fit; the third column gives the number of samples above, and the percentile above,
this minimum !) value in each case. The fourth column gives the probability that these tail data are
power-law distributed, with the ?-values above the rule-of-thumb significance criteria of 0.1 suggested
by Clauset et al. [2009] in bold. The power-law hypothesis is rejected in all cases except IH18; in this
case, the exponent is much steeper (∼3) than those described by Smyth et al. [2019] and only ∼6%
of the data fall into this power-law tail. The cases with borderline ?-values (0.1 > ? > 0.01) also
have steep exponents and/or small tail sample sizes. Altogether these results show that the power-law
parameterization is a poor description of the total !) distribution considered here.
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Figure 1. Left: Log-skew-normal (LSN) fit to !$ data from the Brazil Basin Tracer Release Experiment
(BBTRE), shown as probability density. Orange points are the data histogram, with number of bins
equal to the (integer-rounded) square root of the sample size. Vertical line added to visualize skewness.
+ is Kuiper’s statistic (see text), evaluated on cumulative probability density. For this log-skew-normal
distribution, the log-skewness ˜̀3 = 0.48. Right: Probability distribution of combined !) dataset, and
the log-normal with the same log-mean and log-standard deviation overlaid.

Figure 2. Probability density function of diffusivity ^ for the combined dataset described in the text based
on the work of Cael & Mashayek 2021 Cael and Mashayek [2021]. Circle highlights inflection point
in cumulative distribution at 10−6.5 from which we take a background diffusivity ^102:6A>D=3 ∼ 10−6.5,
such that mixing for each patch becomes"102:6A>D=3 +"?0C2ℎ = ΓC>C0;n = ^102:6A>D=3#

2+Γ?0A0<n
and so ΓC>C0; = ^102:6A>D=3#

2 + Γ?0A0<, where Γ?0A0< is the '$) -parameterized Γ value.
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