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Abstract

We present a reduced magnetohydrodynamic (MHD) mathematical model describing the dynamical behavior of highly con-

ducting plasmas with frozen-in magnetic fields, constrained by the assumption that, there exists a frame of reference, where

the magnetic field vector, B, is aligned with the plasma velocity vector, u, at each point. We call this solution “stream-aligned

MHD” (SA-MHD). Within the framework of this model, the electric field, E = -u x B [?] 0, in the induction equation van-

ishes identically and so does the electromagnetic energy flux (Poynting flux), E x B [?] 0, in the energy equation. At the

same time, the force effect from the magnetic field on the plasma motion (the Ampere force) is fully taken into account in

the momentum equation. Any steady-state solution of the proposed model is a legitimate solution of the full MHD system

of equations. However, the converse statement is not true: in an arbitrary steady-state magnetic field the electric field does

not have to vanish identically (its curl has to, though). Specifically, realistic tree-dimensional solutions for the steady-state

(ambient) solar atmosphere in the form of so-called Parker (1958) spirals, can be efficiently generated within the stream-aligned

MHD (SA-MHD) with no loss in generality.
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ABSTRACT

We present a reduced magnetohydrodynamic (MHD) mathematical model describ-

ing the dynamical behavior of highly conducting plasmas with frozen-in magnetic

fields, constrained by the assumption that, there exists a frame of reference, where the

magnetic field vector, B, is aligned with the plasma velocity vector, u, at each point.

We call this solution “stream-aligned MHD” (SA-MHD). Within the framework of

this model, the electric field, E = −u × B ≡ 0, in the induction equation vanishes

identically and so does the electromagnetic energy flux (Poynting flux), E ×B ≡ 0,

in the energy equation. At the same time, the force effect from the magnetic field on

the plasma motion (the Ampère force) is fully taken into account in the momentum

equation. Any steady-state solution of the proposed model is a legitimate solution

of the full MHD system of equations. However, the converse statement is not true:

in an arbitrary steady-state magnetic field the electric field does not have to vanish

identically (its curl has to, though). Specifically, realistic tree-dimensional solutions

for the steady-state (“ambient”) solar atmosphere in the form of so-called Parker spi-

rals, can be efficiently generated within the stream-aligned MHD (SA-MHD) with no

loss in generality.

Keywords: Sun: corona — Sun: heliosphere — Parker spiral — magnetic hydrody-

namics

1. INTRODUCTION

Space weather describes the dynamic state of the Earth’s magnetosphere-ionosphere

system, which is driven by the solar wind and solar ionizing radiation. The greatest

disturbances in space weather are geomagnetic storms, the most severe of which are

Corresponding author: Igor Sokolov

igorsok@umich.edu

http://orcid.org/0000-0002-6118-0469
http://orcid.org/0000-0003-3936-5288
http://orcid.org/0000-0001-9360-4951
mailto: igorsok@umich.edu


2 Sokolov et al.

caused by coronal mass ejections (CMEs) (see (Gosling 1993)). To simulate, forecast

or just nowcast space weather events, which, from a mathematical standpoint, are

essentially time-dependent processes, global models are needed to simulate, as the

initial stage, the steady state of the solar-terrestrial environments. The resulting

solution for the “pre-event” solar wind and terrestrial magnetosphere serves as the

background through which the space weather disturbance propagates and shocks and

discontinuities are generated. The solar energetic particle (SEP) transport as well

as the formation of their seed population is mostly controlled by this background

solution, as well.

In realistic solar atmosphere simulations, the – essentially three-dimensional (3-D)

– interplanetary magnetic field can be steady-state only in coordinate systems co-

rotating with the Sun (such as HGR). In corotating frames solar active regions and

coronal holes, that are mostly responsible for shaping the structure of the solar atmo-

sphere, can be treated as steady-state sources. Despite being steady-state globally,

the solution for the solar wind is highly variable at Earth’s location, since in any coro-

tating systems the Earth orbits the Sun with the Carrington rotation period. This

relative motion allows us to compare time series of solar wind parameters observed

by Earth or L1 orbiting spacecraft, SWobserved(t), with the simulated steady-state pa-

rameters for the 3-D background solar wind, SWbackground(R), by extracting the time

series of simulated values, SWbackground(REarth HGR(t)), at the time-dependent Earth

location in the HGR system, REarth HGR(t). The time series of observations by the

two STEREO spacecraft provide additional validation possibilities.

In the last two decades several 3-D solar wind (Usmanov et al. 2000; Suzuki &

Inutsuka 2005; Verdini et al. 2009; Osman et al. 2011; Lionello et al. 2014a,b), and

coronal heating models (Tu & Marsch 1997; Hu et al. 2000; Dmitruk et al. 2002; Li

& Habbal 2003; Cranmer 2010) that included, or were exclusively driven by, Alfvén

wave turbulence became increasingly popular. Our group also includes Alfvén wave

turbulence in our corona and inner heliosphere model (cf., Sokolov et al. 2013, 2021;

Oran et al. 2013; van der Holst et al. 2014; Gombosi et al. 2017, 2021). Although

popular, this physics-based approach to modeling the background solar wind is not

the only way to model the solar corona and the solar wind. Empirical descriptions of

the solar wind, like the widely used Wang-Sheeley-Arge (WSA) model (Arge & Pizzo

2000) are also attractive because of their simplicity and ability to predict the solar

wind speed in the inner heliosphere. In addition, the WSA formalism can be readily

incorporated into global 3-D models for the solar corona and inner heliosphere (see

Cohen et al. 2006) via a varying polytropic index distribution as proposed by Roussev

et al. (2003).

There is, however, a conceptual difference between global solar atmosphere mod-

els that are based on numerical solutions of the ideal (or resistive) MHD equations

and simple (but efficient) semi-analytic solar wind models that imply a classical

Parker-spiral structure for the interplanetary magnetic field lines. Specifically, in
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semi-analytic models it is assumed that in the corotating frame of reference under

steady-state conditions the solar wind velocity vector u(R) is always aligned (parallel

or anti-parallel) with the interplanetary magnetic field vector, B(R). This means that

stream-lines and magnetic field lines are always identical and they form Archimedean

or Parker (1958) spirals. The assumed coincidence of solar wind stream-lines and

interplanetary magnetic field lines (in corotating frames) is at the heart of almost all

analytic, semi-analytic, semi-empirical and empirical models of interplanetary space.

This assumption results in simple methods for tracing interplanetary magnetic field

lines from any point of interest in the solar system back to the Sun. One can just trace

back a Parker spiral to find out where the local solar wind and magnetic field line

originates from on the Sun. For instance, in the WSA semi-empirical model (Arge &

Pizzo 2000) this assumption is used to relate the Earth’s location to the point on the

source surface at which to extract the parameters, predicted by the model.

The problem with the concept of aligned interplanetary stream-lines and magnetic

field lines is that numerical solutions of the full set of MHD equations have not been

able to reproduce this feature so far. Full MHD numerical solutions of the solar

atmosphere obtained within the framework of regular MHD are not stream-aligned.

Even if the initial conditions describe parallel B and u vectors, the smallest numerical

error (such as truncation, finite representation, etc) will result in an uncontrollable

growth of misalignment. One of the reasons for this discrepancy is the numerical

reconnection across the heliospheric current sheet near the top of helmet streamers:

the reconnected field is directed across the current sheet, while the global solar wind

streams along the current sheet, thus resulting in significant misalignment. Within

regular MHD there is no mechanism to re-establish the stream-line-field line align-

ment.

Tracing magnetic field lines from a point of interest in the heliosphere to the solar

surface (magnetic connectivity) is needed to identify the point of origin of the magnetic

field line. This same magnetic connectivity is also necessary to solve the field-aligned

transport of energetic particles that create space radiation hazards. With standard

computational MHD calculating the magnetic connectivity can become so challenging

that sometimes it is preferable to trace stream-lines instead, or even Lagrangian

trajectories of fluid elements.

In this paper we present a new global model of the solar atmosphere/solar wind

system using a reduced MHD model which ensures stream-aligned magnetic field

under steady-state conditions. We call this solution “stream-aligned MHD” (SA-

MHD). In this reduced set of MHD equations the electric field, E = −u × B ≡ 0,

identically vanishes in the induction equation and so does the electromagnetic energy

flux (Poynting flux) in the energy equation, E×B ≡ 0. At the same time the impact

of the magnetic force on the plasma motion (the Ampère force) is explicitly enforced

in the momentum equation. It must be emphasized that any steady-state solution of

the reduced equation set is a solution of the full MHD system of equations. However,
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the converse statement is not true, since in an arbitrary steady-state magnetic field

the electric field does not have to vanish identically (though its curl must). The main

point is that the practically interesting Parker (1958) spiral solutions for the steady-

state background solar atmosphere and solar wind can be efficiently generated within

the SA-MHD with no loss of generality, in 3-D geometry with realistic solar magnetic

field.

2. FULL 3-D MHD EQUATIONS OF THE GLOBAL MODEL

2.1. Standard MHD Equations with Non-Zero Magnetic Field Divergence

Global models of the solar atmosphere are usually based on the standard MHD

equations (non-specified notations are as usual):

∂tρ+∇ · (ρu) = 0, (1a)

∂tB +∇ · (uB−Bu) = −u(∇ ·B), (1b)

∂t(ρu) +∇ ·
[
ρuu− BB

µ0

+

(
P +

B2

2µ0

)
Î

]
= − 1

µ0

B(∇ ·B), (1c)

∂t

(
ρu2

2
+

P

γ − 1
+

B2

2µ0

)
+∇ ·

[(
ρu2

2
+

γP

γ − 1

)
u

]
+∇ ·

[
(uB−Bu) ·B

µ0

]
= −(u ·B)

µ0

(∇ ·B), (1d)

where B = |B|, u = |u|, and Î is the unit tensor. We use the equation of state,

P = 2nikBT , ρ = mpni for the coronal plasma with the polytropic index, γ = 5/3.

We omitted many important effects (see for more detail Sokolov et al. 2021) in the

governing equations, while we explicitly included terms proportional to the divergence

of magnetic field. If the numerical solution for the magnetic field is not divergence-free

(see Godunov 1972; Powell et al. 1999), this approach allows us to handle maintain

basic physical properties, such as pressure positivity. Indeed, if one takes Eq. (1d)

divided by temperature, T , subtracts the dot product of u/T with Eq. (1c) and the

dot product of B/(µ0T ) and Eq. (1b) and finally adds Eq. (1a) times s+ 1
T

(
u2

2
− h
)

,

an extra conservation law is obtained:

∂t(ρs) +∇ · (ρus) = 0 (2)

(see also Godunov 1961, 1972; Harten et al. 1983; Powell et al. 1999), where s and h

are the entropy and enthalpy per unit mass and the thermodynamic equations

dh = Tds+
1

ρ
dP, h =

γP

ρ(γ − 1)
, (3)

were used. Eq. (2) is only valid for smooth solutions and it states that the entropy

satisfies the conservation law for a passively advected scalar. At shocks and dis-

continuities the entropy conservation breaks down, but, entropy can only increase,
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not decrease. Therefore, the total entropy (its volume integral) does not decrease:

∂t
∫
ρsdV ≥ 0, since the integral of ∂t(ρs) over the smooth solution region vanishes

due to Gauss’ theorem applied to Eq. (2), while the discontinuities result in entropy

production. A consequence of this entropy property is that for such systems finite-

volume numerical schemes ensure that in the numerical solution the physical entropy

does not decrease, and consequently, the pressure can never become negative (should

the pressure go to zero, the entropy, s ∝ log(P ), would drop to minus infinity).

2.2. Separating the Potential Magnetic Field in the Solar Corona

Realistic models of the 3-D coronal magnetic field use boundary conditions taken

from full disc photospheric magnetograms incorporating current and past observation

results. The potential magnetic field solution provides the minimum free magnetic

energy for a given boundary condition, therefore, in the “ambient” (background)

solution for the solar wind the magnetic field is approximately equal to the potential

configuration in the proximity of the Sun. Following Ogino & Walker (1984) and

Tanaka (1994) (see also Powell et al. 1999; Gombosi et al. 2002) we split the total

magnetic field to a potential (B0) and non-potential (B1) component B = B0 + B1.

We note that at R = R� the potential B0 field dominates. If we use photospheric

maps of the radial magnetic field (Br), then the potential B0 field can be recovered

from the observed magnetogram using the Potential Field Source Surface Method

(PFSSM) that has been originally described by Altschuler et al. (1977). The Laplace

Eq. for scalar magnetic potential is solved in terms of spherical harmonics between

R� ≤ R and R ≤ RSS = 2.5R� with the given radial gradient of the potential (the

observed radial field) at R = R� and with vanishing magnetic potential (i.e. purely

radial magnetic field) at R = RSS. Accordingly, the non-potential (B1) field (used by

Sokolov et al. (2013); Oran et al. (2013); van der Holst et al. (2014)) satisfies zero

boundary condition for the radial field component, B1R
= 0 at R = R�.

Using the split magnetic field approach the governing equations become the follow-

ing (the continuity equation does not change, therefore we do not repeat it here):

∂tB1 +∇ · [u(B1 + B0)− (B1 + B0)u] = −u
[
∇ · (B1 + B0)

]
, (4a)

∂t(ρu) +∇ ·
[
ρuu− B1B1 + B0B1 + B1B0

µ0

+

(
P +

B2
1

2µ0

+
B1 ·B0

µ0

)
Î

]
= −B1

µ0

[
∇ · (B1 + B0)

]
− B0

µ0

(∇ ·B1)−
1

µ0

[∇×B0]×B1, (4b)

∂t

(
ρu2

2
+

P

γ − 1
+
B2

1

2µ0

)
+∇ ·

[(
ρu2

2
+

γP

γ − 1

)
u

]
+∇ ·

[
[u (B1 + B0)− (B0 + B1) u] ·B1

µ0

]
= −(u ·B1)

µ0

[
∇ · (B1 + B0)

]
. (4c)

An advantage of splitting the magnetic field is that there are no quadratic terms in

B0 in equation (4b). Near the Sun (especially near active regions) such terms can
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be so large, that the error in their approximation might exceed the whole physical

effect from the B1 field. For the same reason we cannot, in general, rely on the

assumption that numerical approximations for ∇ × B0 and ∇ · B0 are exactly zero

(as it is theoretically assumed), so that to maintain entropy conservation we need

to introduce the corresponding source terms in equations (4a–4c). Particularly, all

contributions from the field to the momentum Eq. (4b) can be combined with the

Ampère force j× (B1 + B0) = 1
µ0

[∇×B1]× (B1 + B0) and it is the last term in the

RHS of (4b), which ensures that the potential, B0, contributes to the total field, but

not to the current, in the Ampère force.

In a solar corona model different approximations, with split and non-split magnetic

fields, can be used depending on the heliocentric distance, R = |R|. For instance, the

“threaded field line model” (Sokolov et al. 2021) that includes the transition region

and covers heliocentric distances between the photosphere (R�) and the low boundary

of the solar corona, Rb ≈ 1.1R�, neglects the non-potential B1 component, assuming

that in this region B1 ≡ 0, and the plasma flow occurs only along the potential field

lines (threads). This approach allows us to move the boundary conditions for all other

physical quantities from the top of the transition region (where they are poorly known)

to the photosphere. Accordingly, the boundary condition, (B1)R = 0, is imposed at

R = Rb, to solve the full set of equations (4a–4c) at distances Rb ≤ R ≤ RSS.

Finally, above the magnetogram source surface, at R ≥ RSS, the B0 field, which

is purely radial at RSS, can be naturally continued beyond the source surface as a

steady-state, radial and divergence-free field decaying as 1/R2:

B0(R) =
R2

SS

R2
B0

(
RSS

R
R

)
. (5)

This magnetic field, however, is no longer a potential field, therefore, its contribution

to the current cannot be neglected. To fully account for the total force effect when

using split fields and to ensure their continuity at RSS, one needs to add the extra

source term to the RHS of the momentum Eq. (4b) in the R ≥ RSS region:

SM =
1

µ0

∇ · (B0B0)−
1

2µ0

∇B2
0 −

1

µ0

B0(∇ ·B0) +
1

µ0

[∇×B0]×B1, (6)

which is easy to compute, since only the last term (which is to cancel the last term in

the RHS of 4b) depends on time via B1, while all other terms are steady-state terms

and can be calculated only once.

With the newly added source the momentum equation, in effect, reduces to Eq. (1c)

expressed in terms of the total magnetic field, B = B0+B1 and the induction equation

(Eq. 4a) reduces to (1b). Nevertheless, it is the unknown field B1 which is solved from

these equations throughout computational domain. In order not to break the entropy

conservation, for R ≥ RSS the corresponding source term, SE = u · SM, should be

added to the RHS of the energy Eq. (4c). For derivations, but not for computations,
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the RHS of resulting energy equation can be written as follows:

u · SM−
(u ·B1)

µ0

[
∇ · (B1 + B0)

]
= − [u · (B1 + B0)]

µ0

[
∇ · (B1B0)

]
+

1

µ0

∇ · {[(B1 + B0)u− u(B1 + B0)] ·B0} −
1

µ0

B0 · ∂tB1. (7)

Although the energy Eq. (4c) with the split field and the transformed RHS is formally

reducible to Eq. (1d) for the full field, such reduction would require us to redefine

the magnetic energy density in terms of the total field too, as (B1 + B0)
2/(2µ0), so

that its time derivative, (1/µ0)(B1 + B0) · ∂tB1, balances the last term in the RHS of

Eq. (7). This redefinition, however, may compromise the whole idea of only solving

equations for B1 beyond RSS. To use the energy equation, (4c), with an extra source,

u · SM, seems to be a better option.

3. REDUCED EQUATIONS OF SA-MHD

3.1. Intuitive solution

Now, we show how to proceed from standard MHD equations (1a-1d) to equations

for SA-MHD, in which

B = αu, E = −u×B ≡ 0, (8)

where α(t,R) is a scalar function of time and coordinates. To derive a governing

equation for α, in a steady-state stream-aligned solution, one can integrate the MHD

equations over a magnetic flux tube element of a length of d` bounded by two nearby

cross sections of the flux tube, dS1 and dS2, and a bundle of magnetic field lines

about a chosen magnetic field line, which all pass through the contours of these cross

sections. The equation, ∇ ·B = 0, gives

BdS = const (9)

along the flux tube, which allows us to relate the change in the cross-section area

along the thread to the magnetic field magnitude. Now, since the stream-lines are

aligned with the magnetic field lines, one can also integrate the continuity Eq. (1a)

for a steady-state flow along the flux tube, which gives

ρuS = const (10)

Therefore, the ratio of constant mass flux and the constant magnetic flux,

B

ρu
≡ α

ρ
(11)

is constant along the field line and along the stream-line. Both of these relations can

be expressed as

(u · ∇)
α

ρ
= 0 (12)
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Now, if we assume that this ratio is constant along the fluid particle trajectory (which

in steady state coincides with the stream-line but in the dynamic system this state-

ment is a matter of a model assumption):

∂t

(
α

ρ

)
+ (u · ∇)

(
α

ρ

)
= 0, (13)

we can combine equations (1a) and (13) to obtain the conservation law for α:

∂tα = −∇ · (αu) . (14)

3.2. Rigorous solution

A less intuitive, but mathematically more rigorous derivation of the same set of

model equations can be obtained if we consider an MHD state that is close to the

force equilibrium, ∂tu → 0, and add the aligning source (that tends to zero) to the

induction equation (Eq. 1b):

∂tB +∇ · (uB−Bu) = −u(∇ ·B) + α∂tu, α =
B · u
u2

. (15)

To keep the entropy conservation, a similar source should be added to the RHS of

the energy (Eq. 1d):

∂t

(
ρu2

2
+

P

γ − 1
+

B2

2µ0

)
+∇ ·

[(
ρu2

2
+

γP

γ − 1

)
u

]
+

+∇ ·
[

B2u−B(u ·B)

µ0

]
= −(u ·B)

µ0

(∇ ·B) +
α

µ0

B · ∂tu (16)

Now, if in an arbitrary MHD initial state the magnetic field is aligned according to

Eq. (8), the aligning term ensures, that

∂tE = [∂tB× u]− [∂tu×B] = [∂tu× (αu−B)] = 0, (17)

and keeps the alignment forever. By substituting B = αu into Eq. (15), we arrive at

equation (14) (multiplied by u).

In the momentum equation the stream-aligned magnetic field should be applied:

∂t(ρu) +∇ ·
[
ρuu + P Î− α2

µ0

(
uu− u2

2
Î

)]
= − α

µ0

u∇ · (αu) , (18)

which can be also written in a non-conservative form:

∂tu + (u · ∇)u = −∇P
ρ

+
α

µ0ρ

[
∇× (αu)

]
× u (19)

Eq. (19) contains the explicit expression for the Ampère force, which happens to be

always perpendicular to the velocity vector (similarly to the Coriolis force). In the
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equation of energy (1d) the Poynting flux, E × B vanishes identically. In addition,

the sources in the RHS of Eq. (16) for the stream-aligned field reduce to ∂tB
2/2µ0

and entirely balance the change in the magnetic energy density in the LHS. Therefore

in effect, the stream-aligned magnetic field does not contribute to the energy density,

so that the energy equation does not include the magnetic field at all:

∂t

(
ρu2

2
+

P

γ − 1

)
+∇ ·

[(
ρu2

2
+

γP

γ − 1

)
u

]
= 0. (20)

This is because the Ampère force is perpendicular to the velocity vector and it does

not affect the kinetic energy, hence, does not exchange energy between the field and

plasma. For the same reason, under steady-state conditions, equation (20) conserves

the Bernoulli integral along the stream-line in its classical form:

(u · ∇)

[
u2

2
+

γP

(γ − 1)ρ

]
= 0. (21)

Equations (1a,14,18,20) present a full set of governing equations, which, as the

solution approaches steady state, becomes fully conservative (the nonconservative

source term that is proportional to ∂tα in the momentum equation tends to zero),

satisfies the ∇·B = 0, constrain (since, ∇·B = −∂tα→ 0), and their solution in this

limit presents a legitimate solution of the MHD equations, since the aligning sources

(∝ ∂tu → 0) tend to zero too. Moreover, this is a desired stream-aligned solution.

On the other hand the full MHD equations with no aligning sources, once applied

to any non-equilibrium MHD state, with ∂tu 6= 0, will immediately produce non-

stream-aligned solution even from stream-aligned initial state. It seems that in any

discretized implementation (actual numerical solution) it is extremely difficult (if not

impossible) to reach stream-aligned steady-state 3-D solutions within the framework

of regular computational MHD, which justifies the approach proposed here.

3.3. Stream Aligned MHD in a Rotating Frame of Reference

For applications to solar wind the momentum and energy equations of SA-MHD are

used the frame of reference rotating with angular velocity, Ω�, with respect to the

inertial frame. In addition to the Coriolis force density, −2ρΩ� × u, the centrifugal

and gravitational forces are accounted for via the gradient of the potential, Φ(R):

Φ(R) = −GM�

R
− 1

2
[Ω� ×R]2, (22)

∂t(ρu) +∇ ·
[
ρuu + P Î− α2

µ0

(
uu− u2

2
Î

)]
= − α

µ0

u∇ · (αu)− 2ρΩ� × u− ρ∇Φ,

(23)

∂t

[
ρ

(
u2

2
+ Φ

)
+

P

γ − 1

]
+∇ ·

{[
ρ

(
u2

2
+ Φ

)
+

γP

γ − 1

]
u

}
= 0. (24)
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In the rotating frame the Bernoulli integral (Eq. 21) is modified by the inertial force

potential (Eq. 22):

(u · ∇)

[
u2

2
− GM�

R
− 1

2
[Ω� ×R]2 +

γP

(γ − 1)ρ

]
= 0. (25)

The Bernoulli integral can be used to relate the model predictions at the source

surface close to the Sun, such as the WSA predictions at R = 2.5R�, to the observed

solar wind parameters at 1 AU (see e.g., Cohen et al. 2007). However, Eq. (25) is

not convenient for use, since the velocity in the inertial frame, uinert, relates to that

in the rotating frame, u, with the well-known equation:

uinert = u + Ω� ×R, (26)

so that at 1 AU the velocity in the rotating frame has too large contribution from

rotational velocity. In terms of the observable parameters in the inertial frame, the

Bernoulli integral implies the conservation of the following quantity:

u2inert
2
−Ω� · [R× uinert]−

GM�

R
+ h = const, h =

γP

(γ − 1)ρ
. (27)

Within the framework of isothermal approximation for solar atmosphere, one can use

generic expression enthalpy per a unit of mass, h, instead of a particular model for

ideal gas with constant γ assumed in Eq. 27. For isothermal two-component plasma

with Ti = Te = T , the expression for enthalpy is h = 2kBT
mp

log ρ.

Note, that in neglecting the effect from the gas-kinetic pressure and from the mag-

netic field, for a test particle of a unit mass co-moving with the solar stream velocity,

u, both the energy integral,
u2inert

2
− GM�

R
= const, and the vector of particle angular

momentum, [R× uinert] = const, conserve separately and so does their linear combi-

nation in Eq. 27. However, the force effect of stream-aligned magnetic field increases

the angular momentum of the solar wind while moving outward the Sun. Therefore,

according to Eq. 27 at large heliocentric distances there is a finite gain in the solar

wind energy per unit of mass equal to Ω� · [R× uinert]1AU

The closed system of equations describing self-consistent variation of the angular

momentum and azimuthal magnetic field component while the solar wind propagating

outward the Sun (Parker 1958) can be obtained by solving the equations of SA-

MHD in spherical coordinates, R, θ, ϕ, which are the heliocentric distance, co-latitude

and longitude correspondingly. The analytical solution may be found assuming no

dependence on ϕ (axially symmetric field) and no motion over θ (radially divergent

flow). The Coriolis force forces the particles to rotate in the negative ϕ direction,

while it has no component in the θ direction. Consequently, the fluid motion occurs

only in the (R,ϕ) direction and all stream-lines will be on conical surfaces of constant

θ. Steady-state stream-aligned solutions of Eqs. (1a, 23, 24) may be integrated along

stream-lines yielding following equation:

R sin θ

[(
1− α2

µ0ρ

)
uϕ + Ω�R sin θ

]
= const = Ω� sin2 θ

{
R2
}

A
. (28)
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In the absence the magnetic field, i.e. at α ≡ 0, Eq. (28) would express the conserva-

tion of angular momentum (R sin θuϕ,inert ≡ |R× uinert|) in the inertial (not rotating!)

system. However, due to the effect from realistic interplanetary magnetic field the

heliocentric distance in the right hand side should be taken at the Alfvén point where

the local stream speed, u, equals to the Alfvén wave speed, VA = B/
√
µ0ρ, since

α2

µ0ρ
=
V 2
A

u2
=

1

M2
A

. (29)

Typically, the factor M−2
A is very large near the base of the solar corona, because in

this region the solar magnetic field is large and the solar wind not accelerated yet. In

the opposite limiting case at large heliocentric distances, where the solar wind is fast

and the magnetic field is weak, the plasma stream is hyperalfvénic, M−2
A is negligibly

small. In between the accelerating and rarefying solar wind must go through the

Alfvén point and this is the point at which the integration constant is determined

(this point to avoid discontinuous solutions). With these considerations the azimuthal

velocity is (see Weber & Davis 1967):

uϕ =
Ω� sin θ [(R2)

A
−R2]

R
(

1− 1
M2

A

) . (30)

Fig. 1. Parker (1958) solutions (magenta) vs the SA-MHD solution by Weber & Davis
(1967) (blue) in the equatorial plane for a uniform solar corona. A constant solar wind
speed of uR = 400 km/s and source surface radius of 10R� are assumed.

Fig. 1 demonstrates the difference between the over-simplified Parker (1958) spiral

and the SA-MHD solution according to Eq. (30). One can see that under idealized

conditions (constant solar wind speed of uR = 400 km/s and source surface radius

of 10R�) the more accurate stream-aligned solution Eq. (30) lags behind the Parker

(1958) spiral by about 9◦ at Earth’s orbit. Taking into account the solar rotation

(with respect to Earth) this means that a stream-aligned field line originating from
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the same point of the solar surface will cross Earth about 15 hours later than the

corresponding Parker (1958) spiral aligned field line. For space weather applications

(see, e.g. Biondo, Ruggero et al. 2021, relating the properties of the solar wind in situ

with the remotely observed structure of the solar corona, by tracing the stream-line

in co-rotating frame from the observation point toward its origin site) this is a large

difference, meaning that field line associated phenomena (like SEP events) will arrive

to Earth some 15 hours later than predicted by Parker (1958) spiral connectivity

models. It is important, therefore, that our computational model fully incorporates

all principles and opportunities of the earlier models.

4. SIMULATION RESULTS AND DISCUSSION

4.1. Numerical Solution with Full MHD

For comparison with the SA-MHD numerical result presented later in this paper,

we provide numerical solution for the steady state solar corona prior to the SEP event

occurred on April 11, 2013 (Lario et al. 2014). GONG magnetogram at 2013 Apr

11, 06:04 UT serves as the inner boundary condition and the main driver of the solar

wind model (see the left panel of Fig. 2).

Fig. 2. Left: Radial magnetic field from GONG magnetogram observation at 2013 Apr
11, 06:04 UT. Right: Radial magnetic field calculated using PFSS Model with spherical
harmonics of order 90.

In the simulation, the initial condition of the 3-D magnetic fields in the solar corona

is reconstructed by a potential field source surface (PFSS) solution using a spherical

harmonic expansion with the inner boundary provided by the magnetogram. The

radial magnetic fields on the surface of the sun calculated using PFSS is shown in the

right panel of Fig. 2. The PFSS reconstruction has been used to obtain the potential

(B0) field below the source surface located at 2.5R�. Below the source surface we

solve the full set of MHD equations (1a and 4a-4c), above it we add the source term

SM given by Eq. (6) to the momentum equation, (equation 4b), as well as the extra

energy source, u · SM, to the energy equation, (equation 4c).

The magnetic field in the equatorial plane (Fig. 3 top panels) and in the y =

0 meridional plane of the rotating HGR coordinate system (Fig. 3 bottom panels)
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exhibits visible imperfections in the form of disconnected (“V-shaped”) field lines

below 20R� and too long closed loops in (the middle bottom panel of Fig. 3). The

magnetic field in the equatorial plane of the inner heliopshere (right panels in Fig. 3) is

totally disordered and is not applicable to solve magnetic connectivity. We emphasize

that this feature is independent of the numerical solution algorithm: while steady-

state field lines and stream-lines are identical at the PDE level, this is not true in

any discretization within the framework of computational MHD. The stream-aligned

model is designed to address all these issues.

4.2. The Leontovich Boundary Condition as the Aligning Source

The computational SA-MHD cannot be applied to the entire solar corona that

starts with a slowly expanding atmosphere with speeds as low as a few km/s on top

of the transition region and in closed field regions. The slow-speed region extends

to heliocentric distances of 2.5 ÷ 3.5R�. In this region the SA-MHD would fail to

describe closed magnetic field lines. In addition, the problem to align the strong

magnetic field with the slow and somewhat random motion is not only physically

inappropriate, but also mathematically ill-posed, since the characteristic perturbation

speeds tend to infinity if the plasma speed tends to zero. Therefore, we successfully

apply the SA-MHD above some spherical heliocentric boundary with a radius of RSA.

Below this boundary we apply source terms in the MHD equation, which are pro-

portional to the electric field describing the non-alignment between the field and flow

Fig. 3. The magnetic field in the equatorial plane (top panels) and in the y = 0 meridional
planes (bottom panels) of the rotating HGR coordinate system.
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and turning to zero, when the alignment is achieved. These terms reduce the elec-

tric field below RSA and entirely eliminate it at R = RSA. However, they do not

prevent slow motions and magnetic field line reconnection and closure. The sources

are heuristically derived from the well-known Leontovich (1948) boundary condition

which make them physics-based.

The Leontovich boundary condition (Leontovich 1948; Landau et al. 1985) is appli-

cable to electromagnetic fields when a high-frequency wave interacts with a metal and

deep inside the metal the field vanishes. The currents shielding the field are assumed

to be concentrated in a thin layer near the boundary, having the impedance, Z. Under

these assumptions the transverse components of electric and magnetic fields outside

the metal are related to boundary condition:

Et = Z Bt × n̂, (31)

where n̂ is a unit vector normal to the metal surface directed inward the metal.

A straightforward (however, insufficient) application to the boundary between the

usual and SA-MHD gives us an opportunity to consider the electric-field-free SA-

MHD region as if this is the metal and to assign the impedance Z to the boundary

surface. In this case at the MHD side of this boundary the finite electric field will

cause a change in the B0 field given by Eq. (31):

δB0 = n̂× E/Z, (32)

It is important to emphasize that this field is induced by the current which is not

conducted by the moving solar wind plasma, that is why Eq. (32) describes B0 field,

rather than B1. Another comment is that the field undergoes a jump across the

surface at which the finite current is concentrated, that is why the field given by

Eq. (32) exists only “outside the metal,” that is in the SA-MHD region that starts

at a heliocentric distance of R = RSA. The modified field contributes to the flux

function resulting in the evolution of the MHD state toward higher alignment (lower

electric field). The effect is easy to evaluate if the impedance surface is orthogonal

to the magnetic field. In this case the electric field, E = Bnn̂ × ut is orthogonal to

n̂. The normal components, Bn = B · n̂, un = u · n̂ of the field and velocity are not

affected by the extra field given by Eq. (32), while the transverse velocity and field in

the layer of a thickness of ∆x, orthogonal to the magnetic field evolve since the extra

field Eq. (32) is present at the upper boundary of the slab and absent at the lower

one. Using the flux functions in equations (4a) and (4b), one can find, that:

(∂tu)L =
BnδB0

ρ∆xµ0

= −V
2
Aut
Z∆x

(∂tB)L = −unδB0

∆x
=
Bnunut
Z∆x

,



Stream-Aligned MHD 15

in the last equation one can also put Bnun = B · u, since the normal vector is

aligned with the field, hence, B = Bnn̂. Now, one can derive aligning sources as-

suming the distributing conducting layers instead of concentrated impedance by sub-

stituting d(1/Z)/dx for 1/(Z∆x) ratio, which may be conveniently parameterized as

d(1/Z)/dx = 1/(V 2
A + u2n)τ , so that:

(∂tu)L = − V 2
Aut

(V 2
A + u2n)τ

(33)

(∂tB)L =
(B · u)ut

(V 2
A + u2n)τ

. (34)

These sources at some choice of τ can be added to the MHD equations in a chosen

region, not necessarily near the boundary. The advantage of the chosen parameteri-

zation is that τ directly characterizes the electric field relaxation due to the aligning

sources, since:

(∂tE)L = Bnn̂× (∂tu)L − unn̂× (∂tB)L = −E

τ
. (35)

Although greatly improving the MHD solution at R < RSA, the source terms do

not allow us to align the solution at R → RSA. The latter goal is achieved if while

integrating numerically the MHD equations over time after advancing the solution

through the time step, ∆t, we add the source terms and assume that the relaxation

rate, 1/τ , is equal to 1/∆t at R → RSA and modulated with some geometric factor,

ξ, which equals one at R → RSA and decays at smaller heights. In other words, the

linear aligning operator is applied to the velocity and magnetic field vectors in the

following manner:

u→ u + ∆uL, ∆uL = − ξV 2
Aut

V 2
A + u2n

(36)

B→ B + ∆BL, ∆BL =
ξ(B · u)ut
V 2
A + u2n

. (37)

The total energy density decreases by the following quantity:

∆EL =

(
ξ2

2
− ξ
)
V 2
Aρu

2
t

V 2
A + u2n

. (38)

At ξ = 1, that is in the proximity of the SA-MHD computational domain, operator

36, 37 provides a perfect alignment about some weighted average direction such that

the weak field is aligned with the strong stream without noticeable modification in

the stream direction and, in the opposite limiting case, slow flow is aligned with the

strong field.
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4.3. Numerical Solution with SA-MHD

The simulation results with SA-MHD are provided for the same solar configuration

as described in Section 4.1. Below the PFSS source surface at R = 2.5R� the MHD

model is not modified and the numerical solution is not much different from that

provided in Fig.2.

Fig. 4. SA-MHD solutions of magnetic field lines in the equatorial plane of the inner
heliosphere in the rotating HGR coordinate system.

In the intermediate region 2.5R� < R < 3.5R� we apply the aligning operator

36, 37 based on the Leontovich boundary condition as described in Section 4.2. The

geometric factor ξ = R/R� − 2.5 is chosen equal to zero at the lower boundary and

one at the upper boundary, of this region.

At R = RSA = 3.5R� the MHD solution is enforced to be aligned, so that above this

boundary the SA-MHD equations are solved numerically. The characteristic pertur-

bation speeds needed to construct the numerical scheme are discussed in Appendix.

Fig. 4 shows the magnetic field structure in the corona and inner heliosphere ob-

tained with SA-MHD and the Leontovich (1948) boundary condition. One can see

that the unphysical features seen in Fig. 3 are gone: There are no long closed loops

or V-shaped field lines and the magnetic field lines in the inner heliosphere clearly

form a Parker (1958) spiral.

4.4. Magnetic Connectivity
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Magnetic connectivity (the magnetic field line connecting a point of interest in the

heliosphere to the solar photosphere) is a very important component of space weather

simulations. Among other things magnetic connectivity controls the simulated inten-

sity and time profiles of SEP events (cf., Borovikov et al. 2018; Li et al. 2021; Young

et al. 2021).

Fig. 5. Stream-lines obtained with MHD (dashed lines) and SA-MHD (solid lines). The
stream-lines are colored by the sign of of the radial component of the local magnetic field
vector. One can see that the sign of the radial magnetic field “flips” whenever the stream-
line crosses the heliospheric current sheet.

For the synoptic map shown in Fig. 2 the stream-lines are not as simple as in the

case of uniform solar wind speed (see Fig. 1). As one see in Fig. 5 the delay between

the Earth crossing of MHD and SA-MHD stream-lines can vary between a few hours

and a few days, depending on actual angular radial speed profile.

Most existing SEP models use MHD stream-lines as proxies for IMF lines and

solve the SEP transport along these stream-lines. Our results indicate that this

approach should be used with great care: the Earth crossing of an interplanetary

stream-line can be off by a few hours or a few days depending on actual solar wind

conditions. In addition, the sign of the radial magnetic field component can flip

back and forth depending on the heliospheric current sheet crossings, so the µ =

cos(pitch − angle) quantity (appearing in the focused transport equation of Skilling

(1971)) might abruptly change sign along the stream-line.
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APPENDIX

A. CHARACTERISTIC WAVE SPEEDS AND EIGENVECTORS

In order to demonstrate an effect of the aligning terms on the characteristic waves,

one can linearize Eqs. (15) and (16), together with Eqs. (1a) and (1c). For linear

characteristic perturbations, (δρ, δu, δP, δB)T , propagating along the x axis, i.e. de-

pending on the coordinates and time via the combination, (x−Dt). The background

for the wave propagation is (ρ0, u0, P0, B0) where B0 = (Bx0, By0, 0). The z com-

ponent of the magnetic field is made zero by choosing a coordinate system in which

the magnetic field vector is in the (x, y) plane. In the equations for the perturbation,

all time derivatives should be substituted with ∂t = −D∂x, and, after this substitu-

tion, one can omit the x derivatives by denoting ∂x(δρ) → δρ etc. Note, that De

Sterck et al. (1999) analyzed eigenvalues of two-dimensional steady-state SA-MHD,

however, such eigenvalues only characterize the direction of wave propagation, rather

than their speed needed to construct numerical schemes.

For the 8-wave MHD with the aligning sources the characteristic equations become:

− Λδρ+ ρ0δux = 0, (A1a)

− Λδux +
δP

ρ0

+
By0δBy

µ0ρ0

= 0, (A1b)

− Λδuy −
Bx0δBy

µ0ρ0

= 0, (A1c)

− Λδuz −
Bx0δBz

µ0ρ0

= 0, (A1d)

− ΛδP + γP0δux = 0, (A1e)

− ΛδBx + α (Λ + ux0) δux = 0, (A1f)

− ΛδBy + [αΛ + (αux0 −Bx0)] δuy +By0δux = 0, (A1g)

− ΛδBz + [αΛ + (αux0 −Bx0)] δuz = 0, (A1h)

where Λ = D − ux0 is the characteristic speed in the plasma frame.

Equations (A1a) and (A1f) are independent and describe propagation of two per-

turbations with the plasma speed (D = ux0, Λ = 0) in which

(W1) : Λ1 = 0, δ(ρ, ux, uy, uz, P, Bx, By, Bz)
T = (1, 0, 0, 0, 0, 0, 0, 0)TδW1, (A2)

(W6) : Λ6 = 0, δ(ρ, ux, uy, uz, P, Bx, By, Bz)
T = (0, 0, 0, 0, 0, 1, 0, 0)TδW6. (A3)

These are the entropy wave and the ∇ ·B wave respectively (see Powell et al. 1999).

Herewith, δW1:8 denote arbitrary amplitudes of perturbations.
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Equations (A1h) and (A1d) can be solved separately:

Λ5,7δuz = −VA,xδBz√
µ0ρ0

, VA,x =
Bx0√
µ0ρ0

, ṼA,x =
αVA,x√
µ0ρ0

,

Λ5,7 = − ṼA,x

2
∓

√
Ṽ 2

A,x

4
+ V 2

A,x − ux0ṼA,x, . (A4)

This pair of waves can be considered in two limiting cases. In the first limiting

case we consider “traditional” MHD with no alignment source. Now one can put

α = 0, ṼA,x = 0 in Eq. (A4). Note, that for Bx0 > 0 and ux0 > 0 the perturbations

of velocity and magnetic field are parallel in the left propagating wave (Λ < 0), but

they are anti-parallel in the wave propagating to the right, creating or increasing field

misalignments with the stream. Both of these Alfvén waves can exist in the absence

of an aligning source and propagate with the Alfvén speed, VA,x = Bx0/
√
µ0ρ0.

The other limiting case is when we include the aligning source and assume a stream

aligned background (Bx0 = αux0). Under these circumstances, V 2
A,x = ux0ṼA,x and

Eq. (A4) describes two types of wave. In one of them, propagating to the left (up-

wind), the perturbation is stream-aligned, δBz = αδuz:

(W5) : Λ5 = −ṼA,x, ṼA,x =
α2ux0
µ0ρ0

=
ux0
M2

A

=
VA,x

MA

,

δ(ρ, ux, uy, uz, P, Bx, By, Bz)
T = (0, 0, 0, 1, 0, 0, 0, α)TδW5. (A5)

This means that the left Alfvén wave still exists, but its characteristic speed adjusts

(ṼA,x 6= VA,x at MA 6= 1) to ensure that the (parallel) perturbations of velocity and

magnetic field are aligned. However, the right Alfvén wave in which the perturbations

are anti-parallel (and they cannot be aligned) is arrested: Eq.A4 requires the speed

of this perturbation to be zero and the magnetic field to be unperturbed:

(W7) : Λ7 = 0, δ(ρ, ux, uy, uz, P, Bx, By, Bz)
T = (0, 0, 0, 1, 0, 0, 0, 0)TδW7. (A6)

Analogously, equations (A1g) and (A1c) allow a wave propagating with the plasma:

(W8) : Λ8 = 0, δ(ρ, ux, uy, uz, P, Bx, By, Bz)
T = (0, 0, 1, 0, 0, 0, 0, 0)TδW8. (A7)

Here, again, the perturbation speed is zero and the perturbations are not aligned.

In the MHD description without the aligning sources this would be the slow magne-

tosonic wave. We see that in MHD (two 3-component-vector equations + two scalar

equations, 8 characteristic waves) with the aligning sources and stream aligned back-

ground two kind of waves (right Alfvén and right slow magnetosonic) degenerate.

These are the only waves in which the perturbations are not stream aligned. The

distinction of SA-MHD (one 3-component-vector equation + three scalar equations

with 6 characteristic waves) is that it lacks these two degenerate waves since this

approximation does not allow non-aligned perturbations.
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A.1. Characteristic Waves in Stream Aligned MHD

Instead of three components of magnetic field we introduce a background value, α0,

and linear perturbation, δα, for the quantity, α, obeying the equation:

−Λδα + α0δux = 0. (A8)

In the entropy wave (W1) and the modified Alfvén wave (W5) we have δα = 0,

while in the ∇ · B wave (W6) the velocity perturbation should maintain the conti-

nuity of the stream-aligned field, δαuy0 + α0δuy = 0, so that δ(ρ, ux, uy, uz, P, α)T =

(0, 0,−uy0, 0, 0, α0)
TδW6.

In the remaining three branches of waves the magnetic field is stream-aligned and

there is a relationship between δuy and δBy:

δuy = − α0ux0
µ0ρ0Λ

δBy,
(

Λ + ṼA,x

)
δBy −By0δux = 0. (A9)

In the particular case of magnetic field aligned propagation (By0 = 0) this reduces to

the expression for another Alfvén wave of different polarization:

(W3a) : Λ3 = −ṼA,x, δ(ρ, ux, uy, uz, P, α)T = (0, 0, 1, 0, 0, 0)TδW2, (A10)

In the special case of By0 = 0 equations (A1b) and (A1e) give two sound waves:

(W2a) & (W4a) : Λ2,4 = ∓cs, c2s =
γP0

ρ0

,

δ(ρ, ux, uy, uz, P, α)T =

(
ρ0

Λ2,4

, 1, 0, 0,
c2sρ0

Λ2,4

,
α0

Λ2,4

)T

δW2,4. (A11)

In the general case when By0 6= 0 there are three wave branches, in which the pertur-

bations of velocity, pressure and magnetic field are all interrelated:

(W2b), (W3b) & (W4b) : −Λ2:4 +
c2s

Λ2:4

+
V 2

A,y

Λ2:4 + ṼA,x

= 0, V 2
A,y =

B2
y0

µ0ρ0

, (A12)

δ(ρ, ux, uy, uz, P, α)T =

 ρ0

Λ2:4

, 1,− ṼA,xuy0

Λ2:4

(
Λ2:4 + ṼA,x

) , 0, c2sρ0

Λ2:4

,
α0

Λ2:4

T

δW2:4,

This cubic equation always has three roots, corresponding to two fast and one slow

magnetosonic wave. The characteristic speeds for u0,x > 0 range (from most negative

to largest positive) as: left fast magnetosonic, left Alfvén , left slow magnetosonic,

combined entropy+∇ ·B wave, right fast magnetosonic wave. For u0,x < 0 the order

is reversed, with changing “left” to “right.”
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