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Abstract

Boreal-wintertime hindcasts in the Unified Forecast System with the tropics nudged toward reanalysis improve United States

(U.S.) West Coast precipitation forecasts at Weeks 3-4 lead times when compared to those without nudging. To diagnose the

origin of these improvements, a multivariate k-means clustering method is used to group hindcasts into subsets by their initial

conditions. One cluster characterized by an initially strong Aleutian Low demonstrates larger improvements at Weeks 3-4 with

nudging compared to others. The greater improvements with nudging for this cluster are related to the model error in simulating

the interaction between the Aleutian Low and the teleconnection patterns associated with the Madden-Julian oscillation (MJO)

and El Niño-Southern Oscillation (ENSO). Improving forecasts of tropical intraseasonal precipitation, especially during early

MJO phases under non-cold ENSO, may be important for producing better Weeks 3-4 precipitation forecasts for the U.S. West

Coast.
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Key Points:9

• Nudging tropical fields in the UFS toward the observed state improves wintertime10

Weeks 3-4 precipitation forecasts over the U.S. West Coast11

• A subset of initial states identified by multivariate k-means clustering exhibits greater12

precipitation forecast improvements with nudging13

• Improved simulation of tropical intraseasonal variability when a strong Aleutian14

Low is present leads to these greater forecast improvements15
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Abstract16

Boreal-wintertime hindcasts in the Unified Forecast System with the tropics nudged to-17

ward reanalysis improve United States (U.S.) West Coast precipitation forecasts at Weeks18

3-4 lead times when compared to those without nudging. To diagnose the origin of these19

improvements, a multivariate k-means clustering method is used to group hindcasts into20

subsets by their initial conditions. One cluster characterized by an initially strong Aleu-21

tian Low demonstrates larger improvements at Weeks 3-4 with nudging compared to oth-22

ers. The greater improvements with nudging for this cluster are related to the model er-23

ror in simulating the interaction between the Aleutian Low and the teleconnection pat-24

terns associated with the Madden-Julian oscillation (MJO) and El Niño-Southern Os-25

cillation (ENSO). Improving forecasts of tropical intraseasonal precipitation, especially26

during early MJO phases under non-cold ENSO, may be important for producing bet-27

ter Weeks 3-4 precipitation forecasts for the U.S. West Coast.28

Plain Language Summary29

To test whether a more accurate representation of tropical weather can lead to bet-30

ter extratropical forecasts Weeks 3-4 in advance during boreal winter, retrospective fore-31

casts (hindcasts) are performed with the tropics forced to closely match observational32

estimates. The precipitation at Weeks 3-4 lead times is improved over the United States33

(U.S.) West Coast in an operational weather model in forced hindcasts compared to those34

without forcing. To diagnose the origin of these improvements, a machine-learning method35

that subsets hindcasts by the similarity of their initial weather states is used. One sub-36

set that demonstrates larger improvements at Weeks 3-4 than others features an initially37

strong low pressure system in the North Pacific. The greater improvements for this sub-38

set of hindcasts originate from an incorrect simulation of tropical precipitation in the non-39

forced hindcasts. In particular, the forced hindcasts are better able to simulate the weak-40

ening of the North Pacific low pressure a few weeks into the prediction that is produced41

by atmospheric waves emanating poleward induced by tropical precipitation. These find-42

ings identify under what conditions correctly simulating tropical precipitation is the most43

beneficial for Weeks 3-4 precipitation forecasts over the U.S. West Coast during boreal44

winter.45

1 Introduction46

Subseasonal-to-seasonal (S2S) predictability in the extratropics has been shown to47

partially originate in the tropics (Robertson et al., 2015). One source of predictability48

is provided by tropical-extratropical teleconnections that emerge approximately one week49

after being excited by a Rossby wave source in the subtropics, which is ultimately gen-50

erated by upper-tropospheric tropical divergence associated with deep convection (Hoskins51

& Ambrizzi, 1993; Branstator, 2014). This mechanism has been established theoretically52

using linear Rossby wave theory (Hoskins & Karoly, 1981; Sardeshmukh & Hoskins, 1988),53

and its implications for S2S predictability have been investigated largely using conditional54

analysis from observations (e.g. Hendon et al., 2000; Matthews et al., 2004) and from55

weather model output (e.g. Ferranti et al., 1990; Vitart & Molteni, 2010). Exploring trop-56

ical sources of S2S predictability in operational weather forecast models may not only57

further provide insights into the mechanisms underlying this predictability, but may also58

provide model developers and forecast agencies information on when forecasts are more59

or less reliable, and which parts of the model to improve to elicit further forecast gains.60

To investigate the tropical origins of global extended-range forecast skill during bo-61

real winter and associated errors that can degrade forecast skill in an operational fore-62

cast system, a set of hindcasts were performed by Dias et al. (2021). Hindcasts over a63

twenty-year period were run with the tropics nudged toward reanalysis in an operational64

weather forecast model from the Unified Forecast System (UFS) developed by the Na-65
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tional Oceanic and Atmospheric Administration (NOAA). Their results showed that with66

corrected representations of tropical horizontal winds, mass, temperature, and humid-67

ity fields, forecasts of precipitation and 500 hPa geopotential height (z500) are signif-68

icantly improved in the Northern Hemisphere extratropics at Weeks 2-4 lead times. No-69

tably, they also showed that forecast improvements due to tropical nudging are depen-70

dent on the initial state. For example, hindcasts are improved relatively more at four-71

week leads in the Northern Hemisphere extratropics with nudging when the Madden-72

Julian oscillation (MJO; Madden & Julian, 1971, 1972) is active at initialization.73

Since tropical heating patterns, such as those associated with the MJO, are capa-74

ble of exciting detectable and consistent teleconnection patterns in the extratropics (e.g.75

Ferranti et al., 1990; Matthews et al., 2004; Tseng et al., 2019), it is likely that extra-76

tropical forecasts in certain regions will be improved by correcting errors in predicted77

tropical heating, as suggested in previous studies (Ferranti et al., 1990; Bielli et al., 2010;78

Jung et al., 2010). Here, we investigate the specific initial states that lead to extratrop-79

ical forecast improvements in the tropical nudging experiments described by Dias et al.80

(2021). Specifically, we condition forecast improvements of United States (U.S.) West81

Coast precipitation by their initial states using a multivariate clustering procedure, which82

will be shown to elucidate the underlying physical mechanisms more clearly as compared83

to conditioning on conventional climate indices. This approach allows us to investigate84

the specific initial states that yield the largest gains in forecast skill due to tropical nudg-85

ing, without a priori assumptions of the exact physical phenomena associated with such86

improvements. We demonstrate that one cluster of hindcasts with a particular initial state87

shows greater forecast improvements than the others, and we scrutinize the mechanisms88

associated with these improvements due to tropical nudging.89

2 Methodology90

2.1 Model and Experimental Setup91

Here, we utilize global hindcasts conducted by Dias et al. (2021) using a leading92

U.S. forecast model, specifically, version 15.1.1 of the NOAA/ National Centers for En-93

vironmental Prediction Global Forecast System (NOAA/NCEP GFS v15.1.1). Two types94

of hindcasts are verified against a model-generated reanalysis as described below. For95

details about the model configuration and initialization procedure, see Text S1 and Dias96

et al. (2021).97

The verification dataset, ERAI-R, is first produced by the model as a good ap-98

proximation of the observed state represented by ERA-Interim reanalysis (Dee et al., 2011).99

The incremental analysis update (IAU; Bloom et al., 1996) scheme is utilized to nudge100

zonal and meridional winds, mass, temperature, and specific humidity over the whole101

globe in the model toward ERA-Interim during November 1999 to April 2018 for the ex-102

tended boreal winter (November to April).103

A set of hindcasts, FREE , is performed to evaluate the forecast performance of104

the model in free-running mode (i.e. without nudging). In this setting, the model is run105

freely out to 30 days in each hindcast, where hindcasts are initialized every five days from106

the states in ERAI-R.107

Another set of hindcasts, NUDGE , is performed to assess the effect on S2S fore-108

cast performance in the extratropics when the tropics are represented accurately. The109

design of NUDGE is the same as FREE, except that the nudging method used in ERAI-110

R is applied within 30◦S-30◦N using a weighting function that is unity between 10◦S-111

10◦N, and is reduced to zero toward 30◦S and 30◦N (the same form of nudging is used112

in Jung et al., 2010). Although only dynamical and thermodynamical fields are nudged,113

this also results in significantly reduced tropical precipitation errors within the nudging114

region (see Fig. 5 in Dias et al., 2021).115
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2.2 Quantifying Forecast Performance of U.S. West Coast Precipitation116

The present study puts emphasis on the forecast performance of precipitation along117

the U.S. West Coast and adjacent seas, which is assessed by its grid-wise area-averaged118

mean absolute error (MAE) over the region 30◦N-50◦N, 120◦W-140◦W (referred to as119

the U.S. West Coast; the box in the Figure 1 map) in FREE or NUDGE compared to120

ERAI-R. The improvements produced by NUDGE are quantified by the difference be-121

tween the MAE of FREE and NUDGE. The precise bounds of U.S. West Coast spatial122

averaging domain do not affect our conclusions (not shown).123

A multivariate k-means clustering analysis is performed to subset the hindcasts by124

their initial states. After assigning the number of desired clusters, k-means clustering125

partitions the data in a feature space by minimizing the within-cluster variance (Lloyd,126

1982). This k-means clustering approach allows us to investigate the initial states asso-127

ciated with better forecast improvements due to tropical nudging, without a priori as-128

sumptions of the exact physical phenomena associated with the improvements. The data129

are processed in the following way before being input into the cluster analysis: (1) anoma-130

lies are calculated by subtracting daily climatologies from the fields of interest, where131

lead-dependent climatologies are used for the hindcasts; (2) empirical orthogonal func-132

tions (EOFs; Lorenz, 1956) of 20◦S-90◦N and 60◦E-90◦W precipitation and 200 hPa zonal133

wind (u200) anomalies are computed based on the uncentered covariance matrices of each134

variable; (3) the dimensionless principal components (PCs) of all of the EOFs are weighted135

by their variance explained; (4) the weighted PCs from the two variables are stacked to136

form a feature vector which is used as input to the k-means clustering algorithm. The137

choice of using precipitation and u200 to characterize the initial state is motivated by138

their importance for representing the tropical forcing pattern and the tropical-to-extratropical139

Rossby wave guide (Trenberth et al., 1998), respectively. We implement the k-means clus-140

tering algorithm by scikit-learn v0.23.2 (Pedregosa et al., 2011) with the default settings141

except for K = 8 (i.e. 8 clusters) and setting the initialization seed to 0. Similar con-142

clusions hold for K = 8 to 15 and with four random initialization seeds (0, 1, 2, and 3143

as integers) for each K (not shown), however. Values of K below 8 seldom identify clus-144

ters with robust improvements in forecast performance.145

To associate the clusters with known modes of climate variability, we also use met-146

rics that represent the states of the MJO and El Niño-Southern Oscillation (ENSO). The147

outgoing longwave radiation MJO index (OMI; Kiladis et al., 2014) is used to assess the148

intensity of the MJO and its phases, where an MJO event is defined as any period when149

the magnitude of OMI ≥ 1. The multivariate ENSO Index Version 2 (MEIv2; Zhang et150

al., 2019) is used to quantify ENSO states. A dichotomy of ENSO states is used in this151

study, and we use the terminology non-warm ENSO to represent MEIv2 < 0, and non-152

cold ENSO for MEIv2 ≥ 0.153

3 Results154

Nudging in the tropics generally improves the Weeks 3-4 (Days 15-28) precipita-155

tion forecast performance over the U.S. West Coast with the distribution of the MAE156

shifted toward smaller values in NUDGE compared to FREE (Figure 1). The peak of157

the MAE distribution is reduced by about 1 mm day−1 in NUDGE, while the average158

and the median are reduced by 0.67 and 0.68 mm day−1, respectively. Improvements in159

NUDGE relative to FREE emerge primarily during Week 3, as shown by the right tails160

of the weekly distribution of MAE reduction (Figure S1), suggesting that processes on161

S2S timescales are responsible for the improvements. Overall, nudging improves the fore-162

cast performance over the U.S. West Coast, particularly for those cases in FREE that163

are relatively poor in the Weeks 3-4 range (Figure S2), as also discussed by Dias et al.164

(2021).165
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Figure 1. The distribution of U.S. West Coast precipitation MAE averaged over Weeks 3-4

from FREE (blue line) and from NUDGE (red line). MAE is averaged over the area shown in the

map (see main text).

Next, we subdivide the forecast improvements by cluster to investigate whether there166

are state-dependent improvements with nudging (see Figure S3 for the composite ini-167

tial states of all the clusters). Cluster #4 exhibits distinctly larger improvements com-168

pared to the other seven clusters (Figure 2b), and has a significantly larger number of169

hindcasts with large MAE reductions compared to reductions composited over all clus-170

ters (Figure 2a). The initial states of Cluster #4 are associated with non-cold ENSO con-171

ditions and are primarily associated with MJO phases 8, 1, and 2, with the presence of172

an enhanced Aleutian Low (Figure 3a) and anomalous positive U.S. West Coast precip-173

itation anomalies (Figure S3).174

To understand why Cluster #4 tends to be associated with distinctly larger im-175

provements under nudging, it is helpful to explore how the forecast composites evolve176

differently in NUDGE versus FREE, as compared to ERAI-R. Over the first two weeks177

of the forecast, both FREE and NUDGE exhibit an enhanced Aleutian Low in the North178

Pacific and enhanced U.S. West Coast precipitation, in accordance with ERAI-R (top179

two rows of Figure 3b-d). Over Weeks 1-2, the primary state of the MJO progresses from180

phases 8 to 2 (as shown by the top two rows of Figure 3d). During Week 3, the anoma-181

lous Aleutian Low and U.S. West Coast precipitation are weakened in NUDGE, broadly182

mirroring what is seen in ERAI-R (third row of Figure 3c-d). However, this weakening183

trend is less pronounced in FREE, which instead shows strengthening of precipitation184

along the coast of California (third row of Figure 3b). During Week 4, anomalously low185

z500 is present over the North Pacific and the southern U.S., but with different spatial186

patterns in each set of simulations. Furthermore, U.S. West Coast precipitation anoma-187

lies are also quite different across the three simulations in Week 4 (bottom row of Fig-188

ure 3b-d), with FREE exhibiting a strong positive precipitation anomaly in the south-189

west U.S. that is not present in the other two runs.190

We hypothesize that the correction of intraseasonal tropical precipitation and its191

associated teleconnection pattern under the presence of non-cold ENSO-like states is the192

source of the robust forecast improvements in Week 3 for Cluster #4. ERAI-R indicates193
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Figure 2. (a) The distribution of Weeks 3-4 U.S. West Coast precipitation MAE reduction

associated with tropical nudging from all cases (ALL; bold gray line) and from Cluster #4 (solid

black line). (b) The fraction of hindcasts having an MAE reduction greater than the thresholds

as defined by the vertical lines in (a) for the ALL curve (horizontal dashed lines) and from the

curve for each of the clusters (symbols). For clarity, only the distribution for Cluster #4 is shown

in (a) as the solid black curve. The symbols marked as crosses are significantly different (p <

0.05) from the baseline fractions (horizontal dashed lines) using a two-tailed bootstrapping test

with 10000 realizations.
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Figure 3. (a) the row shows the composited Day-1 states in ERAI-R: z500 (left; m), u200

(middle; m s−1), and precipitation (right; mm day−1) anomalies from Cluster #4. The lower

rows are the composites of weekly precipitation (shading; mm day−1) and z500 (contours; 10-m

spacing with zero omitted) anomalies for Cluster #4 in (b) FREE, (c) NUDGE, and (d) ERAI-R

as columns. The red box indicates where U.S. West Coast precipitation errors are assessed. The

bar charts attached to the right column show the fraction of dates within Cluster #4 that fall in

each MJO phase (non-MJO days are indicated by X) and ENSO index (MEIv2; with interval 0.5

centered at 0) for each range of lead times, where the black dots indicate the underlying fractions

for all the extended boreal wintertime dates, and the gray horizontal reference lines are spaced by

10% starting at 0 at the bottom.
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Figure 4. Hovmöller plots of the daily composite anomalies of 10◦S-10◦N precipitation (shad-

ing; mm day−1) for Cluster #4 in (a) FREE, (b) NUDGE, and (c) ERAI-R. The contours in (a)

and (b) show the precipitation anomaly differences between the hindcasts and ERAI-R with 1

mm day−1 spacing. The zero line is omitted.

that the initial states selected by Cluster #4 are associated with an enhanced Aleutian194

Low. This is similar to that associated with El Niño events and is also consistent with195

the constructive interference between non-cold ENSO and the time-lagged response to196

MJO phases 6-7 (Henderson & Maloney, 2018). Over Weeks 1-2, similar anomalies as197

shown at the initial state persist with enhanced U.S. West Coast precipitation (top two198

rows in Figure 3d). In Week 2, a higher frequency of MJO phase 2 events is present (sec-199

ond row in Figure 3d), which is expected to excite a negative Pacific-North America (PNA)200

teleconnection pattern associated with positive geopotential anomalies in the Aleutian201

Low region in Week 3 (Tseng et al., 2019). Combined with a non-cold ENSO state that202

is associated with a positive PNA pattern and anomalous Aleutian Low, destructive in-203

terference occurs that weakens the Low as shown in Henderson and Maloney (2018). This204

further decreases U.S. West Coast precipitation by reducing moisture transport associ-205

ated with the anomalous Aleutian Low (Xiong et al., 2019), a process that is well rep-206

resented in ERAI-R and also in the NUDGE hindcasts (third row in Figure 3c-d). This207

dynamical response is much less robust in FREE (third row in Figure 3b), which we hy-208

pothesize is caused by an incorrect simulation of upper-level divergence associated with209

precipitation in the tropics and their teleconnections. Figure 4a shows that large pre-210

cipitation errors exist in the deep tropics (contours) in FREE after Day 7. In particu-211

lar, the model produces precipitation anomalies of excessive magnitude that resemble212

those anomalies associated with non-cold ENSO events, and fails to simulate the reduc-213

tion after Day 7 when MJO precipitation begins to move across the Maritime Continent214

(shown in Figure 3d with the most frequent MJO phases transitioning from phases 8-215

2 in Week 1 to phases 2-4 in Week 2). Since precipitation anomalies in the deep trop-216

ics are associated with upper troposphere divergent wind anomalies that can generate217

stationary Rossby waves in the presence of a background vorticity gradient (Sardeshmukh218

& Hoskins, 1988), it is likely that this precipitation error in FREE leads to failure in sim-219

ulating the correct Rossby wave pattern over the North Pacific. Subsequently, it leads220

to incorrect simulation of the Aleutian Low and results in U.S. West Coast precipita-221

tion errors that are improved with nudging.222

Although the mechanism described above appears to explain Week 3, during Week223

4, North Pacific z500 and precipitation anomalies in ERAI-R start to become diverse within224

Cluster #4 as demonstrated by an increasingly large spread in the MJO phase distri-225

bution in Figure 3d. Furthermore, phases 4-6 of the MJO become more common in Week226
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3, which were shown by Tseng et al. (2019) to produce inconsistent teleconnections to227

the North Pacific. Hence, a strongly forced signal with consistent sign from the extra-228

tropics is less likely to be reflected in the composite mean, and the consistency between229

the composites likely no longer serves as an indicator of forecast performance. Instead,230

a hindcast-by-hindcast comparison is needed to evaluate the performance. Spatial cor-231

relation coefficients of Week-4 z500 anomalies over the North Pacific (20◦N-70◦N, 150◦E-232

120◦W) between FREE and ERAI-R and between NUDGE and ERAI-R are calculated233

to assess the midlatitude z500 forecast improvements due to tropical nudging (Figure234

S4). The average correlation coefficient among hindcasts is +0.17 between FREE and235

ERAI-R and +0.41 between NUDGE and ERAI-R, meaning that nudging improves the236

overall spatial representation of midlatitude z500 over Week 4, even though there may237

not be a consistently-signed signal from the tropics that forces the composite mean. How-238

ever, when subsetting the hindcasts to isolate only those with the largest forecast im-239

provements in Cluster #4, the enhanced Aleutian Low as well as the increased U.S. West240

Coast precipitation anomalies are shown to robustly persist over Week 4 in a compos-241

ite analysis in FREE but not in NUDGE and ERAI-R (Figure S5). This suggests that242

the hypothesis of destructive interference may still be applicable to those cases in Week243

4 where NUDGE performs particularly well relative to FREE.244

These results strongly point to the importance of correctly representing the trop-245

ics for Weeks 3-4 extratropical precipitation forecasts. While we have proposed a phys-246

ical mechanism to explain the enhanced improvements in Cluster #4 with tropical nudg-247

ing, we still have not addressed why Cluster #4 alone provides larger forecast improve-248

ments relative to other clusters. We propose some possible reasons here. First, there is249

greater opportunity for forecast errors and improvements when the precipitation mag-250

nitudes in ERAI-R are already large. This is the case for Clusters #3, #4 and #5, as251

seen in Figure S3. Second, precipitation over the Indo-Pacific warm pool region (10◦S-252

10◦N, 60◦E-170◦E) has been shown to generate teleconnection patterns that strongly af-253

fect U.S. West Coast weather on S2S timescales (Tseng et al., 2019), with MJO phases254

2 and 3 providing particularly strong forcing 7-10 days later. Compared to other phases,255

precipitation over the Indo-Pacific warm pool region is represented relatively poorly in256

the model during MJO phases 2-4 and therefore improves more with nudging (Figure257

S6). Only Cluster #2, #4, and #5 show a higher frequency of MJO phases 2-4 compared258

to the underlying MJO phase distribution at Weeks 1-2 leads (Figure S7), suggesting that259

error reductions in the associated dynamical response are likely also greater in those clus-260

ters. Third, the background states of different clusters provide different waveguide prop-261

erties for stationary Rossby waves. Thus, it is possible that the U.S. West Coast is less262

modulated by teleconnections in other clusters than Cluster #4, while other geograph-263

ical locations might show a stronger modulation.264

The multivariate k-means clustering method is capable of capturing features in the265

initial states important for U.S. West Coast forecast improvements, which includes a strong266

anomalous Aleutian Low. Conditioning the hindcasts on ENSO index and MJO phase267

(e.g. MEIv2 ≥ 0 and MJO phases 1, 4, and 8; Figure S8), rather than using k-means clus-268

tering, also yields statistically significant forecast improvements. This is perhaps not sur-269

prising, as it is well known that ENSO and MJO teleconnections can also modulate the270

Aleutian Low (e.g. Henderson & Maloney, 2018). However, for example, the composites271

of all hindcasts with non-cold ENSO that are initially in MJO phases 8 and 1 do not show272

an enhanced Aleutian Low as strong as in Cluster #4 (Figure S9). This is possibly be-273

cause not all MJO and ENSO events in these phases strongly modulate the Aleutian Low.274

For instance, the strength of the MJO teleconnection to the extratropics is also modu-275

lated by other factors such as the strength of the tropical quasi-biennial oscillation (QBO;276

Toms et al., 2020). The k-means clustering approach thus allows us to focus on initial277

states that feature an enhanced anomalous Aleutian Low, whether or not those days map278

onto specific climate indices (see the relatively wide spread of MJO phases and ENSO279

indices in the bar chart of Figure 3a). Here, we leverage the advantage of clustering and280
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propose an underlying mechanism that would have been more difficult to isolate using281

MJO and ENSO metrics alone.282

4 Summary283

Extended-range precipitation forecast improvements over the U.S. West Coast in284

NOAA/NCEP GFS v15.1.1 are examined in hindcasts where tropical fields of horizon-285

tal winds, mass, temperature, and humidity are nudged toward observations. With nudg-286

ing, the forecast mean absolute error of U.S. West Coast precipitation is reduced over287

Weeks 3-4 (Figure 1 and Figure S1), with larger reductions during forecast periods that288

were particularly poorly simulated in the FREE simulations where nudging is not ap-289

plied (Figure S2). This is consistent with the findings in Dias et al. (2021).290

A conditional forecast improvement analysis is performed based on a multivariate291

clustering method. One specific cluster (Cluster #4), characterized by initial states with292

a strong Aleutian Low and weighted toward non-cold ENSO conditions and MJO phases293

8-2 (Figure 3a), is shown to provide significantly larger forecast improvements in U.S.294

West Coast precipitation (Figure 2). The robust improvements can be explained by an295

interaction that is not simulated well in the free-running simulations (FREE), but is well-296

represented in the nudged simulations (NUDGE): a strong Aleutian Low is subsequently297

weakened after two weeks by the destructive interference associated with the MJO phases298

8-2 teleconnection pattern (Figure 3b-d) under non-cold ENSO conditions. The poor rep-299

resentation of tropical intraseasonal precipitation variability in the FREE simulations300

(Figure 4a) is suggested to produce an unrealistic interaction between the Aleutian Low301

and the MJO teleconnection pattern, leading to errors in the z500 and precipitation pat-302

tern near the U.S. West Coast. These errors are attenuated in the nudged simulations303

(Figure 3b-d and Figure 4b).304

We did not perform an exhaustive evaluation of the model improvements for ev-305

ery cluster, choosing instead to concentrate on Cluster #4 since it exhibits substantially306

greater improvements for U.S. West Coast precipitation in Weeks 3-4. It is possible that307

other clusters provide better forecast improvements with nudging at other geographi-308

cal locations, which could be examined in a future study. More sets of tropical nudging309

experiments, including those with nudging only being applied for a narrower latitudi-310

nal band, and over shorter time periods including over only the first week or two of the311

hindcasts, were also conducted by Dias et al. (2021). These experiments might also be312

useful for examining some of the proposed mechanisms above.313

Note that the clustering method provides an alternative to using conventional ENSO314

and MJO metrics to analyze conditional forecast improvements. The clustering method315

shows that forecast improvements for U.S. West Coast precipitation is largest when an316

anomalously strong Aleutian Low is present in the initial condition, which subsequently317

gets perturbed by the evolution of the tropics. A major implication of this study is that318

improving forecasts of intraseasonal precipitation evolution in the tropics, especially that319

during MJO phases 8 and 1-4 under non-cold ENSO states, might be key to producing320

better U.S. West Coast precipitation forecasts.321
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Text S1.

Model and Experimental Setup

In this study, we utilize the nudging simulations of Dias, Tulich, Gehne, and Ki-

ladis (2021) conducted using a leading U.S. forecast model. Specifically, version 15.1.1

of the NOAA/ National Centers for Environmental Prediction Global Forecast System

(NOAA/NCEP GFS v15.1.1) is used with C128 horizontal resolution and 64 vertical levels

from the surface to 1 hPa. Other operational settings such as the lower boundary condition

and physical parameterizations used are provided in detail here: https://www.emc.ncep

.noaa.gov/emc/pages/numerical forecast systems/gfs/implementations.php. As

described in more details below, three sets of simulations are conducted: ERAI-R,

where the whole globe in the model is nudged toward the observed state represented

by ERA-Interim reanalysis (Dee et al., 2011) at all lead times; FREE , where the model

freely evolves after initialization to produce forecasts (one can think of this as the default

forecast behavior), and NUDGE , where only the tropics are nudged at all lead times

toward the reanalysis. Differences in forecast errors between FREE and NUDGE relative

to ERAI-R thus indicate how representation of the tropics can affect forecast performance.

The incremental analysis update (IAU; Bloom et al., 1996) scheme is utilized to nudge

the model toward the observed state to create the ERAI-R simulation. Briefly, the IAU

is implemented with 6-hour cycles using the following procedure: the differences in the

observations and the forecasted fields are computed at the end of a 3-hour free forecast as

a forcing tendency, and the forecast is run again for 6 hours with the forcing applied (see

Fig. 1 in Dias et al., 2021). The fields of zonal and meridional winds, mass, temperature,

and specific humidity are nudged. When the whole globe is nudged, a good approximation
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of the observed state is produced (including the precipitation field which is not nudged),

here referred to as ERAI-R.

A set of hindcasts, FREE, are performed to evaluate the forecast performance of the

model in a free-running mode (i.e. with no nudging). In this setting, the model is

run freely out to 30 days from the restart points provided by ERAI-R. Another set of

hindcasts, NUDGE, are performed to assess the effect on S2S forecast performance in

the extratropics when the tropics are represented accurately. The design of NUDGE is

the same as FREE, except that the nudging method used in ERAI-R is applied within

30◦S-30◦N using a weighting function that is unity between 10◦S-10◦N and is reduced to

zero toward 30◦S and 30◦N following a hyperbolic tangent curve. Note that the same form

of tropical nudging was used in Jung, Miller, and Palmer (2010).

All three sets of simulations are run during November 1999 to April 2018 for the ex-

tended boreal winter (November to April). At the beginning of each season, the model is

initialized with the ensemble mean fields from Global Ensemble Forecast System version

12 (GEFSv12) on November 1st. The hindcast runs (FREE and NUDGE) are initialized

every 5 days afterward using the restart files output from ERAI-R until the end of March

in the following year. Thus, 31 hindcasts are performed for each extended boreal winter

with 620 hindcasts in total. The 3-hourly output from the model is regridded to 1◦ by 1◦

horizontal grid spacing and averaged to daily means prior to the subsequent analysis.
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Figure S1. The weekly-averaged MAE reduction in predicted U.S. West Coast pre-

cipitation (MAE of FREE minus MAE of NUDGE). The Week-1 distribution is not fully

shown as it has a high peak (2.2 day mm−1). Note the greater positive skewness of

the Week-3 and Week-4 distributions, indicating that MAE tends to be more strongly

improved in response to tropical nudging.
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Figure S2. Distributions of U.S. West Coast precipitation MAE (mm day−1) averaged

over Weeks 3-4 in (a) FREE and in (b) NUDGE, and (c) a scatter plot of the two MAEs

on individual initialization dates. For the distribution curves, the top and the bottom

terciles in each set of runs are shaded, and the arrows annotated with numbers indicate

the averaged improvement over each tercile between FREE and NUDGE. For the scatter

plot, a linear regression of the data points is shown (red line; mathematical expression at

the upper left corner) along with a reference one-to-one line (black), where the lengths of

the cyan arrows demonstrate the magnitudes of improvements, which are larger when the

MAEs in FREE are larger.
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Figure S3. The composite anomalies from each cluster at Day 1 in ERAI-R: (a) z500

(m), (b) u200 (m s−1), (c) precipitation (mm day−1), and the distribution of (d) MJO

phases, and (e) MEIv2, where each row represents a cluster. (d) and (e) are as constructed

in a similar manner to the panels in Figure 3. In (a), (b), and (c), the red boxes represent

the U.S. West Coast averaging region, and the black contours are the mean u200 from

the extended boreal winter, with levels 30, 40, 50, 60, and 70 m s−1.
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Figure S4. Histograms of North Pacific (20◦N-70◦N, 150◦E-120◦W) Week-4 z500

spatial correlation coefficients between ERAI-R and (a) FREE and (b) NUDGE binned

with interval 0.1.
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than or equal to 1 mm day−1 from Cluster #4.
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Figure S6. As Figure 2b, but showing the MAE reduction of Indo-Pacific warm pool

region (10◦S-10◦N, 60◦E-170◦E) precipitation during Weeks 1-2 as a function of MJO

phase, where X indicates the non-MJO conditions.
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Figure S7. As the MJO panels in Figure 3, but showing the weekly distributions from

all the clusters (columns).
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(a) MEIv2 < 0
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Figure S8. As in Figure 2b, but subsetting by MJO phases while (a) MEIv2 < 0, and

while (b) MEIv2 ≥ 0, where X indicates non-MJO conditions.
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Figure S9. As in the left three columns of maps of Figure 3, except showing the

composites for the subset of hindcasts with MEIv2 ≥ 0 and MJO phases 1 and 8. The

sample number of this subset is 42.
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