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Abstract

Future coastal flood hazard at many locations will be impacted by both tropical cyclone (TC) change and relative sea-level rise

(SLR). Despite sea level and TC activity being influenced by common thermodynamic and dynamic climate variables, their

future changes are generally considered independently. Here, we investigate correlations between SLR and TC change derived

from simulations of 26 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. We first explore correlations between

SLR and TC activity by inference from two large-scale factors known to modulate TC activity: potential intensity (PI) and

vertical wind shear. Under the high emissions SSP5-8.5, SLR is strongly correlated with PI change (positively) and vertical

wind shear change (negatively) over much of the western North Atlantic and North West Pacific. To explore the impact of the

joint changes on flood hazard, we then conduct climatologyhydrodynamic modeling with New York City (NYC) as an example.

Coastal flood hazard at NYC correlates strongly with global mean surface air temperature (GSAT), due to joint increases in

both sea level and TC storm surges, the later driven by stronger and more slowly moving TCs. If positive correlations between

SLR and TC changes are ignored in estimating flood hazard, the average projected change to the historical 100 year storm

tide event is under-estimated by 0.09 m (7%) and the range across CMIP6 models is underestimated by 0.17 m (11 %). Our

results suggest that flood hazard assessments that neglect the joint influence of these factors and that do not reflect the full

distribution of GSAT changes will not accurately represent future flood hazard.
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Abstract20

Future coastal flood hazard at many locations will be impacted by both tropical cyclone21

(TC) change and relative sea-level rise (SLR). Despite sea level and TC activity being22

influenced by common thermodynamic and dynamic climate variables, their future changes23

are generally considered independently. Here, we investigate correlations between SLR24

and TC change derived from simulations of 26 Coupled Model Intercomparison Project25

Phase 6 (CMIP6) models. We first explore correlations between SLR and TC activity26

by inference from two large-scale factors known to modulate TC activity: potential in-27

tensity (PI) and vertical wind shear. Under the high emissions SSP5-8.5, SLR is strongly28

correlated with PI change (positively) and vertical wind shear change (negatively) over29

much of the western North Atlantic and North West Pacific. To explore the impact of30

the joint changes on flood hazard, we then conduct climatology–hydrodynamic model-31

ing with New York City (NYC) as an example. Coastal flood hazard at NYC correlates32

strongly with global mean surface air temperature (GSAT), due to joint increases in both33

sea level and TC storm surges, the later driven by stronger and more slowly moving TCs.34

If positive correlations between SLR and TC changes are ignored in estimating flood haz-35

ard, the average projected change to the historical 100 year storm tide event is under-36

estimated by 0.09 m (7 %) and the range across CMIP6 models is underestimated by37

0.17 m (11 %). Our results suggest that flood hazard assessments that neglect the joint38

influence of these factors and that do not reflect the full distribution of GSAT changes39

will not accurately represent future flood hazard.40

Plain Language Summary41

Future coastal flood hazard at many locations will be influenced by sea level rise (SLR)42

and tropical cyclone (TC) activity. Due to their common dependence on the wider cli-43

mate system, TC activity and SLR may increase in a joint manner with progressive warm-44

ing, potentially acting to compound local flood hazards. To explore joint variability, we45

first analyze correlations between SLR and future TC activity by inference from two large-46

scale climate factors known to modulate TC activity. Our results indicate that flood haz-47

ard in the western North Atlantic and North West Pacific will increase with progressive48

warming, due to concurrent changes in relative SLR and TC activity. Using a set of re-49

alistic synthetic TC events and a storm tide model, we find that joint increases in SLR50

and TC activity substantially compound flood hazard at New York City, with TC surge51

changes driven by progressively slower and stronger TCs. Our results suggest that flood52

hazard assessments that neglect the joint influence of these factors and that do not re-53

flect the full distribution of global mean surface temperature (that modulates joint changes54

in TC and SLR) will not accurately capture future flood hazard.55

1 Introduction56

Coastal flooding in the context of future tropical cyclone (TC) variability, sea-level57

rise (SLR) and shoreline change is one of the most important issues facing coastal pop-58

ulations (Woodruff et al., 2013). Climate change is increasing the threat posed by TCs59

to coastal regions (Reed et al., 2015; Wang & Toumi, 2021; Camargo & Wing, 2021; Knut-60

son et al., 2020), with future flood events driven by TC storm surges expected to inten-61

sify into the future as a result of accelerated SLR (Lin et al., 2012; Woodruff et al., 2013;62

Bilskie et al., 2014, 2016; Reed et al., 2015; Garner et al., 2017; Vousdoukas et al., 2018;63

Marsooli et al., 2019; Idier et al., 2019; Liu et al., 2019; Kirezci et al., 2020; Marsooli &64

Lin, 2020; De Dominicis et al., 2020). At many locations, future flood hazard may also65

be compounded by changes in TC climatology and associated storm surges (Lin et al.,66

2012; Reed et al., 2015; Little et al., 2015; Lin et al., 2016; Buchanan et al., 2016; Mar-67

sooli et al., 2019; Marsooli & Lin, 2020), with SLR elevating the baseline on which these68

events occur. The potential compound effect of sea level change and TC activity is best69
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exemplified by supertyphoon Haiyan (2013). Observed increases in regional sea surface70

temperatures (SST) and ocean heat content since 1993, likely contributed to both the71

typhoon’s extreme wind speeds and regional SLR. This regional SLR meant that Haiyan’s72

extreme storm surge was on a baseline sea level some 30 cm above levels in 1993 (Trenberth73

et al., 2015).74

Most recent flood hazard assessments generally assume that SLR and TCs are in-75

dependent, conditional on the emissions pathway (Lin et al., 2012; Garner et al., 2017;76

Idier et al., 2019; Marsooli et al., 2019; Marsooli & Lin, 2020). Assessments that explore77

projected changes in TCs generally either combine storm surges with a limited number78

of SLR scenarios (Lin et al., 2012; Bilskie et al., 2014, 2016; Idier et al., 2019; Liu et al.,79

2019) or with probabilistic SLR projections that are derived in part from a subset of AOGCMs80

(Lin et al., 2016; Garner et al., 2017; Vousdoukas et al., 2018; Marsooli et al., 2019; Mar-81

sooli & Lin, 2020). On the other hand, assessments that evaluate changes in flood haz-82

ard due to SLR usually assume that the statistical nature of TC storm surges will re-83

main unchanged (Hunter, 2011; Tebaldi et al., 2012; Buchanan et al., 2016; Rasmussen84

et al., 2018; Kopp et al., 2014, 2017; Frederikse et al., 2020; Kirezci et al., 2020). By ne-85

glecting concurrent changes (Hunter, 2011; Tebaldi et al., 2012; Buchanan et al., 2016;86

Rasmussen et al., 2018; Kopp et al., 2014, 2017; Frederikse et al., 2020; Kirezci et al.,87

2020) or by assuming independence conditional on the emissions scenario (Lin et al., 2012;88

Garner et al., 2017; Idier et al., 2019; Marsooli et al., 2019; Marsooli & Lin, 2020), as-89

sessments may fail to fully represent compounding of future flood hazard.90

Recent research shows that dependence structures between climate variables often91

strongly affects the occurrence frequency and intensity of multivariate extremes (Little92

et al., 2015; Wahl et al., 2015; Zscheischler & Seneviratne, 2017; Zscheischler et al., 2018).93

At present, there is limited analysis of the dependence between SLR and TC activity,94

and its implications for coastal flood hazard. Little et al. (2015) project changes in surge95

hazard focusing on sterodynamic SLR, composed of ocean thermal expansion and regional96

ocean steric and dynamic effects (Gregory et al., 2019), and power dissipation index (PDI)97

changes at 5 sites along the US East Coast — the latter derived from a 15-member en-98

semble of climate models following a statistical modeling approach (Villarini & Vecchi,99

2013). Sterodynamic SLR and PDI projections along the US East Coast are found to100

be correlated, with joint increases compounding projected flood hazard. However, the101

projected increases in Atlantic PDI have considerable uncertainty, as several other TC102

modeling studies using dynamical, rather than statistical, downscaling approaches project103

little change or decreases in PDI (Yamada et al., 2010; Knutson et al., 2015) .104

Joint variability between SLR and TCs will be driven in part by atmospheric warm-105

ing, which will increase SLR through ocean heat uptake and thermal expansion and by106

melting land ice (Church et al., 2013; Oppenheimer et al., 2019) as well as the theoret-107

ical maximum wind speed (the potential intensity; PI) of TCs in some regions (Vecchi108

& Soden, 2007a, 2007c; Emanuel, 2013; Sobel et al., 2016). Basin-specific changes in ver-109

tical wind shear, another important large-scale variable modulating TC activity, are pro-110

jected with warming, with increases across the tropical North Atlantic and decreases across111

the northern tropical Pacific and western North Atlantic (Vecchi & Soden, 2007a, 2007c;112

Camargo, 2013; Vecchi et al., 2019), which would suggest less conducive conditions for113

TC activity in the former and more conducive conditions in the latter.114

Considerable uncertainty remains in the projection of future TCs, particularly re-115

garding changes in frequency, translation speed and average latitude at which TCs reach116

their lifetime-maximum intensity (Knutson et al., 2020), and their dependence on the117

large-scale climate. Low-resolution AOGCMs, which are often used to investigate TCs,118

generally cannot resolve category 3–5 TCs or poorly simulate the frequency and spatial119

distribution of category 3–5 TCs compared to observations (Vecchi et al., 2019; Knut-120

son et al., 2020; Yin et al., 2020). These low resolution AOGCMs generally project de-121

creases in global TC frequency under climate change (Knutson et al., 2020). In contrast,122
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some studies project no change (Camargo, 2013; Vecchi et al., 2019) or increases in global123

TC frequency (Emanuel, 2013; Bhatia et al., 2018; Vecchi et al., 2019; Emanuel, 2021).124

As reviewed by Knutson et al. (2020), there is moderately strong consensus on a model-125

projected increase in high intensity TCs, in TCs rainfall and in an increase in storm-surge126

flooding due to SLR, assuming all other factors are unchanged.127

Superimposed on the global SLR, that is driven by ocean thermal expansion and128

by melting land ice loss, relative sea levels may change owing to vertical land movement129

(VLM) and dynamic sea level changes. The sterodynamic component of relative SLR130

is derived from AOGCMs that do not simulate SLR contributions from melting land ice131

and local non-climatic SLR associated with VLM and glacial isostatic adjustment (GIA)132

(Kopp et al., 2014, 2015; Griffies et al., 2016; Gregory et al., 2019). Estimates of land133

ice contributions to SLR are instead derived from physical models of varying degree of134

complexity (Levermann et al., 2020; Oppenheimer et al., 2019) or from results of struc-135

tured expert elicitation (Bamber et al., 2019). In probabilistic analyses, variance in global136

mean sea level rise (GMSLR) and local SLR at many locations in the early 21st century137

relates predominately to sterodynamic SLR, due to large AOGCM spread in projected138

changes (Kopp et al., 2014, 2017). In the global average and at many locations, the Antarc-139

tic ice-sheet is the dominant source of variance in late 21st century SLR projections (Kopp140

et al., 2014, 2017).141

Although there is strong confidence in accelerated SLR intensifying TC storm surge142

into the future, only a limited number of studies have assessed the role of their joint changes143

to future multivariate extreme events, in part due to the large uncertainties discussed144

above. The questions to be answered in this paper are as follows: (i) Are relative SLR145

and aspects of TC activity (PI and vertical wind shear) correlated within the wider cli-146

mate system, and what are the time scales and emissions scenarios over which these cor-147

relations apply? (ii) Do the broad-scale joint changes translate into meaningful differ-148

ences in flood hazards at a local scale? To answer these questions, we first investigate149

correlations between relative SLR and TC activity derived from simulations of 26 CMIP6150

models, across a range of emissions scenarios. We next conduct climatology–hydrodynamic151

modeling for eight CMIP6 models under SSP5-8.5 to quantify the impact of joint changes152

to future coastal flood events, as an example, for New York City (NYC).153

2 Methods154

CMIP6 models comprise a range of AOGCMs and Earth System Models (ESMs),155

differing from each other in terms of model structure, including vertical coordinate, grid156

resolution and sub-grid parameterizations (Eyring et al., 2016). We limit our analysis157

to models that have the variables necessary to compute PI, relative SLR and vertical wind158

shear. We use only a single run (’r1i1p1’) for each CMIP6 model. Change is calculated159

as the difference between years 1994-2014 of the historical simulation and years 2080-160

2100 of the high emissions SSP5-8.5, unless otherwise stated. Our primary focus on SSP5-161

8.5, which has unrealistically high anthropogenic carbon dioxide emissions (Hausfather162

& Peters, 2020), allows us to maximize the signal of interest. To explore the time pe-163

riods and scenarios over which these correlations apply, we also calculate relative SLR164

and PI over years 2014-2100 of the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios for 11 CMIP6165

models. These 11 models span the full range of GSAT changes projected by the 26 CMIP6166

models used in this study (Fig. S1 a). The goal of our SLR projections is to produce SLR167

projections consistent with the GSAT of each model. We note that the methods used168

to project SLR have considerable uncertainties; however, we choose to choose to focus169

on the mean projection for each model.170
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2.1 SLR projections171

2.1.1 Sterodynamic sea-level change172

Sterodynamic SLR (∆Z(r)) is calculated as the linear addition of changes in ocean173

dynamic sea level (∆ ζ) and global thermosteric sea level (∆hθ) following Gregory et al.174

(2019). It can be diagnosed from CMIP6 model variables as the sum of the changes in175

zos (∆ ζ(r)) and zostoga (∆ hθ):176

∆Z(r) = ∆ζ(r) + ∆hθ (1)

Dynamic sea level fluctuations, due to regional ocean steric and dynamic effects, are cal-177

culated as the local height of the sea surface above the geoid with zero global mean (Gregory178

et al., 2019), so that it measures sea-level pattern fluctuations around the ocean geoid179

defined via a resting ocean state at z = 0, as defined in Griffies and Greatbatch (2012)180

and Griffies et al. (2014). As some models used in this study do not have zostoga out-181

put, we calculate hθ using potential temperature (Text S1.1).182

2.1.2 Antarctic Ice Sheet183

To derive future Antarctic Ice Sheet (AIS) dynamical SLR estimates we utilize the184

impulse response functions by Levermann et al. (2020). Specifically, Levermann et al.185

(2020) related subsurface ocean warming in Antarctica to projected GSAT change based186

on an ensemble of CMIP5 models. Estimated basal melt sensitivities from observations187

were then used to translate subsurface ocean warming into basal ice-shelf loss projec-188

tions using 16 ice-sheet models that form part of the Linear Antarctic Response Model189

Intercomparison Project (LARMIP-2).190

Following Levermann et al. (2020), we estimate AIS contributions using an ice shelf191

melt rate of 8 m year-1 for each CMIP6 model (Fig. S2). We note that these estimates192

have considerable uncertainties related to basal ice shelf melt rates, ice sheet models and193

scaling factors (Fig. S2). We convert global barystatic contributions to regional values194

using the output from a Gravitation, Rotation, and Deformation (GRD) model (Tamisiea195

& Mitrovica, 2011), assuming uniform mass loss for each individual region. The regional196

imprint of mass loss from the Amundsen sector and the Antarctic peninsula are based197

on uniform mass loss from West Antarctica. The contribution from East Antarctica and198

the Weddell and Ross sector is distributed based on the assumption of uniform mass loss199

from East Antarctica.200

In assuming linear response theory, this method is able to capture complex tem-201

poral responses of the ice sheets, but neglects any self-dampening or self-amplifying pro-202

cesses. Neglecting self-amplifying processes is particularly relevant in situations in which203

an instability is dominating the ice loss such as during Marine Ice Sheet Instability (MISI)204

and Marine Ice Cliff Instability (MICI), although there remains major uncertainty in the205

possibility of rapid and/or irreversible ice losses via these mechanisms (Fox-Kemper et206

al., 2021).207

The observed evolution of the Amundsen Sea Embayment (ASE) glaciers is com-208

patible with, but not unequivocally indicating an ongoing MISI (Rignot et al., 2014; Joughin209

et al., 2014; Fox-Kemper et al., 2021). There remains significant discrepancies in pro-210

jections of MISI due to poor understanding of mechanisms and lack of observational data211

to constrain ice-sheet models, and it is not expected that widespread loss from the large212

ice shelves buttressing the bulk of West Antarctic Ice Sheet’ will occur before the end213

of the 21st century (Fox-Kemper et al., 2021). The International Panel on Climate Change214

(IPCC) Sixth Assessment Report (AR6) (Fox-Kemper et al., 2021) assigned limited agree-215

ment (with an assessed likelihood of 0-33%) between studies regarding the exact MICI216

mechanism and limited evidence (likelihood of 0-33%) of its occurrence in the present217

or the past, meaning that MICI considered to be characterized by deep uncertainty, and218
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its potential to affect future sea level rise is currently highly uncertain (Oppenheimer et219

al., 2019; Edwards et al., 2021; Fox-Kemper et al., 2021). These strong caveats that are220

associated with the approach utilized here, that neglects MISI and MICI, may lead to221

an underestimation of future dynamical ice loss. Nonetheless, this method provides model222

specific estimates of Antarctica’s future dynamical contribution to SLR.223

Following the International Panel on Climate Change (IPCC) Sixth Assessment224

Report (AR6) (Fox-Kemper et al., 2021), we augment LARMIP-2 estimates with sur-225

face mass balance (SMB) estimates. SMB estimates derived directly from GCMs often226

involve several compromises related to their coarse resolution and their low sophistica-227

tion to represent important physical processes of polar regions. In addition, SMB con-228

sists of multiple components, all of which depend on complex interactions between the229

atmosphere and the snow/ice surface, large-scale atmospheric circulation and ocean con-230

ditions, and ice sheet topography (Kittel et al., 2021). As a result of the complex na-231

ture of SMB estimation, and the fact that many GCMs tend to overestimate annual pre-232

cipitation values over ice-sheets, likely due to poor representation of coastal topography233

(Genthon et al., 2009), this study parameterizes SMB to estimate SLR contributions for234

the AIS. Parameterizations are derived from relationships between SMB changes and at-235

mospheric temperature using high resolution regional climate models. For each model,236

we average estimates derived from the parameterizations of Gregory and Huybrechts (2006)237

and Kittel et al. (2021) to estimate AIS SMB changes (Text S1.2).238

2.1.3 Greenland Ice Sheet239

Simulating the changes in continental-scale mass balance (MB) in Greenland Ice240

Sheet (GIS) models remains challenging due to the small scale of key physics, such as241

fjord circulation and plume dynamics, and poor understanding of critical processes, such242

as calving and submarine melting. Fürst et al. (2015) used ten different CMIP5 AOGCMs243

simulations to provide MB and ocean forcing for their GIS model, accounting for influ-244

ences of warming subsurface ocean temperatures and basal lubrication on ice dynam-245

ics. We model GIS loss using estimates from Fürst et al. (2015), where GIS MB can be246

estimated as a cubic function of near-surface temperature anomaly over the GIS (Fig.247

S3):248

∆MBGIS = 0.030T 2
GrIS − 0.81TGrIS + 2.2 (2)

where TASGrIS is the average anomaly in near-surface temperature over the GIS.249

In Greenland, faster-than-projected changes in mass loss might occur into the fu-250

ture (Aschwanden et al., 2019; Khan et al., 2020) due to cloud processes in polar areas251

(Hofer et al., 2019) and feedbacks between surface melt and the increasing albedo from252

meltwater, detritus and pigmented algae (Cook et al., 2020). Warming-induced dynam-253

ical changes in atmospheric circulation could enhance summer blocking and produce more254

frequent extreme melt events over Greenland that may also enhance future mass loss (Delhasse255

et al., 2018).256

2.1.4 Glaciers and Ice Caps257

Over the past century, glaciers and ice caps (GIC) have added more mass to the258

ocean than the GIS and AIS combined. However, the total remiaing mass of glaciers is259

small by comparison, equivalent to only 0.32 m mean SLR if only the fraction of ice above260

sea level is considered (Farinotti et al., 2019). We model GIC following Perrette et al.261

(2013), where the rate of glacier’s ice loss is proportional to a change in GSAT:262

dV

dt
= bo(T − To)(1−

Vgl
Vo

)n (3)

where bo is the global SMB sensitivity, Vgl and Vo are the projected and present global263

glacier volumes (in sea level equivalent) respectively, and n is the scaling coefficient be-264
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tween global glacier area and volume, approximately equal to 1.65 (Perrette et al., 2013).265

T is the GSAT change as compared to the 1994-2014 historical temperature (To). The266

spatial pattern used here assumes a fixed distribution of the ratios of glacier mass loss267

between the glacier regions based on the projected distribution in 2100 under Represen-268

tative Concentration Pathway 8.5 (RCP8.5) (Church et al., 2013). Previous analysis showed269

that this pattern does not vary much over the 21st century and the mass loss is closely270

related to the initial glacier mass for a given region. Recent studies have shown that the271

mass loss distribution to be model and scenario dependent (Hock et al., 2019; Marzeion272

et al., 2020).273

2.1.5 Non-climatic SLR274

Changes in land water storage, through groundwater depletion and reservoir im-275

poundment, may have influenced twentieth-century sea-level change but are expected276

to be relatively minor contributors (Church et al., 2013). We adopt the methods of Kopp277

et al. (2014) to model land water storage change. Ongoing GIA also leaves its imprint278

in the spatial pattern of sea-level change, associated with the adjustment of Earth’s litho-279

sphere and viscous mantle material to past changes in ice loading since the last glacia-280

tion (e.g., Tamisiea and Mitrovica (2011)). This adjustment process gives rise to areas281

of upward and downward VLM, and the associated mass redistribution also influences282

Earth’s rotation and gravity field with additional impacts on local mean sea level. We283

use global GIA estimates based on the ICE-6G C model of Peltier et al. (2015), which284

uses a wide range of observational constraints, including data from Global Positioning285

System receivers and time-dependent gravity observations from both surface measure-286

ments and the satellite-based Gravity Recovery and Climate Experiment (Argus et al.,287

2014; Peltier et al., 2015). This data set was sourced from https://www.atmosp.physics288

.utoronto.ca/~peltier/data.php. We note that this term is not relevant to our anal-289

ysis, since it is independent of climate forcing and constant across models, but does af-290

fect projections of flood risk in NYC.291

2.2 Large-scale factors affecting TC activity292

As low-resolution climate models are better able to simulate the large-scale envi-293

ronment, rather than individual TCs, many studies have chosen to analyze large-scale294

variables known to be associated with TC activity, instead of modeling TCs directly (Camargo,295

2013; Tang & Camargo, 2014; Vecchi et al., 2019; Emanuel, 2021). Following Bister and296

Emanuel (1998), we calculate PI as a function of both the SST and the vertical profiles297

of temperature and humidity in the atmosphere. Although PI is a prediction only of the298

maximum intensity that a TC can achieve in a given environment, it is expected to pro-299

vide a useful guide to the statistical distribution of actual intensities achieved by real TCs300

(Sobel et al., 2016). Most TCs do not achieve their PI because of a variety of negative301

influences (e.g., vertical wind shear and ocean cooling effects).302

We explore vertical wind shear, with weak vertical wind shear being favorable for303

hurricane convective organization and intensification (Merrill, 1988; Rios-Berrios & Torn,304

2017). Vertical wind shear is calculated as the magnitude of the vector difference of wind305

velocity at 850 hPa and 200 hPa, computed from monthly-mean output. Increases in PI306

and decreases in vertical wind shear suggest an environment more conducive to future307

TC activity (Bister & Emanuel, 1998; Emanuel & Nolan, 2004; Emanuel, 2013).308

2.3 Hydrodynamic-climatological modeling309

Storm tide (combination of astronomical tide and storm surge) projections are based310

on simulations of Gori et al. (under review), using the 2D depth-integrated version of311

the hydrodynamic model ADvanced CIRCulation (ADCIRC) (Luettich et al., 1992; Wes-312

terink et al., 1994). We model storm tides for each of the eight CMIP6 models (herein313
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ADCIRC-CMIP6 models) that overlap with the study of Gori et al. (under review) (see314

Fig. 4 for the models) for the time periods and simulations employed in this study. TCs315

are modeled using the statistical-deterministic hurricane model developed by Emanuel316

et al. (2008) and Emanuel (2021). The ADCIRC mesh has a resolution of between 1 km317

nearshore and 100 km in the deep ocean (Marsooli et al., 2019; Lin et al., 2019; Gori et318

al., under review). Additionally, we focus only on synthetic TCs that pass within 200319

km of NYC. Storm surges induced by TCs result in devastating flood events in NYC,320

as best exemplified by historical TCs such as Hurricane Donna in 1960 and Sandy in 2012.321

Following Lin et al. (2012), we assume the cyclone-threatened area for NYC to be within322

a 200-km radius from the Battery (74°W, 40.9°N; chosen as the representative location323

for NYC).324

Previous work by Marsooli and Lin (2018) demonstrated that the impact of wave325

setup near NYC is relatively small; thus we do not include waves in our simulations. Sta-326

tistical analysis is performed on the modeled peak storm tides to produce return period327

curves for each model. Flood return periods presented here are bias-corrected by com-328

paring NCEP-based storm tide projections for the historical period with model-based329

projections on TC intensity for the same historical period and assuming the same bias330

in the future period. Assuming that the storms arrive as a stationary Poisson process331

under a given climate, the return period of TC-induced storm tide ηT C exceeding a given332

level h is (Marsooli et al., 2019):333

ηT C =
1

Fr(1− P{ηTC ≤ h})
(4)

where P{ηT C ≤ h} is the cumulative probability distribution (CDF) of peak storm tide334

and Fr is the TC annual frequency. Here, we model the tail of the storm tide CDF us-335

ing the Peaks-Over-Threshold method with a Generalized Pareto Distribution and max-336

imum likelihood estimation (Coles, 2001). Non-parametric density estimations are used337

to model the rest of the distribution. We determine the tail threshold value by trial and338

error so that the smallest error in the distribution fitted to the tail is obtained.339

3 Results340

3.1 Future SLR and factors affecting TC activity341

We present the CMIP6 ensemble mean relative SLR as a difference between years342

1994–2014 of the historical simulation and years 2080–2100 of the SSP5-8.5 simulation343

(Fig. 1 a). GMSLR is 0.68 m, slightly larger than the AR6 estimate of 0.64 m (17th -344

83rd percentile ranges of 0.52 - 0.83 m) in 2090 (Fox-Kemper et al., 2021), with projec-345

tions across the ensemble positively correlated with GSAT change (ρ = 0.82; Fig. S4 a).346

Our ensemble estimates of GIC (0.16 m), thermal expansion (0.26 m) and GIS (0.1 m)347

(Fig. S5) are consistent with respectively values reported in AR6 of 0.15 m, 0.25 m and348

0.1 m in 2090 (Fox-Kemper et al., 2021).349

GMSLR projected here is higher than CMIP6 estimates presented in AR6 due pre-350

dominately to the different methods used to project AIS contributions to GMSLR, with351

our results being 0.043 m higher (Fig. S5). In AR6, for processes in whose projections352

have at least medium confidence (with an assessed likelihood of 66-100%), projections353

for the AIS up to 2100 are estimated from a p-box that combines simulations from em-354

ulations of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) (Edwards355

et al., 2021) and LARMIP-2 simulations (Levermann et al., 2020) augmented by AR5356

surface mass balance model. ISMIP6 and LARMIP-2 projections in AR6 were estimated357

using CMIP6 GSAT distributions from a two-layer energy budget emulator (Fox-Kemper358

et al., 2021). Here, we utilize only the LARMIP-2 simulations (Levermann et al., 2020)359

augmented with two similar surface mass balance models to AR5. As noted in AR6, LARMIP-360
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2 median projections are higher than those of the ISMIP6 emulator, although AR6 could361

not distinguish which of ISMIP6 and LARMIP-2 is more realistic due to limitations in362

historical simulations and understanding of basal melting (Fox-Kemper et al., 2021).363

21st century SLR scales with regional temperature change at approximately 0.15364

and 0.14 m per degree in the western western North Atlantic and North West Pacific,365

respectively (Fig. 1 d,g; regions defined in Fig. 1 a). GMSLR also scales with GSAT change366

increase at an average rate of 0.11 m per degree across the ensemble. Relative SLR in367

the western North Atlantic and North West Pacific exceeds the global mean rate in part368

due to regionally high sterodynamic changes and as a consequence of the higher than369

global mean barystatic SLR associated with the spatial GRD fingerprints (Fig. S6 a-d).370

We note that future AIS contributions to SLR derived here will likely not scale with GSAT,371

as incorporating MISI and MICI in our AIS projections may further augment differences372

between models (Vega-Westhoff et al., 2020).373

Whilst the CMIP6 ensemble mean June–November PI increases over most of the374

northern hemisphere tropics, there is a large region in the northern tropical Atlantic where375

the ensemble-mean PI decreases (Fig. 1 b). Projections of PI in CMIP3 (Vecchi & So-376

den, 2007a, 2007c) and CMIP5 models (Camargo, 2013; Sobel et al., 2016) have very sim-377

ilar patterns in the Northern Hemisphere to that shown here. In agreement with Vecchi378

and Soden (2007a, 2007c), we find that PI changes around the globe closely follow the379

structure of SST changes – with regions that warm more (less) than the tropical mean380

(relative SST; averaged over 35°S - 35°N) showing a PI increase (decrease) (Fig. 1 b).381

CMIP6 models project an average PI increase of 4.5% and 5.2% per degree regional tem-382

perature warming in the western North Atlantic and North West Pacific, respectively383

(Fig. 1 e,h). Globally averaged PI increases at a rate of 2.3 % per degree GSAT warm-384

ing, consistent with an increase of 5% (likely range 1 to 10%) per two degrees warming385

as estimated in Knutson et al. (2020).386

Using a subset of CMIP6 models, Hermans et al. (2021) found that global mean387

sea level (GMSL) scales with integrated GSAT, with most of the contributors to GMSL388

being more closely tied to time-integrated GSAT than instantaneous GSAT, meaning389

that sea level projections can only be interpreted if the warming levels are linked to a390

specific time-frame (Fox-Kemper et al., 2021). In contrast to GMSL, using a subset of391

CMIP6 models, we find that globally averaged PI appears to scale with instantaneous392

GSAT in a time- and scenario-independent manner (Fig. S7). Thus, the rates of increase393

in PI per degree GSAT change found here will likely be constant regardless of time or394

emissions scenario.395

Basin-specific changes in vertical wind shear are projected, with increases across396

the tropical Atlantic and decreases across the northern tropical Pacific and western North397

Atlantic (Fig. 1 c). The CMIP6 model mean pattern is similar to that obtained in CMIP3398

(Vecchi & Soden, 2007c) and CMIP5 (Camargo, 2013; Ting et al., 2019) models for the399

Northern Hemisphere TC season. These changes in vertical shear are associated to the400

projected decrease in the Pacific Walker circulation (Vecchi & Soden, 2007c), while the401

near-equatorial vertical shear weakening reflects a reduction of zonal overturning (Vecchi402

& Soden, 2007b, 2007c).403

Projected changes to vertical wind shear over the ocean in the western North At-404

lantic and North West Pacific are -2.2 % and -2.7 % per degree regional temperature warm-405

ing, respectively (Fig. 1 f,i). Reducing vertical wind shear in these regions is consistent406

with the expected expansion of the Hadley circulation (Lu et al., 2007; Kang & Lu, 2012),407

and the related northward shift of the midlatitude jet stream (Ting et al., 2019). To de-408

termine the change in vertical wind shear due to contributions from the upper and lower409

levels, Figure 2 shows the wind vector differences between the two periods. The inten-410

sification and northward shift of the midlatitude jet is clearly seen at both the upper and411

lower levels in the Atlantic and the Pacific, being stronger and more defined in models412
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that project higher GSAT warming (Fig. 2 c,f). In agreement with a similar analysis of413

CMIP5 models (Ting et al., 2019), there is some indication of a southward flow at the414

lower level and northward flow at the upper level, implying an enhanced and northward415

extended Hadley circulation (Fig. 2 c,f).416

Large inter-model differences exist: the CMIP6 model with the highest GSAT change417

(CanESM5; GSAT of 7.0°C) projects a GMSLR of 0.98 m and a 4% increase in globally418

averaged PI, whereas, the model with the lowest GSAT (CAMS-CSM1-0; GSAT of 2.8°C)419

projects a GMSLR of 0.61 m and an 8% increase in globally averaged PI (Fig. S4). Inter-420

model spread is strongly related to GSAT change, which is positively correlated to GM-421

SLR (ρ = 0.82) and globally averaged PI (ρ = 0.62; Fig. S4). Additionally, models fall422

roughly at the same position in the CMIP6 ensemble SLR and PI change distributions423

in the western North Atlantic when compared to the North West Pacific (e.g. CAMS-424

CSM1-0 projects the lowest average relative SLR and PI change in both regions; Fig. 1),425

suggesting that changes are coupled and are related by global mean changes.426

Hence, in CMIP6 models, GMSLR and global mean PI change are closely related427

to GSAT change, whilst spatial patterns in PI change are tightly coupled with spatial428

changes in relative SST. Vertical wind shear tendencies are spatially more complex. In429

the western North Atlantic and North Pacific, vertical wind shear responds to changes430

in the mid-latitude jet, which is generally stronger in CMIP6 models that project higher431

GSAT change. As the climate system is strongly coupled, global and regional co-variability432

between SLR and TC activity, shown here to be related to GSAT change, may impose433

correlations between these variables. We next explore these correlations.434

3.2 Correlation between SLR and large scale factors affecting TCs435

The inter-model correlation is computed as the rank correlation across the CMIP6436

ensemble between SLR and TC activity in historical and future (SSP5-8.5) simulations437

(Fig. 3). There are strong positive correlations between PI change and relative SLR in438

most regions: models with large PI increases show higher projected relative SLR (Fig-439

ure 3 a). This strong SLR-PI relationship is consistent with both being broadly related440

to GSAT change (see Section 3.1). To explore the time periods and scenarios over which441

these correlations apply, we calculate intra-model correlations between relative SLR and442

PI change (Fig. S8). Intra-model correlations are calculated over the full 86 years of the443

SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios for 11 CMIP6 models. The spatial patterns444

of intra-model correlations are very similar across scenarios, however, the correlation co-445

efficients are stronger over time and in the higher emissions scenarios (Fig. S8). The rea-446

son for this difference may be due to larger ratio of forced signal to internal variability447

for later time period and for higher emissions scenarios. SLR contributions from land448

ice loss are strongly correlated with PI and vertical wind shear change in the western North449

Atlantic and North West Pacific (Fig. 3 e-j). SLR from land ice loss follows the spatial450

patterns of GRD fingerprints that is constant across models, meaning that the spatial451

correlations between TC activity and barystatic SLR are a result of common relations452

to global mean changes, rather than as a result of regional co-variability.453

Relative SLR and vertical wind shear show regionally variable inter-model corre-454

lations (Fig. 3 b), that largely follows the spatial pattern of the ensemble mean verti-455

cal wind shear change (Fig. 1 c), being strongly negative in the western North Atlantic456

and North West Pacific, whilst positive in the tropical Atlantic region. Additionally, we457

find that PI and vertical wind shear are negatively correlated in parts of the western North458

Atlantic and North West Pacific (Fig. S9). The projected weakening of the vertical wind459

shear environment in the western North Atlantic and North West Pacific may help TCs460

reach their PI into the future. As PI and vertical wind shear are anti-correlated over much461

of the western North Atlantic and North West Pacific (Fig. S9), based solely on these462

metrics, we may well expect a non-linear increase in TC intensity.463
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The increases in PI across the western North Atlantic and North West Pacific, cou-464

pled with the more favorable vertical wind shear change suggests a large scale environ-465

ment more conducive to TC intensification, with TCs having a better chance of achiev-466

ing higher PIs in these regions (Ting et al., 2019). Additional and concurrent increases467

in relative SLR, suggest a significant and compounding intensification of flood hazard468

in these regions, based solely upon these metrics. For the Gulf Coast and tropical At-469

lantic, the future projected increase in vertical wind shear may induce a reduction of the470

intensity of strong landfalling TCs, although the increase in PI there may outweigh the471

effect of increasing vertical wind shear.472

We have found strong inter- and intra-model correlations between SLR and TC ac-473

tivity change, with GSAT change being the key physical mechanism driving co-variability474

(Section. 3.1). The correlations between TC activity and relative SLR, may in turn af-475

fect the occurrence frequency and intensity of multivariate extreme events along the coast.476

We next explore the extent to which joint changes impact future coastal flood events at477

NYC.478

3.3 Implications for Coastal Flooding at NYC479

3.3.1 Future changes to the storm tide480

Synthetic TCs used in this study are generated for the NYC area using the statistical-481

deterministic hurricane model of Emanuel et al. (2008) and Emanuel (2021). The TC482

model generates synthetic TCs for a given large-scale atmospheric and oceanic environ-483

ment. Figure 4 presents the estimated storm surge return levels projected under the fu-484

ture climate, compared with those of the historical period (1994-2014), for NYC. In agree-485

ment with prior studies (Lin et al., 2012; Marsooli et al., 2019; Marsooli & Lin, 2020;486

Gori et al., under review), the storm tide level for a given return period substantially in-487

creases by the end of 21st century, due to relative SLR as well as TC climatology change.488

To quantify future flood hazard, we focus on the change in the 100-year storm tide level489

(∆η100). Our projections show an increase of between 0.87 m and 2 m, with an average490

increase of 1.46 m (Fig. 4 j).491

The increase in ∆η100 for each model at NYC is evidently related to each model’s492

GSAT change and effective climate sensitivity (ECS) (Fig. 4 a-h and Table. 1). For ex-493

ample, changes to the ∆η100 for GFDL-ESM4 (GSAT = 3.6°C) is 0.87 m (TC only =494

0.19 m; SLR only = 0.68 m). For CanESM5 (GSAT = 7.0°C) the projected increase is495

1.7 m (TC only = 0.60 m; SLR only = 1.1 m) (Fig. 4 i). Importantly, relative SLR and496

TC climatology change generally both increase in a concurrent manner with GSAT change497

across models. A notable exception is EC-Earth3, which projects a large TC climatol-498

ogy increase, which can be attributed, in part, to a very large increase in TC frequency499

for this model (Table. 1). The difference in projected ∆η100 between the models with500

the lowest (GFDL-ESM4) and highest (CanESM5) projected GSAT change, incorporat-501

ing each models own relative SLR and TC change, is 0.83 m at NYC by 2080-2100 (Fig.502

4 i).503

In our simulations, changes to storm frequency for NYC are large in the future (Ta-504

ble. 1). As TC frequency is a major uncertainty in the projections of TCs (Knutson et505

al., 2020), we repeat our analyses assuming that there is no change in annual frequency506

(Fig. 4 j and Fig. S10). By neglecting changes in TC frequency, projected TC storm surge507

changes are substantially reduced at NYC, with models that projected low GSAT change508

now projecting little change to TC storm tides (Fig. 4 k). We still, however, find evi-509

dence of concurrent increases in TC climatology with relative SLR and GSAT change510

at NYC. For example, CanESM5 projects an increase of ∆η100 of 1.27 m (TC only =511

0.17 m; SLR only = 1.1 m), whilst GFDL-ESM4 projects an increase to the ∆η100 of 0.7512

m (TC only = 0.019 m; SLR only = 0.68 m). Changing storm tide levels driven by TC513
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climatology change suggest that TC intensity, track, size and translation speed could change514

by the end of 21st century. We next explore these metrics.515

3.3.2 Changing TC characteristics516

We find that the TC track exhibits little variability along the US East Coast into517

the future (Fig. 5 a and Fig. S11 a-h). In contrast to our results, the downscaling model518

of Garner et al. (2017) projected using three CMIP5 models that climate change impacts519

on TC, apart from SLR, has little net influence on storm surge hazard in the region by520

2100, as TC tracks shifted away from landfall in the region under climate change, which521

offset the effect of storm strengthening. We note that MIROC6 exhibits a similar track522

shift to that found in Garner et al. (2017) (Fig. S11 b) and little change in very low prob-523

ability surge heights (Fig. 4 b).524

The movement of TCs tracks, is predominately determined by the steering winds,525

with modifications due to the beta effect (Chan, 2005), the former being strongly related526

to the position and strength of the subtropical highs. In general agreement with CMIP3527

(26 models in Li et al. (2012)) and CMIP5 models (13 models in Li et al. (2013) and 20528

models in Camargo (2013)), we find a significant intensification of the North Atlantic529

subtropical high (Fig. 5 b-c and Fig. S11 i-p), which has been related to an increase in530

thermal contrast between the land and ocean (Li et al., 2012). CMIP6 models mean sea-531

level pressure (SLP) differences indicate that future SLP is significantly higher (100 Pa)532

over the North Atlantic Ocean and lower over the United States (Fig. 5 b-c and Fig. S11533

i-p). Additionally, mean SLP differences of all 26 CMIP6 models suggest a more west-534

ward pattern in the North Atlantic subtropical high compared to the ADCIRC-CMIP6535

subset (Fig. 5 c). These changes in SLP support our finding that the tracks of TCs that536

affect NYC will not be substantially shifted away from the coast into the future.537

The flooding potential, and to some extent the wind damage, caused by TCs can538

be strongly affected by their translation speed. Slower TCs allow winds to blow onshore539

for longer periods of time, resulting in possibly larger and longer coastal flooding. Our540

analysis of TC translation speed and intensity (maximum wind speed) also reveals an541

increase in the number of slow-moving and stronger TCs along the US East Coast (Fig.542

6 a-b and Fig. S12-13). At NYC, models that project higher GSAT change and relative543

SLR, project considerably slower and more intense TCs than low GSAT change mod-544

els (Table. 1). For example, synthetic TCs derived from CanESM5 suggest changes to545

TC intensity and translation speed of 25% and -29% respectively, whilst GFDL-ESM4546

projects changes of 7.6% and -5.9% (Table. 1).547

We utilize the complete wind profile of Chavas et al. (2015) to estimate the radius548

of maximum wind speed, where projected decreases in radius of maximum wind speed549

are consistent with increases in maximum wind speed, assuming constant TC outer sizes550

(Chavas et al., 2016; Knutson et al., 2015). As TC intensity is projected to increase, we551

find that the radius of maximum wind speed also decreases along the US East Coast (Fig.552

6 c and Fig. S14). With progressive warming, TCs may therefore have smaller radius553

of maximum wind speed, which may act to counteract storm surge increases driven by554

stronger and slower moving TCs.555

We also explore inter-model correlations between relative SLR and projected changes556

in TC characteristics (Fig. 6 d-f). Relative SLR is positively correlated with TC inten-557

sity, and negatively correlated with translation speed and radius of maximum wind speed558

in the NYC region. Based on these correlations, we can deduce that compounding of in-559

creased flood hazard at NYC with relative SLR and GSAT warming will likely be driven560

by stronger and slowing moving TCs and possibly their increased frequency, that may561

be counteracted in part by TCs with smaller radius of maximum wind speed.562
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3.3.3 Implications for coastal flood modeling563

We have found that relative sea levels and TC storm surges both increase strongly564

with GSAT warming at NYC. In this section, we evaluate (1) the extent to which stud-565

ies misrepresent future flood hazard by assuming independence conditional on the emis-566

sions scenario and (2) the impact of model selection bias on projected changes to flood567

hazard. To explore (1), we calculate the flood hazard through the convolution of the dis-568

tributions of storm tide and SLR, assuming they are statistically independent (Marsooli569

et al., 2019). We compare the ADCRIC-CMIP6 projection that includes correlated changes570

(dark blue bars on Fig. 4 i-j) with the ADCRIC-CMIP6 projection obtained through con-571

volution (light blue bars on Fig. 4 i-j). We find that by neglecting positive correlation572

between SLR and TC surge change, the projection of ∆η100 is under-estimated by 0.08573

m (6%) and 0.05 m (5%) assuming frequency changes and no frequency change, respec-574

tively.575

Inter-model differences in relative SLR and TC change indicate that selection bias576

may substantially alter the projected change in flood hazard at NYC. For example, the577

ADCIRC-CMIP6 models are negatively skewed in GSAT projections compared to the578

distribution of all 26 CMIP6 models (three are in the top 25%; Fig. S1 b), which may579

be leading to overly strong projections of compound changes at NYC. To explore poten-580

tial selection bias, we compare the ADCRIC-CMIP6 projection that includes correlated581

changes (dark blue bars; Fig. 4 i-j) with a simple scaling relationship between ADCRIC-582

CMIP6 TC climatology change and GSAT change, that is applied to the projections of583

all 26 CMIP6 models (green bars on Fig. 4 i-j). At NYC the ∆η100 due to TC clima-584

tology change increases at a rate of 0.10 m (lowest 0.06 m; highest 0.15 m) and 0.02 m585

(lowest 0.008 m; highest 0.032 m) per degree GSAT change assuming frequency changes586

and no frequency change, respectively (Fig. S15 a,d). We apply these scaling relation-587

ships to the GSAT and relative SLR projections of all 26 CMIP6 models (Fig. S15 b-588

c,e-f). Specifically, we randomly sample one of the eight scaling factors (from the eight589

ADCIRC-CMIP6 models) and apply it to a randomly selected one of the 26 CMIP6 mod-590

els based on its GSAT and add its SLR projection 100,000 times.591

By comparing this scaling estimate with the ADCRIC-CMIP6 projection that in-592

cludes correlated changes, we find that selection bias is leading to an over-estimated av-593

erage projection of ∆η100 of 0.08 m (5%) and 0.03 m (3%) assuming frequency changes594

and no frequency change, respectively (Fig. 4 i-j). By comparing the average scaling es-595

timate that includes correlation (dark green bars on Fig. 4 i-j) with the scaling estimate596

that doesn’t include correlation (light green bars on Fig. 4 i-j), we also find that the av-597

erage is under-estimated by 0.09 m (7%) and 0.06 m (6%) assuming frequency changes598

and no frequency change, respectively (Fig. 4 i-j). Additionally, the range is under-estimated599

by 0.17 m (11%) and 0.05 m (5%) when the positive correlation are neglected, assum-600

ing frequency change and no frequency change, respectively (Fig. 4 i-j).601

We have found that by focusing on a subset of AOGCMs that do not reflect the602

full distribution of GSAT changes within the emission scenario, and by assuming inde-603

pendence between SLR and storm tide change, coastal flood hazard assessments may not604

accurately capture future coastal flood hazard. We recommend that future studies that605

focus on a specific emissions scenario: (1) construct SLR and TC projections inherent606

to each model to ensure that correlations are incorporated, (2) be mindful of the GSAT607

change and ECS of each CMIP6 model used, as selection bias may substantially alter608

flood hazard projections and (3) consider extremes as well as average projections, given609

that model variation is reduced when the correlation between SLR and TC projections610

are neglected.611
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4 Discussion612

The results of this analysis indicate that flood hazard in the western North Atlantic613

and North West Pacific will increase substantially over the twenty first century due to614

relative SLR, compounded by TC climatology change. As shown in Marsooli et al. (2019),615

the effect of TC climatology change is likely to be larger than the effect of SLR for over616

40% of coastal counties in the Gulf of Mexico. Additionally, the relative effect of TC cli-617

matology change increased continuously from New England, mid-Atlantic, southeast At-618

lantic, to the Gulf of Mexico. Effects on flooding of positive correlations between rela-619

tive SLR and TC climatology found here, may therefore exhibit substantial spatial and620

temporal heterogeneity. For NYC, where SLR is considerably larger than projected TC621

surge change (see Section 3.3), neglecting correlated changes results in the average pro-622

jected change to the historical 100-year flood level being under-estimated by 0.09 m (7%)623

and 0.06 m (6% of change) assuming frequency changes and no frequency changes, re-624

spectively. In some lower latitude regions that have higher projected TC climatology change625

compared to NYC (Marsooli et al., 2019), such as along the Gulf of Mexico and in parts626

of the western Pacific, neglecting positive correlations may lead to higher under-estimation627

of coastal flood hazard.628

We also treat storm surge and SLR as linearly additive. This is problematic be-629

cause interactions between SLR and surge and tides can potentially create a bias, up to630

the order of 15% in the future flood elevation, either high or low depending on exact ge-631

ographic location (Resio & Irish, 2015). However, future SLR-TC interactions are ex-632

pected to be small at NYC (Lin et al., 2012, 2010). Correlations between SLR and TC633

storm surge may also impact SLR-TC surge interactions; if changes to both SLR and634

TC storm surges are large then interactions between these components may also be stronger,635

further impacting future flood hazard. The spatial and temporal variability in correla-636

tions should be explored in future studies.637

SLR and future TC activity will respond to radiative forcing, atmospheric feedbacks,638

the horizontal and vertical distribution of oceanic and atmospheric warming, and changes639

in climate oscillations, amongst others (Woodruff et al., 2013; Little et al., 2015). As the640

climate is a strongly coupled system, regional changes in climate forcing may be co-dependent641

(Lambert et al., 2021); and it is this co-dependence that imposes correlations between642

SLR and TC activity and associated coastal flooding. In this analysis, we do not attempt643

to rigorously explain correlations across the ensemble, as an individual model’s response644

may be a combination of multiple drivers that have not been considered here. More ef-645

forts to clarify causal mechanisms and role of uncertainties are required to constrain the646

timescales and radiative forcing scenarios over which these correlations apply.647

We also note that our results may be influenced by model selection bias, resulting648

from the fact that not all model output is available. To explore this, we compare GSAT649

projections of models used this study (26 models) to all available CMIP6 models that650

have surface temperature (tas) for the simulations and run used (34 in total; Fig. S1 c).651

The 26 CMIP6 models used here, span the full range of projected GSAT change, giv-652

ing us some confidence that our results should be largely unaffected by the addition of653

other CMIP6 models. In addition, our results rely on a number of land ice SLR param-654

eterizations that have considerable uncertainty. Ideally, our methodology would be ap-655

plied to explicit model projections of all sea-level components, rather than parameter-656

izations.657

As the inter-model spread contributes a large fraction of the total projection un-658

certainty in SLR and TC activity, uncertainties may be reduced if outlier models can be659

shown to be unreliable (Little et al., 2015). In particular, our results indicate that the660

divergent behaviour of CMIP6 models in projections of future TC activity and relative661

SLR, is driven by models that project high ECS. Some high ECS models used in this study662

project more positive cloud feedback in response to increasing green-house gases, and663

–14–



manuscript submitted to Earth’s Future

they also tend to have a stronger cooling effect from aerosol-cloud interactions (ACI) when664

compared to low ECS models (Wang et al., 2021). These strong effects in the high ECS665

models offset each other during much of the 20th century, when both anthropogenic aerosols666

and emissions increased. However, these high ECS models poorly simulate the spatial667

pattern of historical warming compared to low ECS models as aerosols are concentrated668

in the Northern Hemisphere (Wang et al., 2021).669

The compensating affects of strong ACI and cloud feedback in the high ECS mod-670

els, which occurs over the historical period, does not occur into the future, as aerosols671

are projected to decrease as greenhouse gases rise. CMIP6 models with more positive672

cloud feedback, as a result, tend to have higher 21st century projected warming (Brunner673

et al., 2020), ECS (Wang et al., 2021), and therefore, potentially higher SLR and future674

TC activity. Indeed, we find that CMIP6 models that project the highest GMSLR and675

globally averaged PI in this study also project the highest ECS and strongest cloud feed-676

back (Fig. S16). If these high ECS and cloud-feedback models, which poorly simulate677

the spatial pattern of historical warming, can be shown to be unrealistic, substantial un-678

certainty reductions in projections (that are derived directly from CMIP6 models) of TC679

activity and SLR, could result.680

Finally, rain rates near the centres of TCs are also expected to increase with in-681

creasing global temperatures (Knutson et al., 2015, 2020). The amount of TC related682

rainfall that any given local area will experience is proportional to the rain rates and in-683

versely proportional to the translation speeds of TCs (Kossin, 2018). Our projections684

of slower moving storms along the US East Coast may therefore contribute to an increased685

rate of rain in TCs in some regions (Gori et al., under review). In the northeast region686

of the United States, especially in New England, coastal flooding induced by extra-tropical687

cyclones (ETCs) are more frequent (but less destructive) than TC-induced flooding (Booth688

et al., 2016). The effect of climate change on ETC storm surges is thought to be rela-689

tively small on average along the US East Coast, although large uncertainties exist among690

climate models (Lin et al., 2019). It is likely that correlations between relative SLR and691

TC precipitation and ETC activity may well impact future flood hazard in some regions.692

5 Conclusion693

The results of this analysis indicate that relative SLR is correlated with aspects of694

TC activity over much of the western North Atlantic and North West Pacific, suggest-695

ing that progressive warming will compound future flood hazard in these regions. Increases696

in PI, coupled with more favorable vertical wind shear also suggest a large scale envi-697

ronment more conducive to TCs in these regions. Based on analyses of synthetic TCs698

and hydrodynamic modeling, we find that large scale co-variability substantially impacts699

local flood hazard at NYC, with future storm tides predicted to increase with warming700

due to relative SLR coupled with progressively stronger and slower moving TCs along701

the US East Coast, even if TC frequency remain unchanged.702

We have found that by focusing on a subset of AOGCMs that do not reflect the703

full distribution of GSAT changes within the emission scenario, and by assuming inde-704

pendence between SLR and storm tide change, coastal flood hazard assessments may not705

accurately capture future coastal flood hazard. By neglecting correlated changes, the av-706

erage and range of projected change to the historical 100-year flood level is under-estimated707

by 0.09 m (7%) and 0.17 m (11%), respectively. We recommend that future studies that708

focus on a specific emissions scenario: (1) construct SLR and TC projections inherent709

to each model to ensure that correlations are incorporated, (2) be mindful of the GSAT710

change and ECS of each CMIP6 model used, as selection bias may substantially alter711

flood hazard projections and (3) consider extremes as well as average projections, given712

that model variation is reduced when the correlation between SLR and TC projections713

are neglected.714

–15–



manuscript submitted to Earth’s Future

Our paper is novel in that we explore global scale correlations between TC activ-715

ity and relative SLR that includes contributions from land ice loss and associated GRD716

fingerprints and from non-climatic changes. We also conduct climatology-hydrodynamic717

modeling to quantify the impact of correlations on future flood hazard and explore cor-718

relations between SLR and synthetic TCs. We show that aspects of TC activity change719

are likely to co-vary with relative SLR, meaning that flood hazard assessments that ne-720

glect the joint influence of these factors will misrepresent future flood hazard. We rec-721

ommend that future studies on coastal flood hazards explore correlated changes between722

future TCs, ETCs, precipitation and relative SLR.723
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Model ECS (°C) GSAT (°C) Annual frequency SLR (m) RMW (%) PI (%) TS (%)

GFDL-ESM4 2.6 3.6 0.23 0.68 -11 7.6 -5.9
MIROC6 2.6 4.0 0.53 0.84 -10 8.8 -8.1
MPI-ESM1-2-HR 3.0 3.6 0.26 0.86 -9.3 8.8 -11
MRI-ESM2-0 3.2 4.3 0.13 0.95 -19 22 -13
EC-Earth3 4.3 5.3 2.0 0.97 -22 38 -24
CNRM-CM6-1 4.6 5.6 0.60 1.0 -14 36 -15
IPSL-CM6A-LR 4.6 6.0 1.2 1.0 -18 38 -18
CanESM5 5.6 7.0 0.34 1.1 -15 25 -29

Table 1. Modeled global ECS (°C) and projected changes in relative SLR (m) and TC char-

acteristics at NYC for the CMIP6 subset modeled with ADCIRC. RMW, PI and TS denote the

radius of maximum wind speed, maximum wind speed and translation speed, respectively. Esti-

mates of ECS are from Zelinka et al. (2020) and Wang et al. (2021). Change is calculated as the

difference between years 1994-2014 of the historical simulation and years 2080-2100 of the high

emissions SSP5-8.5.

7 Figures1131
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Figure 1. Panels (a–c) show the ensemble mean response of relative sea-level rise (a), po-

tential intensity (b) and vertical wind shear (c). Potential intensity and vertical wind shear are

displayed as percentage increases from years 1994-2014 of the historical simulation. Anomalies in

potential intensity and vertical wind shear in the Northern Hemisphere are computed over June

through November, while anomalies in the Southern Hemisphere are computed over December

through May. Contours in (b) show the normalized departure of the local SST change from the

tropical-mean (averaged over 35°S - 35°N) SST change. Scatter plots show the spatial averages

over the western North Atlantic (d-f) and North West Pacific (e-i): each dot represents a single

model. The solid black boxes in (a) show the North West Pacific and western North Atlantic

regions.
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Figure 2. Composites of June-November mean 200hPa (top) and 850 hPa (bottom) horizon-

tal wind vector differences between the average for the SSP5-8.5 (2080-2100) and the historical

period (1994-2014). Background colors show speed changes and contours show historical zonal

winds. Composites are based on projected GSAT warming. (a,d) Lowest project warming being

the average over the models with the lowest third of projected GSAT change; (c,f) highest pro-

jected warming models being the average over the top third of project GSAT changes. Anomalies

are computed over June through November.
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Figure 3. Inter-model correlations between sea-level rise (rows) and potential intensity (left

column) and vertical wind shear (right column) for all 26 CMIP6 models. Rows show each com-

ponent of SLR: relative sea-level rise (a-b), sterodynamic (c-d), Antarctic (e-f), Greenland (g-h)

and Glaciers and Ice caps (i-j). Stipples denote correlations significant to 95%.
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Figure 4. Estimated storm tide return levels for the historical period of 1994-2014 (black) and

future period of 2080–2100 (blue: only effects of TC changes, red: compound effects of SLR and

TCs) at New York City (a-h). Models are ordered by ascending ECS (Table. 1). Bar charts show

the contributions to the change in the 100 year historical storm level, assuming (i) change and

(j) no change in TC frequency at NYC. Fig. S10 shows the return period figures assuming no

change in frequency of TCs. Storm tide levels are relative to mean higher high water (MHHW,

obtained from https://vdatum.noaa.gov). The dark blue bars on (i-j) show the mean of the

ADICRC-CMIP6 models that includes correlated changes, whilst the light blue bars show the

ADCIRC-CMIP6 projection constructed through convolution (i.e. neglecting correlations). The

green bars on (i-j) show the compound changes derived from the scaling method based on the

GSAT and SLR projections of all 26 CMIP6 models as described in Section 3.3.3, with the dark

green denoting correlated changes and light green neglecting correlated changes. Black dots on

(a-h) are empirical estimates. Vertical grey bars (i-j) denote the model ranges.
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Figure 5. Multimodel mean difference between future and modern synthetic TC track den-

sities assuming no change in TC frequency at NYC (a). Track densities are determined by the

sum total of tracks crossing through each grid box over 20-year periods from 2080–2100 and

1994–2014, divided by the area of that grid box and the number of years. (b-c) Mean sea-level

pressure (SLP) differences (pascals) averaged over June - November for the eight CMIP6 modeled

with ADCIRC (b) and for all 26 CMIP6 used in this study (c).
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-

Figure 6. (a-c) Multimodel mean projected changes in TC intensity, radius of maximum wind

and speed translation speed shown as percentage increases from years 1994-2014 of the historical

simulation. (d-f) Inter-model correlations between projected changes in TC characteristics and

relative SLR.
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1. Text S1

1.1. Sterodynamic sea-level

Most CMIP6 models utilized in this study are based on the Boussinesq approximation,

conserving volume, not mass. As shown by Greatbatch (1994), such models are unable

to capture the global mean thermosteric SLR associated with changes in the global mean

density, with the bottom pressure also corrupted due to spurious mass sources required

to conserve volume rather than mass. As some models used in this study do not have

zostoga output, we calculate hθ using potential temperature (thetao) referenced to the

first year of each simulation (Griffies et al., 2016):

hθ =

(
V 0

A

)(
1 − ρ(θη, S0, p0)

ρ0

)
(1)

where V 0 is the reference global volume of seawater and A is the area of the global ocean

surface. The ocean density (ρ) in the numerator is computed as a function of the time

evolving potential temperature, with salinity and pressure held constant at their reference

value. Although halosteric sea-level change due to salinity changes, can be locally of

the same order of magnitude as thermosteric, global-mean halosteric sea-level change is

practically zero, and thus is often neglected. Spurious long-term drift is removed using at

least 250 years of the models pre-industrial control simulation (piControl) (Gupta et al.,

2013).

1.2. AIS SMB

Future Antarctic SMB is expected to increase in response to atmospheric warming as a

result of enhanced snowfall, while runoff remains small (Palerme et al., 2017; Gorte et al.,

2020). We construct anomalies in Antarctic SMB and its driving components, from the
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finding in the high resolution regional atmospheric model MAR (Modele Atmospherique

Regional) forced by an ensemble of CMIP6 models, that SMB changes are strongly cor-

related with the near-surface warming of the forcing ESMs around the AIS (Kittel et al.,

2021):

∆SMBAIS = TAS90−60◦S + 115.4TAS90−60◦S − 11.1 (2)

where TAS90−60◦S is the surface temperature anomaly averaged between 90 − 60◦S.

Additionally, we estimate sea-level contribution from changes in Antarctic SMB from

a parameterization based on regional climate output of different ESMs (Gregory & Huy-

brechts, 2006). This parameterization from Gregory and Huybrechts (2006) is based on

the finding that net accumulation over the Antarctic ice-sheet increases with regional

atmospheric warming:

∆SMBAIS = AP∆T (3)

Here, A is the time-mean snowfall accumulation during 1986-2010, equal to 1983 ± 122 Gt

yr-1 (Lenaerts et al., 2012). Factor P is the rate of increased accumulation per degree of

regional atmospheric warming relative to this reference period, equal to 5.15% per degree,

and ∆T is the anomaly in atmospheric temperature averaged over the Antarctic ice-sheet.

Frieler et al. (2015) suggested an increase in accumulation linked to air temperature of

5-6% per degree Celsius, which is confirmed by SMB reconstructions from ice cores over

the 20th century (Medley & Thomas, 2019). These two methods show good agreement

(Fig. S17).
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(b) ADCIRC-CMIP6 models
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(c) All available CMIP6 models

Figure S1. Projections of global mean temperature change (tas) change for (a) the 11 model

subset, (b) for the models used in ADCIRC modeling and (c) all 34 CMIP6 models with available

tas variable for the simulations and run used in this study. Green denotes models used in analysis.
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Figure S2. Projection of AIS dynamical SLR for each model, with shading denoting the likely

range (66th percentile around the mean).
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Figure S3. Relationship between Greenland Ice Sheet mass loss and temperature change

derived from CMIP5 models in Fürst et al. (2015) (blue points). Red points show the estimates

using the CMIP6 models in this study.
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(b) GSAT vs. global mean PI change

 =0.625

Figure S4. Scatter plots showing (a) global mean sea level rise and global mean temperature

change and (b) global potential intensity change and global mean temperature change for each

model.
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Figure S5. Global mean sea level rise projection comparison between AR6 and this study.
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Figure S6. CMIP6 ensemble mean sea-level rise difference maps of (a) GIC, (b) AIS, (c) GIC,

(d) sterodynamic, (e) non-climatic and (f) relative SLR for SSP5-8.5.
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Figure S7. Globally averaged PI change (%) and global mean temperature change for the SSP5-

8.5 (red), SSP2-4.5 (yellow) and SSP1-2.5 (blue) scenarios. Each point denotes one year for one

model between years 2014 - 2100. Only eleven CMIP6 models are displayed (ACCESS-ESM1-5,

ACCESS-CM2, CanESM5, CMCC-CM2-SR5, IPSL-CM6A-LR, INM-CM4-8, INM-CM5-0, MPI-

ESM1-2-LR, MRI-ESM2-0, MPI-ESM1-2-HR, MIROC6). These models cover the full range of

modeled ECS and GSAT temperature change (Fig. S1).
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Figure S8. Ensemble averages of intra-model correlations between relative SLR and PI change

over space (a,c,e) and time (b,d,f). For each model, correlations are calculated over the 86 years

of the SSP1-2.5 (a,b), SSP2-4.5 (c,d) and SSP5-8.5 (e,f) scenarios. Averages are over eleven

CMIP6 models (ACCESS-ESM1-5, ACCESS-CM2, CanESM5, CMCC-CM2-SR5, IPSL-CM6A-

LR, INM-CM4-8, INM-CM5-0, MPI-ESM1-2-LR, MRI-ESM2-0, MPI-ESM1-2-HR, MIROC6).

These models span the full range of modeled GSAT change (Fig. S1). Time-series of correlations

(b,d,f) are calculated relative to year 2014.
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Figure S9. Inter-model correlation between PI and vertical wind shear. Stipples denote

correlations significant to 95%.
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Figure S10. Same as Figure 4, but assuming no change in TC frequency at NYC. Estimated

storm tide return levels for the historical period of 1994-2014 (black) and future period of 2080–

2100 (blue: only effects of TC changes, red: compound effects of SLR and TCs) at New York

City.
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Figure S11. Mean difference between future and modern synthetic TC track densities for each

model (a-h). Track densities are determined by the sum total of tracks crossing through each

grid box over 20-year periods from 2080–2100 and 1994–2014, divided by the area of that grid

box and the number of years. Also shown are the mean sea-level pressure differences (pascals)

averaged over June - November for the eight CMIP6 modeled with ADCIRC (i-p).
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Figure S12. Mean projected changes in Vmax shown as percentage increases from years

1994-2014 of the historical simulation.

Figure S13. Mean projected changes in translation speed shown as percentage increases from

years 1994-2014 of the historical simulation.
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Figure S14. Mean projected changes in radius of maximum wind speed shown as percentage

increases from years 1994-2014 of the historical simulation.
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Figure S15. (a,d) Scaling relationships between TC surge changes at NYC and global mean

temperature (GSAT) change for the eight ADCIRC-CMIP6 models, assuming change (top) and

no change (bottom) in TC frequency. Probability density functions (PDF) show the change to

the historical 100 year flood event (∆η100) resulting from TC climatology change (b,e) and both

SLR and TC climatology change (c,f) for the ADCIRC-CMIP6 models (red) and all 26 CMIP6

models (blue). To produce the PDFs for all 26 CMIP6 models (blue), we randomly sample one

of the eight scaling factors and one of the 26 CMIP6 models GSAT and SLR projections 100,000

times.
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(a) ECS vs. global sea-level rise
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(b) ECS vs. global PI
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(c) Cloud feedback vs. global sea-level rise 
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(d) Cloud feedback vs. global PI
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Figure S16. Scatter plots showing global mean sea level rise against effective climate sensitivity

(ECS) (a) and cloud feedback (c). Also shown is global averaged potential intensity against ECS

(b) and cloud feedback (d). Cloud feedback values are from Wang et al. (2021). ECS values are

from Wang et al. (2021) and Zelinka et al. (2020).
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Figure S17. Comparison between the two methods (Gregory and Huybrechts (2006) and

Kittel et al. (2021)) used to model Antarctic Ice Sheet surface mass balance changes. Each point

denotes one CMIP6 model.
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