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Abstract

Regional cooperation among urban water utilities is a powerful mechanism for improving supply reliability and financial stability

in urban water supply systems. Through coordinated drought mitigation and joint infrastructure investment, urban water

utilities can efficiently exploit existing water supplies and reduce or delay the need for new supply infrastructure. However,

cooperative water management brings new challenges for planning and implementation. Rather than accounting for the interests

of a single actor, cooperative policies must balance potentially competing interests between cooperating partners. Structural

imbalances within a regional system can lead to conflict between cooperating partners that destabilize otherwise robust planning

alternatives. This work contributes a new exploratory modeling centered framework for assessing cooperative stability and

mapping power relationships in cooperative infrastructure investment and water supply management policies. Our framework

uses multi-objective optimization as an exploratory tool to discover how cooperating partners may be incentivized to defect

from robust regional water supply partnership opportunities and identifies how the actions of each regional partner shape the

vulnerability of its cooperating partners. Our methodology is demonstrated on the Sedento Valley, a highly challenging regional

urban water supply benchmarking problem. Our results reveal complex regional power relationships between the region’s

cooperating partners and suggest ways to improve cooperative stability.
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Abstract18

Regional cooperation among urban water utilities is a powerful mechanism for improv-19

ing supply reliability and financial stability in urban water supply systems. Through co-20

ordinated drought mitigation and joint infrastructure investment, urban water utilities21

can efficiently exploit existing water supplies and reduce or delay the need for new sup-22

ply infrastructure. However, cooperative water management brings new challenges for23

planning and implementation. Rather than accounting for the interests of a single ac-24

tor, cooperative policies must balance potentially competing interests between cooper-25

ating partners. Structural imbalances within a regional system can lead to conflict be-26

tween cooperating partners that destabilize otherwise robust planning alternatives. This27

work contributes a new exploratory modeling centered framework for assessing cooper-28

ative stability and mapping power relationships in cooperative infrastructure investment29

and water supply management policies. Our framework uses multi-objective optimiza-30

tion as an exploratory tool to discover how cooperating partners may be incentivized to31

defect from robust regional water supply partnership opportunities and identifies how32

the actions of each regional partner shape the vulnerability of its cooperating partners.33

Our methodology is demonstrated on the Sedento Valley, a highly challenging regional34

urban water supply benchmarking problem. Our results reveal complex regional power35

relationships between the region’s cooperating partners and suggest ways to improve co-36

operative stability.37

1 Introduction38

Globally, urban water managers are increasingly challenged by growing water de-39

mands and a changing climate (AghaKouchak et al., 2021; Wasley et al., 2020). In the40

United States (US), drinking water systems require over $400 billion of capital invest-41

ment by 2029 to maintain aging infrastructure and manage growing demands (ASCE,42

2021). Financial pressures stemming from debt burden and access to capital required43

for this investment are increasing, as major credit rating agencies now require water util-44

ities to comprehensively characterize their vulnerability to long-term risks from climate45

change and increasing hydrologic uncertainty (Okuji et al., 2017; Williams et al., n.d.;46

Insoll & Griffiths, 2017). These risks are dominantly driven by droughts that force ur-47

ban water utilities to confront severe trade-offs between supply reliability and financial48

stability (Chapman & Breeding, 2016; Borgomeo et al., 2016). Historically, water util-49
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ities have managed drought risk by independently investing in new supply infrastructure50

to maintain high supply capacity-to-demand ratios (Gleick, 2002). However in the US51

and many heavily urbanized centers globally, most suitable locations for new supply projects52

have been developed, and regulatory and environmental uncertainties have made this ap-53

proach no longer acceptable in many regions (Gleick, 2003). These constraints have mo-54

tivated urban water utilities to explore regionally cooperative investment and water port-55

folio management approaches that seek to utilize existing sources more efficiently and56

jointly develop new supply sources (Frone et al., 2008; Riggs & Hughes, 2019; Reedy &57

Mumm, 2012; EPA, 2017).58

With this transition in focus, it is now important to better understand how the de-59

velopment of regionally coordinated water management policies creates new challenges60

by increasing institutional complexity and exposing cooperating actors to new risks (Frone61

et al., 2008; Kurki et al., 2016; Sjöstrand, 2017). Rather than evaluating performance62

trade-offs for a single actor, the design of cooperative strategies must account for the po-63

tentially competing interests of all cooperating partners (Madani & Dinar, 2012). Adding64

to this challenge, regional power dynamics and historical inequities not easily measured65

by traditional performance objectives shape how water supply risks are manifested across66

regional actors (Savelli et al., 2021). These dynamics increase the potential for “hidden”67

sources of conflict that are not readily apparent (Gold et al., 2019). Figure 1 organizes68

these challenges into four primary topical areas that can serve to to guide cooperative69

water resources planning: (I) performance trade-offs, (II) robustness, (III) cooperative70

stability of compromises, and (IV) power and agency. While performance trade-offs, ro-71

bustness and cooperative stability have been widely discussed in water resources liter-72

ature (e.g. Borgomeo et al. (2016); Groves et al. (2019); Read et al. (2014)), state-of-73

the-art infrastructure investment and water portfolio management frameworks to date74

have largely neglected to account for regional power dynamics and the agency of regional75

actors, potentially missing important considerations for successful implementation of co-76

operative infrastructure investment and water portfolio management pathways. This pa-77

per contributes a holistic framework for crafting and evaluating cooperative infrastruc-78

ture investment and water supply management policies that explicitly accounts for all79

four challenges highlighted in Figure 1.80

As noted in Figure 1, the initial focus in cooperative infrastructure investment and81

water portfolio planning has been to better understand performance trade-offs between82
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Power and Agency

•    Are regional outcomes predetermined by 
      system structure?

•   Do actors have agency to change status
     quo power dynamics?

•   Who is enabled and who is constrained by 
     regional cooperation?

•    How is power exercised in the regional
      system?

Cooperative Stability
•    Which alternatives represent acceptable 
     compromises across all decision makers?

•    Are con�icts “hidden” under seemingly 
     acceptable compromises?

Performance Trade-o�s
•    Do policies successfully balance supply
      reliability and �nancial stability?

•    Do policies coordinate short-term crisis 
      mgmt. and long-term risk mgmt.?

Robustness
•    Do policies maintain performance across
      a wide range of plausible uncertainty?

•    Which uncertainties have the largest 
     impact on regional/individual performance?

•    Can policies adapt to observed system 
     states?

•    Does the system contain decision relevant
     thresholds in the uncertainty space?

Figure 1. Multi-actor challenges in the design of cooperative water supply planning policies

utilities’ ability to meet their communities’ supply demands while balancing their own83

financial stability (Borgomeo et al., 2016; Harou et al., 2009; Matrosov et al., 2012; Ray84

et al., 2012; Beh et al., 2015). In recent years, regional portfolio approaches have emerged85

as a key tool for managing these trade-offs (Jenkins & Lund, 2000; Lund et al., 2006; Charack-86

lis et al., 2006; Kasprzyk et al., 2009; Mortazavi-Naeini et al., 2014). Regional water sup-87

ply portfolios combine short-term drought mitigation instruments (e.g., water transfers88

and demand management), and financial instruments (e.g., index insurance) to minimize89

supply failures while covering revenue shortfalls and unexpected costs (Zeff & Charack-90

lis, 2013). Exploring synergies between short-term water supply portfolio planning and91

long-term infrastructure investment pathways has the potential to further improve re-92

gional reliability and enhance financial stability (Mortazavi-Naeini et al., 2014; Cai et93

al., 2015; Zeff et al., 2016). This coordination may be aided by the use of many-objective94

optimization to discover high-performance design alternatives that represent optimal trade-95

offs between conflicting objectives (Zeff et al., 2014; Beh et al., 2015). Through the a pos-96

teriori evaluation of performance trade-offs, many-objective optimization allows stake-97

holders to choose policy alternatives that most align with their preferences for balanc-98

ing supply reliability and financial stability (Woodruff et al., 2013).99

There is a growing recognition that the balance of supply reliability and financial100

stability is challenged by conditions of deep uncertainty stemming from growing demands,101

–4–



manuscript submitted to Earth’s Future

changing drought extremes, and financial risks (Herman et al., 2014; Dittrich et al., 2016;102

Maier et al., 2016; Groves et al., 2019). Deep uncertainty refers to conditions where par-103

ties to a decision do not know or cannot agree upon the probability distributions for un-104

certain inputs to the system, how to value alternative outcomes and/or the appropriate105

model to define the system and its boundaries (Lempert et al., 2006; Kwakkel et al., 2016;106

Marchau et al., 2019). Deep uncertainty requires planners to shift focus from finding strate-107

gies that are optimal in expectation across a set of probabilistic scenarios to discover-108

ing robust solutions that maintain satisfactory economic, social and environmental per-109

formance across a range of challenging and uncertain scenarios (Lempert et al., 2006).110

This challenge motivates the second consideration highlighted in Figure 1: Robustness.111

In recent years, exploratory modeling centered frameworks (Bankes, 1993; Moallemi112

et al., 2020) and adaptive planning approaches (Walker et al., 2013) have emerged as key113

innovations that aid the discovery of robust water supply policies. Exploratory model-114

ing frameworks utilize computational experiments to systematically explore plausible fu-115

ture scenarios without a strict focus on seeking to assign their likelihoods in advance (Bankes,116

1993). These frameworks allow decision makers to discover how uncertainties may cause117

undesirable performance outcomes and identify decision relevant thresholds in the un-118

certainty space (Moallemi et al., 2020). Frameworks such as Robust Decision Making119

(Lempert et al., 2006), Many-objective Robust Decision Making (MORDM) (Kasprzyk120

et al., 2013), Info-gap (Ben-Haim, 2006) and Decision Scaling (Brown et al., 2012) have121

been widely used to examine robustness in water supply planning contexts (for exam-122

ples see Groves et al. (2019); Herman et al. (2014); Housh and Aharon (2021); Marcos-123

Garcia et al. (2020)). Adaptive planning approaches provide robustness by using near-124

term information to inform infrastructure planning and water management decisions (Walker125

et al., 2013; Erfani et al., 2018). For example, Dynamic Adaptive Policy Pathways (DAPP)126

(Haasnoot et al., 2013), generates robust and adaptive decision-making pathways by ex-127

ploring alternative sequences of decisions across multiple futures.128

For cooperative systems, robustness conflicts complicate planning under deep un-129

certainty (Herman et al., 2015; Trindade et al., 2019; Gold et al., 2019). A successful strat-130

egy must not only be robust, but also cooperatively stable, meaning it represents an ac-131

ceptable compromise across all cooperating actors (Parrachino et al., 2006; Madani &132

Dinar, 2012). These conflicts motivate the third challenge in Figure 1: cooperative sta-133

bility. Here, we define cooperatively stable alternatives as portfolio pathways that rep-134
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resent acceptable compromises for all regional actors (Read et al., 2014). Cooperative135

stability can be examined through game theoretic metrics (Gately, 1974; Shapley & Shu-136

bik, 1954; Teasley & McKinney, 2011) or bargaining methods (Brams & Kilgour, 2001;137

Madani et al., 2011; Khatiri et al., 2020). However, both stability measures and bargain-138

ing techniques rely on highly simplified and narrow theoretical abstractions of preference139

for each actor, which limits our understanding of the underlying multi-actor dynamics140

in the regional systems that must balance complex commitments to supply reliability and141

financial performance.142

To understand multi-actor dynamics within a cooperative system, it is critical to143

examine the power relationships between actors (Avelino & Rotmans, 2009). Examin-144

ing power and agency within cooperative systems is the final challenge highlighted in Fig-145

ure 1. While power has been broadly defined as “the (in)capacity of actors to mobilise146

means to achieve ends” (Avelino, 2021), the way that power may be exercised within a147

regional system can provide insights into the nature and drivers of regional robustness148

conflicts. Power in multi-actor systems may be partitioned into three types of relation-149

ships: power over, power to and power with (Avelino & Rotmans, 2011). Power over refers150

to conditions when actor A may exercise power over actor B. Power to refers to each ac-151

tor’s ability to act to create or resist change. Power with refers to actors’ ability to col-152

laborate within the system context to create or resist change. Mapping these power re-153

lationships within a regional system reveals which actors have agency to initiate or pre-154

vent change, and how regional conflict may be shaped by structural elements of the wa-155

ter resources system (e.g. hydrologic constraints or political power).156

This study seeks to formally advance our ability to understand power and agency157

in cooperative water resources planning problems by expanding the DU Pathways frame-158

work, a cooperative infrastructure investment and water supply management pathways159

framework introduced by Trindade et al. (2019). DU Pathways draws from advances in160

water supply portfolio planning, DAPP, and MORDM to discover integrated short- and161

long-term decision making rules that generate cooperative infrastructure investment and162

water supply portfolio policy pathways.163

Our extension of DU Pathways provides a holistic approach for confronting the co-164

operative planning challenges outlined in Figure 1, guided by the research questions posed165

therein. We begin our analysis by employing many-objective search to discover cooper-166
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ative rule systems that equitably maximizes performance across all system actors. Next,167

we examine portfolio robustness by reevaluating each cooperative infrastructure invest-168

ment and water management policy across a large ensemble of deep uncertainties. We169

then contribute game theoretic inspired measures of cooperative stability to evaluate tacit170

conflicts and incentives for defection within compromises for regional partnerships. Con-171

flicts are evaluated by carefully mapping the participants’ power and agency to influence172

regional compromises via a novel Regional Defection Analysis, which utilizes an addi-173

tional many-objective search to explore how regional partners may seek to defect from174

the regional agreement. This analysis maps sources of regional robustness conflicts and175

examines power structures within the regional partnership. We demonstrate our method-176

ology on the Sedento Valley (Trindade et al., 2020), which has been formulated as a highly177

challenging multi-actor water supply planning benchmarking test case where three ur-178

ban water utilities seek to develop cooperative infrastructure investment and water sup-179

ply portfolio pathways.180

2 Regional Test Case181

The Sedento Valley (Trindade et al., 2020) is a highly challenging multi-actor wa-182

ter supply planning test case developed for benchmarking new frameworks for water sup-183

ply planning under deep uncertainty (illustrated in Figure 2a). As a water supply test184

case, the Sedento Valley contains many important challenges faced by urban water util-185

ities. First, the rapidly growing regional population is stressing the limits of current wa-186

ter supplies, challenging the region’s water utilities to develop new strategies for water187

management. Second, the region contains multiple independent urban water utilities in188

close proximity that have asymmetric vulnerability to drought due to differences in their189

water supply capacities, watershed characteristics and local demand profiles. This asym-190

metry represents an opportunity for cooperative drought mitigation through water trans-191

fers, while also shaping regional resource competition. The duality of water transfers be-192

ing both a mechanism for enhancement of regional water supplies as well as a driver for193

resource competition strongly complicates cooperative regional water portfolio planning194

and infrastructure investment pathways. Third, the region has a limited number of suit-195

able locations for new supply development and regional utilities are investigating coop-196

erative investment in new supply infrastructure. Finally, the region’s three utilities face197

financial vulnerability to future droughts, necessitating the careful coordination of finan-198
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cial instruments with drought mitigation and infrastructure investment strategies. The199

water management actions and infrastructure investment decisions of each utility have200

the potential to impact the financial risk of neighboring utilities, providing further in-201

centive for the three utilities to coordinate their water management and infrastructure202

investment strategies.203
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Figure 2. a) A map of the Sedento Valley region, where three urban water utilities in the seek

cooperative long term water management strategies. b) Population by city c) Demand growth

projections by city

The Sedento Valley regional water supply system is composed of two medium sized204

cities, Fallsland and Dryville, and a smaller city, Watertown. The populations of each205

city are shown in Figure 2b. Each city receives water from their own independent wa-206

ter utility. Dryville and Fallsland share access to Autumn Lake, a large reservoir that207

they each access via independent water treatment facilities. Watertown owns and op-208

erates a water treatment plant on Lake Michael, a large regional resource controlled by209

the federal government. Watertown also draws water from College Rock Reservoir, where210
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it owns and operates an additional water treatment facility. The managers of the three211

utilities face pressure from growing demands (Figure 2c) as well as uncertainties stem-212

ming from how quickly demand will grow and how a changing climate will impact the213

region’s reservoir inflows and and evapotransporation.214

The cities within the Sedento Valley have significant disparities in their access to215

regional water supplies. Fallsland, the city with the largest urban population, does not216

have a proportionally larger access to supply. Conversely, Watertown, the smallest of the217

three cities, has direct access to a large and currently unallocated portion of Lake Michael.218

All three utilities may request Lake Michael supply allocations from the federal govern-219

ment. However, the reservoir is limited to a single suitable location for a water treatment220

plant, thus requiring Fallsland and Dryville to purchase treated transfers from Water-221

town to access their allocations. In recent decades, the three utilities have invested in222

large interconnections, allowing Dryville and Fallsland to access potential allocations with-223

out significant capacity constraints.224

Historically, the three utilities have managed water supply challenges by imposing225

short-term water use restrictions during acute periods of drought and independently in-226

vesting in supply expansions to mange long-term risk. However, when used too frequently,227

water use restrictions are unpopular with local residents and threaten financial stabil-228

ity due to revenue disruptions (Hughes & Leurig, 2013). The majority of the region’s suit-229

able supply expansion locations have been developed, significantly increasing the cost230

of new infrastructure development. The utilities are seeking to increase the use of treated231

transfers from Lake Michael as part of their drought mitigation strategies. These trans-232

fers allow Dryville and Fallsland to access Lake Michael, potentially reducing the frequency233

of water use restrictions and /or delaying the need for new infrastructure investments.234

The addition of water transfers comes at the cost of increased volatility in utility rev-235

enues. This volatility creates challenges for utility budgets, which have been tradition-236

ally focused on meeting the fixed costs associaed with their debt burden.237

To jointly improve the region’s supply reliability and collectively reduce financial238

risks, the three utilities are exploring the development cooperative infrastructure invest-239

ment pathways that center on coordinated drought mitigation and co-investment in shared240

infrastructure. To facilitate the development of these cooperative infrastructure path-241

ways, the utilities are employing a portfolio based approach that links short-term drought242
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mitigation with long-term risk reduction. In times of drought, each utility may impose243

water use restrictions to temporarily curtail water demand. Dryville and Fallsland may244

also purchase treated transfers at cost from Watertown. A regional portfolio coordinates245

the use of these drought mitigation instruments to maximize the efficiency of regional246

sources. To mitigate financial volatility from restrictions and transfers, portfolios also247

include financial instruments in the form of self insurance and third-party insurance. As248

part of the regional agreement the utilities will also determine how to share the unused249

portion of Lake Michael.250

The regional cooperative infrastructure investment pathways seek to sequence new251

infrastructure investment in coordination with short-term drought mitigation policies.252

Each utility has identified a set of potential supply expansion projects that include both253

the development of new supply sources and the implementation of water reuse strate-254

gies. Watertown and Fallsland are also exploring the construction of the New River Reser-255

voir, a large new supply source that would be shared between the two cities. A list of256

potential infrastructure projects for each utility can be found in Table 1.257

The Sedento Valley test case’s cooperative infrastructure investment and water sup-258

ply portfolio management pathways represents a highly challenging multi-actor decision259

context. A key driver of the test case’s challenging decision context is the multi-actor260

dynamics within the regional system. In the next section, we outline an approach for ex-261

ploring these dynamics to discover cooperative strategies that represent robust and co-262

operatively stable regional compromises for the Sedento Valley water utilities.263

3 Methodology264

This study extends the DU Pathways framework (Trindade et al., 2019) by adding265

Regional Defection Analysis (RDA), a new exploratory modeling centered methodology266

that enables decision makers to examine cooperative stability, power relationships, and267

actors’ agency when developing cooperative infrastructure investment and water port-268

folio management pathways. The DU Pathways framework serves as a bridge between269

from the constructive decision aiding approach of MORDM (Kasprzyk et al., 2013) and270

the adaptive policy formulation central to DAPP (Haasnoot et al., 2013). RDA formal-271

izes the analysis of how multi-actor dynamics impact negotiated trade-off analyses, ro-272

bustness assessments, and scenario discovery, filling a significant technical gap in the tra-273
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Table 1. Potential new infrastructure options in the Sedento Valley.

Infrastructure Utility (allocation %)
Capital

Cost ($106)

Storage or

Production

Permiting

Period (years)

College Rock Reservoir expansion (Small) Watertown 50 500 MG 5

College Rock Reservoir expansion (Large) Watertown 100 1000 MG 5

Watertown Reuse Watertown 50 35 MGD 5

Sugar Creek Reservoir Dryville 150 2909 MG 17

Dryville Reuse Dryville 30 35 MGD 5

New River Reservoir
Fallsland (50%)

Watertown (50%)
263 3700 MG 17

Fallsland Reuse Fallsland 50 35 MGD 5

ditional forms of DAPP and MORDM. Our approach is outlined in Figure 3a, which overviews274

DU Pathway methodology and highlights our RDA contribution. The problem formu-275

lation stage (Figure 3a, Box i), includes specification of the system model(s), relevant276

decisions, uncertainties and regional objectives. Next, we search for the high performance277

cooperative infrastructure investment and water supply management portfolio pathways278

using Deep Uncertain optimization (DU optimization) (Trindade et al., 2017) and ex-279

amine trade-offs between system objectives (Figure 3a, Box ii and detailed in Figure 3b).280

This set of solutions is then stress-tested by re-evaluating each portfolio under a broader281

set of States Of the World (SOWs) generated by utilizing a larger independent sampling282

of the relevant deep uncertainties identified in the problem formulation (Figure 3a, Box283

iii and detailed in Figure 3c). The results of this Deep Uncertainty re-evaluation (DU284

re-evaluation) serve as the basis for computing the robustness of each alternative regional285

water portfolio management and infrastructure investment policy for each of the coop-286

erating system actors. This information is then used to inform a negotiated design se-287

lection process (Figure 3a, Box iv), where we select one or more robust compromise al-288

ternatives for further analysis.289
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Figure 3. a) An overview of the expanded MORDM framework for cooperative decision mak-

ing under deep uncertainty, adapted from Kasprzyk et al. (2013). b) flow chart of cooperative

DU optimization used to discover an initial set of regional water supply portfolios, c) flow chart

of DU re-evaluation d) Individual DU defection optimization in the regional defection analysis
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In this study, we contribute a formal exploratory modeling methodology to care-290

fully evaluate cooperative stability and regional power dynamics through RDA (Figure291

3a, Box v). RDA first uses many-objective optimization as an exploratory tool to ex-292

amine how each cooperating utility partner may defect from the regional partnership,293

then examines how these defections shape their own self-interests, broader regional co-294

operative stability, actors’ vulnerabilities to deep uncertainties as well as their resulting295

infrastructure pathways. RDA is comprised of four main steps (Figure 3a, Box v). First,296

we perform a set of individual DU defection optimizations (detailed in Figure 3d) that297

explore the benefits and trade-offs for each cooperating partner to defect from the re-298

gional infrastructure investment and water portfolio management compromise policy. This299

analysis asks the question: can a regional partner unilaterally increase their reliability300

or financial stability by defecting from the regional partnership? This step yields a set301

of defection alternatives (i.e., new investment and management decisions) tailored to each302

actor that reveal how they may gain from defection and what actions they may be in-303

centivized to take. As shown in Figure 3d, in the DU defection optimization one defect-304

ing utility is allowed to deviate in its decisions while all other partners are held to the305

actions in a given regional compromise solution being considered. We use the solutions306

discovered through individual defection optimization to examine how regional defection307

alters drought mitigation actions and the resulting infrastructure pathways. Next, we308

re-evaluate defection alternatives across a broad set of DU SOWs to explore how defec-309

tion may impact the robustness for each cooperating partner. Finally, we perform sce-310

nario discovery to determine how each actor’s defection from compromise policies changes311

which SOWs are the most consequential in their impacts on other actors vulnerabilities.312

The RDA methodology contributed here provides a comprehensive assessment of the co-313

operative stability of negotiated compromises, regional power structures, and the poten-314

tial drivers of regional conflict. These insights have value for designing monitoring ef-315

forts as part of the implementation of a cooperative agreements as well as informing the316

development new agreement structures if needed.317

3.1 Problem Formulation318

A candidate infrastructure investment and water portfolio problem formulation is319

a formalized hypothesis about how the cooperative planning problem should be repre-320

sented analytically (Zeleny, 1981; Kasprzyk et al., 2013). Drawing from MORDM, the321
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DU pathways framework treats problem formulation as a constructive learning process322

where stakeholders and analysts collaborate to develop a shared understanding of sys-323

tem challenges and search for promising design alternatives (Tsoukiàs, 2008; Kwakkel324

et al., 2016). This constructive decision aiding process allows stakeholders to explore com-325

peting hypotheses for how the system should be represented (also termed rival framings),326

potentially exposing hidden biases that may underlie single formulations (Majone & Quade,327

1980; Quinn et al., 2017). For a candidate problem formulation, we determine perfor-328

mance objectives, specify a system model, translate actions into decision variables, iden-329

tify relevant uncertainties and define how those uncertainties are sampled (Lempert et330

al., 2006).331

Formally, we seek to find the vector of cooperative decision variables, θ∗
coop, that332

minimizes regional objective vector F:333

θcoop
∗ = argminθ F (1)334

s.t.335

|ME| ≤ 1 ∀ ME ⊆ BI (2)336

Where:337

F =



fREL

fRF

fNPC

fFC

fWFPC


(3)338

fREL = min
u

(
− fREL,u (xs, θcoop, Ψs)

)
∀ u ∈ U (4)339

fRF = min
u

(
fRF,u (xs, xsrof , θcoop, Ψs)

)
∀ u ∈ U (5)340

fNPC = min
u

(
fNPC,u (xs, xlrof , θcoop, Ψs)

)
∀ u ∈ U (6)341

fFC = min
u

(
fFC,u (xs, xsrof , xlrof , θcoop, Ψs)

)
∀ u ∈ U (7)342
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fWFPC = min
u

(
fWFPC,u (xs, xsrof , xlrof , θcoop, Ψs)

)
∀ u ∈ U (8)343

θcoop = [θW, θD, θF] (9)344

θW = [θrt,W, θarfc,W, θirt,W, θit,W, ICOW , θlma,W] (10)345

θD = [θrt,D, θtt,D, θarfc,D, θirt,D, θit,D, ICOD, θlma,D] (11)346

θF = [θrt,F, θtt,F, θarfc,F, θirt,F, θit,F, ICOF , θlma,F] (12)347

X =


xsrof

xlrof

xs

 (13)348

Where F is a vector based objective function containing regional objectives fRel,349

reliability, fRF , restriction frequency, fNPC , net present value of infrastructure invest-350

ment, fFC , financial cost of drought mitigation and debt payment, and fWFPC , the worst-351

first-percentile cost of the fFC and U is the set of all cooperating utilities.352

The cooperative water supply policy is represented by θcoop, a vector containing353

all of the decision variables for the three utilities (θW , θD, θF ). Decision variables con-354

trolling short term drought mitigation actions are θrt, representing restriction triggers,355

and θtt, representing transfer triggers. Decision variable regulating financial instruments356

are θarfc, representing annual reserve fund contributions, and θirt, representing insur-357

ance restriction triggers. Long-term infrastructure sequencing is controlled by θit, rep-358

resenting lROF infrastructure construction triggers and ICO, a matrix containing in-359

frastructure construction ordering for each utility. Details on the decision variables can360

be found in section 3.1.2.361

Matrix X has values of decision-relevant state variables for all utilities and includes362

xsrof , a vector of sROF states used to trigger drought mitigation, xlrof , a vector of lROF363

states used to trigger infrastructure investment and xs,a vector of system states.364
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The regional objectives are also subject to the SOW, Ψs, which contains vector sam-365

ples of deeply uncertain time series and parameters, found in Table 2. Deeply uncertain366

factors considered include changes in future streamflow trends (for details see Trindade367

et al. (2020)), economic uncertainties including demand growth rate, bond rates/terms368

and discount rate, effectiveness of water use restrictions and uncertainties involving in-369

frastructure construction and permitting.370

In Equation 2, ME represents a generic subset of mutually exclusive infrastruc-371

ture options within the set of built or prospective infrastructure BI.372

3.1.1 Performance Objectives373

The three utilities of the Sedento Valley seek to discover water supply portfolios374

that balance the conflicting objectives of maximizing supply reliability, minimizing the375

frequency of water use restrictions as well as minimizing drought mitigation and infras-376

tructure investment cost. We formulate this water supply planning problem as a many-377

objective design problem with five objectives: maximize system reliability, minimize re-378

striction frequency, minimize the net present value of infrastructure spending, minimize379

the peak financial costs, and minimize the worst first percentile financial cost. Details380

on the formulation of each objective can be found in Section 1 of the supporting infor-381

mation to this paper. To maximize the equity of regional solutions discovered through382

optimization, we employ a regional minimax formulation where each regional objective383

value is taken as the value of the objective for the worst-performing utility. This appli-384

cation of Rawls’ difference principle guarantees that all other utilities will perform at least385

as well or better than the regional value (Rawls, 1999; Hammond, 1976; Helgeson, 2020).386

3.1.2 System Model387

We develop a system model using WaterPaths simulation software, a generalize-388

able, open-source exploratory modeling system explicitly designed to inform decision sup-389

port for water supply planning under conditions of deep uncertainty (Trindade et al., 2020).390

WaterPaths’ customizeable code base provides a flexible platform for examining both391

short- and long-term water supply portfolio instruments. WaterPaths also provides ad-392

vanced computational support for many-objective optimization algorithms and scales ef-393

ficiently across high performance computing resources. This scaling capability allows can-394
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didate water supply portfolios to be evaluated across large ensembles of potential future395

SOWs.396

3.1.3 Uncertainty397

A core challenge to water supply planning in the Sedento Valley is the uncertainty398

concerning future SOWs. We partition this uncertainty into two categories, well char-399

acterized uncertainty (WCU) and deep uncertainty (DU). WCU includes model param-400

eters that are stochastic and have known probability distributions or enough data to es-401

timate their probability density functions (Trindade et al., 2017). In the Sedento valley,402

the natural variability of reservoir inflows and evaporation rates are modeled as WCUs403

as there is over 80 years of historical data. To provide a thorough representation of these404

stochastic parameters, we employ a synthetic streamflow generator which samples from405

the historical record to generate future natural inflow time series that preserve the tem-406

poral and spatial patterns of the historical record (Kirsch et al., 2013). Details on the407

synthetic streamflow generation process can be found in Trindade et al. (2020). We de-408

fine DUs facing the system as model parameters that do not have known probability den-409

sity functions (Lempert, 2002; Kwakkel et al., 2016). In the Sedento Valley, these fac-410

tors include possible climate change impacts to the system and human factors such as411

demand growth rate. A full list of DUs in our modeling can be found in Table 2. DU412

samples are generated through Latin Hypercube Sampling (LHS), which ensures all quan-413

tiles of each parameter are evenly represented.414

We define a SOW as a pairing of one WCU natural inflow time series (NI) and one415

LHS of DU factors (Ψ). To evaluate the performance of water supply policies, we uti-416

lize two sampling strategies. “Full DU sampling” generates 1,000,000 SOWs by pairing417

1,000 NI time series with each of 1,000 samples of DU factors. “Approximate DU sam-418

pling” creates an independent sample of 1,000 SOWs by pairing each of the 1,000 NI time419

series with one LHS of DU factors. The sample sizes used in this work were chosen based420

off bootstrap analysis conducted by (Trindade et al., 2020).421

3.1.4 Decision Variables422

As described in Section 2, the Sedento Valley utilities employ portfolio approach423

to manage water supply decisions under deep uncertainty. A cornerstone of this port-424
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Table 2. Deep uncertainties considered for the Sedento Valley test problem. Unless specified

otherwise the same minimum and maximum values for each uncertainty were applied for all

utilities and infrastructure.

Category Factor name Min Max

Future streamflow

Streamflow Sinusoid amplitude 0.8 1.2

Streamflow Sinusoid frequency 0.2 0.5

Streamflow Sinusoid phase −π/2 π/2

Economic variables

Demand growth multiplier 0.5 2.0

Bond interest rate multiplier 1.0 1.2

Bond term multiplier 0.6 1.0

Discount rate multiplier 0.6 1.4

Drought mitigation

instruments (restriction

effectiveness multiplier)

Watertown 0.9 1.1

Dryville 0.9 1.1

Fallsland 0.9 1.1

New infrastructure
Permitting time multiplier 0.75 1.5

Construction time multiplier 1.0 1.2
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folio approach is the use of state-aware action triggers that adaptively respond to chang-425

ing system conditions. Drought mitigation actions are coordinated using short-term risk-426

of-failure (sROF; (Caldwell & Characklis, 2014)), a dynamic measure of each utility’s427

evolving storage-to-demand ratio, updated on a weekly basis. At any given week, a util-428

ity’s sROF represents the probability that its reservoir storage will drop below 20% of429

total capacity at any point during the subsequent 52 weeks. Each drought mitigation430

instrument is assigned an associated sROF trigger, and drought mitigation actions are431

implemented if the sROF exceeds the trigger on any given week.432

New infrastructure investment is triggered by long-term ROF (lROF; (Zeff et al.,433

2016)), a measure of each utility’s capacity to demand ratio, calculated on an annual ba-434

sis. lROF is calculated once per year, and measures the probability that a utility’s to-435

tal storage will drop below 20% of total capacity over the subsequent 78 weeks, if all reser-436

voirs begin full. Each utility has a single lROF trigger for infrastructure, and an asso-437

ciated ranking of infrastructure options. When an utilities’ lROF crosses the lROF trig-438

ger, it will begin construction on the top ranked infrastructure option. To mitigate rev-439

enue volatility resulting from drought mitigation, the water supply portfolio also con-440

tains several financial instruments. These instruments include self insurance, through441

annual reserve fund contributions, and third party index insurance purchased from an442

outside party. Details on all decision variables and their ranges can be found in Table443

3.444

3.2 Many-objective Search Under Deep Uncertainty445

We employ the Borg Multi-objective Evolutionary Algorithm (MOEA) (Hadka &446

Reed, 2012) to discover high performing portfolio management policies. Many-objective447

search with the Borg MOEA yields a Pareto approximate set composed of pathway pol-448

icy solutions whose performance in one objective can only be improved by degrading per-449

formance in one or more of the remaining objectives (Coello et al., 2007). The Borg MOEA450

has been shown to outperform many state-of-the art MOEAs on challenging real world451

problems that are non-linear, non-convex and mulitmodal (Reed et al., 2013; Gupta et452

al., 2020). The Borg MOEA is a steady-state algorithm (Deb, 2014) that utilizes adap-453

tive population sizing (Kollat & Reed, 2006), epsilon dominance archiving (Laumanns454

et al., 2002), and auto-adaptive operator selection to tailor its search strategies as it dis-455

covers what is most effective for a given problem (Hadka & Reed, 2012).456
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Decision Variable Utility Lower Bound Upper Bound

Restriction sROF trigger All 0% 100%

Transfer sROF trigger Dryville, Fallsland 0% 100%

Lake Michael Allocation - Watertown Watertown 33.4% 90%

Lake Michael Allocation - Dryville Dryville 5% 33.4%

Lake Michael Allocation - Fallsland Fallsland 5% 33.4%

Insurance sROF trigger All 0% 100%

Infrastructure construction lROF trigger All 0% 100%

Annual reserve fund contribution (% annual revenue) All 0% 10%

Infrastructure rankings All 1st # inf options

Table 3. Decision variables and their bounds

The DU optimization formulation is formally a stochastic many-objective search457

problem that specifically focuses on enhancing the robustness of identified infrastructure458

investment and water portfolio management solutions (Trindade et al., 2019). DU Op-459

timization is part of a growing number of robust multiobjective optimization applica-460

tions that directly integrate stochastic sampling of deep uncertainties have emerged fo-461

cusing on improving the robustness of solutions discovered through search (Eker & Kwakkel,462

2018; Watson & Kasprzyk, 2017; Bartholomew & Kwakkel, 2020). DU optimization has463

been shown to yield improved robustness for water supply planning problems when com-464

pared with traditional optimization conducted under deterministic or well-characterized465

conditions (Trindade et al., 2017, 2019). In this work, DU optimization is performed over466

the approximate sampling of DU SOWs described in Section 3.1.3 and illustrated in Fig-467

ure 3b. DU optimization was specifically developed for design of adaptive rule systems468

such as the ROF centered portfolios used in this work. By exposing these rule systems469

to a diverse set of future SOWs, DU optimization yields a higher degree of adaptivity470

and exploitation of information feedback when compared to optimization under WCU471

conditions (Trindade et al., 2017).472
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3.3 Deep Uncertainty Re-evaluation473

During DU re-evaluation, we stress-test each Pareto approximate infrastructure path-474

way policies over the set DU SOWs generated through Full DU sampling (described in475

Section 3.1.3 and illustrated in Figure 3). The robustness of each Pareto-approximate476

solution is calculated using a satisficing metric (Lempert et al., 2006; Herman et al., 2015),477

an approximation of Starr’s domain criteria (Starr, 1963). Our satisficing metric, S, mea-478

sures the fraction of SOWs that each solution meets a set of performance criteria defined479

by the stakeholders, as show in equation 14:480

S =
1

N

N∑
j=1

Λθ,j (14)481

Where,482

Λθ,j =


1, if F (θ)j ≤ Φj

0, otherwise

(15)483

Where Φ is a vector of performance criteria for utility j, θ is the portfolio and N484

is the total number of sampled SOWs. The sample size of 1,000,000 was chosen based485

off a formal analysis by Trindade et al. (2020), which found that robustness values in the486

Sedento Valley remained stable at or beyond this level sampling.487

The satisficing metric was chosen because it reflects the risk tolerance and prefer-488

ences of the cooperating utilities. In the Sedento Valley test case, each utility has spec-489

ified that they would like solutions to meet the following criteria: Reliability > 98%, Re-490

striction Frequency < 10% and Worst First Percentile Cost < 10% annual volumetric491

revenue following the requirements that have been provided in actual regional water path-492

way analyses (Herman et al., 2014; Trindade et al., 2019).493

3.4 Negotiated Design Selection494

Information on solution robustness and trade-offs between performance objectives495

within the Pareto approximate set provide the basis for negotiated design selection be-496

tween cooperating partners. Here we illustrate two potential outcomes of the negotiated497

design selection process by implementing two contrasting framings of a cooperative com-498

promise: a “social planner’s” framing, that seeks to maximize the well-being of the re-499

gion as a whole, and a “pragmatist’s” framing, that seeks to discover a practical solu-500
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tion that is likely acceptable to all actors (Read et al., 2014). To select a compromise501

for the social planner’s framing, we use a Least Squares metric (Read et al., 2014), which502

selects the solution that minimizes the sum of dissatisfaction across negotiating parties:503

LS = minj

m∑
i=1

(wi(S
∗
i − Si,j))2 (16)504

Where S∗
i is the maximum robustness achieved for utility i in the Pareto-approximate505

set, Si,j is the robustness for utility i resulting from solution j, m is the total number506

of negotiating actors and wi is a weighting applied to utility i, here set to 1 for all util-507

ities so all actors are weighted equally.508

To select a compromise for the pragmatist’s framing, we employ the power index,509

a metric that derives from game theory and economic literature and has been used to510

identify cooperatively stable solutions for multi-actor negotiation problems (Read et al.,511

2014; Teasley & McKinney, 2011). The power index measures of the relative gains of one512

actor against the relative gains of the group. Actors that achieve greater power index513

values for a given solution are receiving a higher proportion of the gains when compared514

with other negotiators. Dinar and Howitt (1997) suggest that a feasible solution that dis-515

tributes power across actors most equally will be an acceptable alternative to all par-516

ties. Thus, a solution that minimizes the coefficient of variation of the power index across517

all actors can be defined as the most cooperatively stable alternative.518

PW = minj(CV ) (17)519

520

CVj =
σj
ᾱj

(18)521

522

αi,j =
wi(S

∗
i − Si,j)∑m

i=0(S∗
i − Si,j)

(19)523

Such that:524

m∑
i=0

αi = 1 (20)525

Where ᾱj and σj are mean and standard deviations of power index values αi,j across526

all negotiators, i for solution j, S∗
i is the best achievable robustness for actor i, Si,j is527

the robustness achieved under solution j for actor i and m is the total number of nego-528

tiators.529
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3.5 Regional Defection Analysis530

The selection of compromise solutions within cooperative infrastructure pathway531

trade-off analyses relies on the strong assumption that once selected, all regional part-532

ners will adhere to the compromise. To examine the consequences of this assumption,533

we illustrate the RDA methodology using the social planner and pragmatist compromise534

solutions. The addition of RDA to the DU Pathways framework provides a formal mech-535

anism to reveal which cooperating partners have incentives to defect from the negoti-536

ated regional partnership (i.e. which utilities may improve reliability and/or financial537

stability through defection), discover tacit trade-offs that are not apparent in the initial538

negotiated pathway policy selection, examines how each actor’s defection influences the539

vulnerabilities of other actors and better maps underlying sources of regional conflict.540

Results of the regional defection analysis are intended to inform conflict mitigation strate-541

gies for regions seeking to cooperatively enhance the robustness of their infrastructure542

investment and water portfolio management pathways.543

3.5.1 Individual Defection Optimization Under Deep Uncertainty544

We explore the incentives each utility may have for defecting from the regional com-545

promises using many-objective search with the Borg MOEA as an exploratory model-546

ing tool within broader infrastructure pathway policy spaces of the individual regional547

water utilities. For this optimization, the Borg MOEA optimizes the defecting utility’s548

individual objectives using only its decision variables while all of the remaining utilities’549

decision variables are held to be same as what was specified in the given compromise re-550

gional pathway policy of focus. as shown in Figure 3d. A formal description of the in-551

dividual optimization is shown in equations 21-24:552

θdef
∗ = argminθ Fdef (21)553

s.t.554

|ME| ≤ 1 ∀ ME ⊆ BI (22)555
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Where:556

Fdef =



fREL,def (xs, θdef , θcoop, Ψs)

fRF,def (xs, xsrof , θdef , θcoop, Ψs)

fNPC,def (xs, xlrof , θdef , θcoop, Ψs)

fFC,def (xs, xsrof , xlrof , θdef , θcoop, Ψs)

fWFPC,def (xs, xsrof , xlrof , θdef , θcoop, Ψs)


(23)557

X =


xsrof

xlrof

xs

 (24)558

Where fREL,def , fRF,def , fNPC,def , fFC,def and fWFPC,def are the five objectives559

for the defecting utility, θdef is the vector of decision variables for the defecting utility560

and θcoop is the vector of decision variables for the non-defecting utilities, which remain561

constant. The objectives and decision variables for the individual defection optimization562

parallel the regional optimization described in Section 3.1 (equations 1-13), but repre-563

sent the decisions and objectives of the defecting utility, rather than the region as a whole.564

Results of the individual optimizations represent defection alternatives for the de-565

fecting utility. To quantify the incentives and consequences of defection, we introduce566

a new measure of cooperative stability that we term “cooperative regret”. Cooperative567

regret was inspired by traditional regret based metrics, which measure the consequences568

of incorrect assumptions regarding future states of the world (Savage, 1951; Lempert &569

Collins, 2007; Herman et al., 2015). In cooperative planning contexts, our metric mea-570

sures the the decision relevant consequences of incorrect assumptions about the coop-571

erative stability of a candidate regional infrastructure investment and water portfolio man-572

agement policy. Positive values of cooperative regret indicate that a utility benefits from573

defection, and negative values of indicate that a utility is hurt by defection. For a de-574

fecting utility, cooperative regret measures the greatest gain in each objective that can575

be achieved through defection:576

Robji = maxj [D
j
i ] ∀ j ∈ β (25)577
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Dj
i =


F (x)ji−F (x)∗i
F (x)criti

if ∀ k 6= i : F (x)∗k ≤ F (x)jk

0 otherwise

(26)578

Where β is the set of all re-optimized portfolios for the defecting utility, F (x)∗i is579

the objective value for the ith objective in the compromise portfolio, F (x)ji is the objec-580

tive value for the ith objective in teh jth re-optimized portfolio and F (x)criti is a spec-581

ified performance criteria for objective i. Importantly, for defecting utilities, the calcu-582

lated regret in each objective is only positive if improvement in that objective does not583

come at the cost of degradation in another objective, which would indicate a change of584

preference between objectives rather than improved performance.585

For the non defecting utilities cooperative regret is defined as:586

Rcoopi = minj [D
j
i ] ∀ j ∈ β (27)587

588

Dj
i =

F (x)ji − F (x)∗i
F (x)criti

(28)589

Where β is the set of all re-optimized portfolios for the defecting utility, F (x)∗i is590

the objective value for the ith objective in the compromise portfolio, F (x)ji is the objec-591

tive value for the ith objective in the jth re-optimized portfolio and F (x)criti is a spec-592

ified performance criteria for objective i.593

We further explore cooperative stability and regional power dynamics through pol-594

icy and pathway diagnostics. Policy and pathways diagnostics uses visual analytics (Keim,595

2002) to illustrate how regional partners choose to defect and examine how defection shapes596

regional infrastructure pathways. Patterns within the decision space reveal opportuni-597

ties for utilities to exploit their regional partners. These patterns may also illustrate struc-598

tural imbalances in power and agency between regional partners. Specifically, they al-599

low us to map each actors power to effect change effect in the system (Avelino & Rot-600

mans, 2009). When coupled with visual analytics, this mapping provides a comprehen-601

sive picture of the vulnerability of the regional partnership to cooperative defections. This602

analysis provides guidance on how the problem formulation may be adjusted to reduce603

the potential for regional defection and increase the cooperative stability of robust re-604

gional compromises.605
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3.5.2 DU Re-evaluation of Defection Alternatives606

After examining the consequences of defection in the objective space, we re-evaluate607

all defection alternatives under deep uncertainty. For DU re-evaluation, we stress-test608

defection alternatives across the full set of DU SOWs described in section 3.1.3. Results609

are used to calculate the robustness of each defection alternative. The resulting change610

in robustness due to defection provides insight into the nature of robustness conflict and611

the effects of deep uncertainties on cooperative stability. For defecting utilities, we mea-612

sure the greatest improvement in robustness the utility can achieve through defection613

for each satisficing criteria without reducing robustness in any other criteria:614

Rrobi = maxj [η
j
i ] ∀ j ∈ β (29)615

ηji =


S(x)ji − S(x)compi if ∀ k 6= i : S(x)compk ≤ S(x)jk

0 otherwise

(30)616

Where β is the set of all re-optimized solutions, S(x)ji is the robustness of the ith617

performance criteria in the jth re-optimized portfolio, and S(x)compi is the robustness for618

the ith performance criteria in the selected compromise portfolio.619

For cooperating utilities, we measure the maximum loss in robustness resulting from620

defection by another utility:621

Rrobi = maxj [η
j
i ] ∀ j ∈ β (31)622

ηji = S(x)ji − S(x)compi (32)623

Where β is the set of all re-optimized solutions, S(x)ji is the robustness of the ith624

performance criteria in the jth re-optimized portfolio, and S(x)compi is the robustness for625

the ith performance criteria in the selected compromise portfolio.626

Positive changes in robustness indicate that a utility benefits from defection from627

the cooperative compromise, and negative values of indicate that a utility is hurt by de-628

fection. For defecting utilities, positive changes in robustness indicate that they have power629
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to unilaterally improve their robustness to deep uncertainties. For non-defecting utility,630

negative changes in robustness indicate a loss of agency to control robustness.631

Taken together, robustness change and cooperative regret provide a comprehen-632

sive picture of the cooperative stability of a compromise portfolio. The metrics reveal633

the implications of a compromise across multiple objectives for each actor. The two met-634

rics also illustrate opportunities and vulnerabilities that result from selection of a given635

compromise. Additionally, comparing the two metrics help to reveal how system uncer-636

tainty shape conflict within the system.637

3.5.3 Scenario Discovery638

Beyond direct measures of performance changes, our RDA extension of the DU Path-639

ways framework employs scenario discovery (Groves & Lempert, 2007) to learn how de-640

fection changes the utilities’ vulnerabilities to deep uncertainties. Scenario discovery pro-641

vides an alternate framing for evaluating a cooperative policy. Rather than measuring642

how well a policy performs across deeply uncertain futures, scenario discovery searches643

for combinations of deep uncertainty cause the policy to fail, and identifies thresholds644

in system inputs that result in failure (Groves & Lempert, 2007). In the context of our645

regional defection analysis, scenario discovery strengthens our understanding of regional646

power dynamics by revealing how actor can shape the vulnerability of their cooperat-647

ing partners. During the scenario discovery process, each DU SOW that a given solu-648

tion has been evaluated under is classified as either a “success” or a “failure” based on649

whether the solution meets the satisficing criteria for the given SOW. Then, a classifi-650

cation algorithm is applied to partition the uncertainty space into regions that likely re-651

sult in success or failure, and rank the importance of uncertain factors for predicting suc-652

cess (Bryant & Lempert, 2010). Common algorithmic choices include the Patient Rule653

Induction Method (PRIM; (Friedman & Fisher, 1999)), Classification and Regression Trees654

(CART; (Loh, 2011)) and logistic regression (Quinn et al., 2018). In this study, we em-655

ploy a Boosted Trees algorithm (Drucker & Cortes, 1996), which is better suited to sce-656

nario discovery in infrastructure investment and water portfolio pathway planning be-657

cause it can capture non-linear and non-differentiable boundaries in the uncertainty space658

that are particularly prevalent with discrete capacity expansions, provide a clear means659

of ranking the importance of uncertain factors, are resistant to overfitting and yield re-660

sults that are easily interpretable by decision makers (Trindade et al., 2019).661
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4 Computational Experiment662

We start with a Pareto-approximate set of cooperative water supply portfolios dis-663

covered by Trindade et al. (2020) using the Borg Multi-objective Evolutionary Algorithm664

(MOEA) (Hadka & Reed, 2012). The Borg MOEA was parameterized following recom-665

mendations in Hadka and Reed (2015). The optimization by Trindade et al. (2020) was666

performed using nine random seeds, each run for 125,000 function evaluations. Each func-667

tion evaluation represents 1,000 realizations of synthetic streamflow/evaporation time668

series, each pared with a different DU SOW. To ensure convergence, runtime diagnos-669

tics were performed by evaluating the change in hypervolume indicator (Fonseca et al.,670

2006) achieved by each seed over the optimization run. ε-values used for each decision671

varaible and details on runtime diagnostics can be found in Trindade et al. (2020). The672

final Pareto-approximate set was taken as the set of non-dominated solutions across all673

random seeds. Optimization was conducted on the Stamepede2 Supercomputer from the674

Texas Advanced Computing Center (TACC) accessed through the NSF XSEDE Program675

(Towns et al., 2014).676

We re-evaluated each of the Pareto-approximate portfolios under deep uncertainty677

across the full set of one million SOWs. This DU re-evaluation was conducted on the Comet678

Supercomputer from the San Diego Super Computing Center accessed through the NSF679

XSEDE program (Towns et al., 2014). Results of this DU re-evaluation are used to se-680

lect the Least Squares and Power Index compromises.681

Next, we performed individual optimizations for each utility under both compro-682

mise portfolio. Each individual optimization run was for 50,000 function evaluations across683

four random seeds. Runtime diagnostics for each defection scenario can be found in Sec-684

tion 2 of the supporting information to this paper. Regional defection optimization runs685

were performed on TACC’s Stampede2 super computer accessed through the NSF’s XSEDE686

program (Towns et al., 2014). Finally, we re-evaluated each each Pareto-approximate set687

across the full set of DU SOWs. This DU re-evaluation was conducted on he Comet Su-688

percomputer from the San Diego Super Computing Center accessed through the NSF689

XSEDE program (Towns et al., 2014).690

We perform scenario discovery with boosted trees using the scikit-learn Python pack-691

age (Pedregosa et al., 2011). Each classification used an ensemble of 500 trees of depth692

four with a learning rate of 0.1.693
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5 Results694

In this section, we illustrate how and why regional conflict may occur in seemingly695

robust cooperative regional infrastructure investment and water supply portfolio policy696

pathways. We use these insights to map asymmetries in regional power and explore di-697

mensions of cooperative stability that have been ignored in regional water supply plan-698

ning studies. Our results are presented as follows: first, we present two regional compro-699

mise policies, and examine how they differ in regional performance, robustness and their700

underlying policy rule systems. Next, we explore the potential incentives for and con-701

sequences of regional defection by measuring cooperative regret across the five perfor-702

mance objectives. We then show how regional defections would change policy rule sys-703

tems and infrastructure pathways to benefit individuals versus the region, and illustrate704

how this alters the power dynamics between the cooperating actors. Next, we explore705

the implications of defection on utility robustness and illustrate changes in regional vul-706

nerability using scenario discovery, illustrating the potential for inter-actor choices to change707

what deeply uncertain factors yield the most consequential vulnerabilities. We conclude708

by discussing the importance of power and agency to deeply uncertain infrastructure path-709

ways and presenting actionable alternatives to improve the cooperative stability of the710

regional system.711

5.1 Compromise Policies: The Social Planner versus The Pragmatist712
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Figure 4. Selected compromise policies. Panel a) shows the regional objective space. Each

axis represents a regional performance objective, and each line represents a different policy. The

dark blue line represents the social planner’s compromise, and the light red line represents the

pragmatist’s compromise, grey lines represent Pareto approximate policies that were not selected.

b) the robustness of candidate policies for each water utility. c) the decision space for the two

selected compromise portfolios.
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Although visual analytics and trade-off analyses can capture a wide variety of in-713

dividual and regional preferences, here we demonstrate the negotiated design selection714

process outlined in section 3.4 to select two regional compromise infrastructure invest-715

ment and water portfolio management policies using robustness as a measure of utility716

preference. The social planner’s compromise seeks to maximize collective regional robust-717

ness, while the pragmatist’s compromise seeks to equalize the potential loss of benefits718

due too compromise across all actors. Figure 4a shows the Pareto approximate set of co-719

operative policies for the five regional objectives, with the two compromises highlighted.720

In Figure 4a, each parallel axis represents a regional objective, and each line represents721

a Pareto approximate regional pathway policy. The location that each line crosses each722

vertical axis corresponds to the policy’s objective value. Though selected through robust-723

ness, Figure 4a reveals that the two regional compromises have fundamentally different724

behaviours in the objective space. The social planner’s compromise yields relatively high725

regional reliability along with relatively low restriction frequency. These benefits come726

at the cost of a significant dependence on increased regional infrastructure investment,727

shown in the NPC objective. The social planner’s compromise relies on strong regional728

cooperation to coordinate infrastructure investment. In contrast, the pragmatist’s com-729

promise has an infrastructure investment cost of zero, at the expense of lower reliabil-730

ity and increased restriction frequencies. The pragmatist’s compromise also has a much731

higher peak financial cost when compared to the social planner’s compromise, though732

the two compromises have similar worst first percentiles costs. The low infrastructure733

investment cost and high peak financial cost (which is mostly comprised of drought mit-734

igation cost) suggests that the pragmatist’s compromise employs a dominantly “soft-path”735

strategy (Gleick, 2003) that relies more heavily on short term drought mitigation.736

The robustness of the Pareto approximate policies is shown in Figure 4b. Each point737

in Figure 4b represents a cooperative pathway policy, and each axis represents the ro-738

bustness of a cooperating water utility. Figure 4b clearly shows the difference between739

the social planner’s and pragmatist’s strategies for selecting a compromise. The social740

planner’s compromise, shown in dark blue, is a clear outlier, and represents the closest741

point to the regional ideal. In contrast, the pragmatist’s compromise lies in the middle742

of the Pareto approximate set, but is similarly distant from the ideal point in all three743

dimensions. Additionally, Figure 4b illustrates that for the two selected policies, coop-744

erative infrastructure investment - a strong component of the social planner’s compro-745
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mise - increases the robustness for all three utilities, but widens the performance dispar-746

ities between the utilities.747

The differences between the two compromise policies are further revealed by ex-748

amining their decision spaces, shown in Figure 4c. Each subplot in Figure 4c contains749

a radial plot of the compromise pathway policies’ decision variables, with each axis rep-750

resenting a decision variable, and values further from the center representing increased751

use of the given decision variable. Figure 4c illustrates several key differences in the two752

compromises that explain their differences in performance. First, infrastructure invest-753

ment (INF), is a core part of all three utility’s water supply portfolios under the social754

planner’s compromise but has very low use under the pragmatist’s compromise. Inter-755

estingly, in the social planner’s selection, all three utilities also make extensive use of wa-756

ter use restriction triggers, though the regional restriction frequency objective is near its757

minimum value (as shown Figure 4a). The pragmatist’s compromise also employs high758

use of water use restrictions, which in the absence of infrastructure investment yields a759

higher regional restriction frequency in Figure 4a. The two compromises are very sim-760

ilar in terms of the allocation of Lake Michael - under both compromises Watertown is761

close to its maximum allocation while Dryville and Fallsland are near their minimums.762

This suggests that regardless of the level of infrastructure investment, Lake Michael is763

an important supply source for Watertown. Lake Michael still plays a role in the water764

supply policies of Dryville and Fallsland, despite their low allocations. For Dryville, both765

compromise policies make extensive use of treated transfers, suggesting that Dryville likely766

uses transfers as a first response to drought in coordination with water use restrictions.767

Fallsland purchases treated transfers more readily under the pragmatist’s compromise,768

but still favors water use restrictions under both policies, indicating that it will use treated769

transfers under severe drought conditions, but relies on water use restrictions as a first770

response.771

The two compromises also differ in their use of financial instruments. Under the772

social planner’s compromise, both third party insurance and reserve funds are employed773

by Watertown and Fallsland, while Dryville employs only a reserve fund. The use of the774

reserve fund allows the utilities to maintain financial stability under the large debt bur-775

den from infrastructure investment. The use of third-party insurance covers financial dis-776

ruptions from low-probability drought events. Under the pragmatist’s compromise, which777

has low infrastructure investment, all three utilities make very low reserve fund contri-778
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butions, instead making extensive use of third-party insurance. Without the debt bur-779

den from infrastructure investment, the utilities can maintain high performance with only780

the purchase of third party insurance to offset the cost of drought mitigation. The dif-781

ferences in how the two compromises incorporate financial instruments highlights the im-782

portance of jointly assessing supply reliability and the utilities’ finances. Both compro-783

mise policies demonstrate careful coordination of financial instruments, drought miti-784

gation and infrastructure sequencing, allowing the utilities to balance the conflicting ob-785

jectives of supply reliability and financial health.786

Under the metrics shown in Figure 4, the two compromise portfolios offer differ-787

ent, but plausible cooperative compromises for the regional system. Yet important ques-788

tions remain. Do the utilities incur new risks by entering into a regional agreement? Do789

the cooperating partners have incentives to leave the regional agreement once it has been790

implemented? How do the actions of one partner influence the performance and vulner-791

ability of the others? Our RDA extension of deeply uncertain pathways methodology en-792

ables a rigorous examination of these questions and clarifies important power dynam-793

ics within the regional system.794

5.2 Individual Defection Optimization795
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Figure 5. Results of individual defection optimization. The left column (panels a, c and e)

represent defection from the Social planner’s compromise for Watertown, Dryville and Fallsland

respectively. The right column represents defection from the pragmatist’s compromise. Each

parallel axis represents an objective for the individual utility and each line represents a different

policy. The social planner’s compromise is shown in dark blue and the pragmatist’s compromise

is shown in light red. Each yellow line represents a defection policy. Results indicate that all

three utilities can benefit from regional defection, though how they benefit varies between the two

compromises and across the three utilities.
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The results of the individual defection optimization runs described in section 3.5.1796

are shown in Figure 5. Each panel contains a parallel axis plot showing the Pareto-approximate797

set of defection solutions discovered in each individual defection optimization. Each axis798

represents a performance objective for the individual utility, and each line represents a799

water supply policy. Dark blue lines represent the social planner’s compromise, light red800

lines represent the pragmatist’s compromise and yellow lines represent defection alter-801

natives. Examination of Figure 5 reveals that all three utilities may substantially ben-802

efit from defection under both compromises, but how they benefit differs significantly803

between the two compromise pathway policies. Under the social planner’s compromise,804

Watertown could reduce its overall infrastructure investment while maintaining relatively805

high performance across the remaining objectives, as shown in Figure 5a. Under the prag-806

matist’s compromise, Watertown has no room for improvement in infrastructure spend-807

ing, but could improve reliability, restriction frequency and peak financial costs, as shown808

in Figure 5b. Like Watertown, Dryville and Fallsland may both reduce their infrastruc-809

ture spending through defection under the social planner’s compromise as shown in Fig-810

ure 5c and 5e. Under the pragmatist’s compromise both Dryville and Fallsland can im-811

prove their reliability, reduce restriction frequency and peak financial cost without in-812

creasing their infrastructure spending.813
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Figure 6. Cooperative regret. Each panel contains the cooperative regret for a single utility

under a defection scenario. The five performance objectives are represented on the vertical axis

and the cooperative regret is shown on the horizontal axes. The effect of defection on Watertown

is shown in the top row of panels, Dryville is in the middle row and Fallsland is on the bottom.

Each column represents defection by a different utility, with Watertown defection on the far left,

Dryville in the center and Fallsland on the right. Dark blue bars represent regret from the social

planner’s compromise, while light reg bars represent regret from the pragmatist’s compromise.
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While the results in Figure 5 suggest that the utilities may have incentives to de-814

fect from the regional partnership, are limited in the information they provide on how815

regional defection may shape the cooperative stability of the selected compromises. To816

further explore cooperative stability, Figure 6 shows the cooperative regret for each util-817

ity under both compromise portfolios. Each panel illustrates regret for a single utility818

under a different defection scenario. Cooperative regret from the social planner’s com-819

promise is shown in dark blue bars, and cooperative regret from the the pragmatist’s com-820

promise is shown in light red bars. Bars on the right side of the plots indicate that the821

utility may benefit from defection, while bars on the left side of the plots indicate that822

utility objectives are degraded from defection.823

Examining cooperative regret reveals several important insights into cooperative824

stability of both compromise portfolios. First, all three utilities can clearly benefit from825

defection under both compromise portfolios as demonstrated in Figure 6a, e and i, though826

the benefits differ across the three utilities and the two portfolios. Figure 6a reveals that827

under social planner’s compromise Watertown can greatly reduce its infrastructure in-828

vestment cost without sacrificing performance in the other objectives. Under the prag-829

matist’s compromise, Watertown can reduce its restriction frequency, but cannot mean-830

ingfully improve in its performance in other objectives. Figure 6e shows that under the831

social planner’s compromise, Dryville can reduce its infrastructure spending and mod-832

estly improve its reliability. Under the pragmatist’s compromise, Dryville can increase833

its reliability, reduce its restriction frequency, and reduce its peak financial cost. Figure834

6i illustrates that Fallsland benefits from defection in a similar manner to Dryville. Un-835

der the social planner’s compromise, Fallsland defection reduces infrastructure spend-836

ing and modestly increase reliability. Under the pragmatist’s compromise Fallsland may837

improve reliability, restriction frequency and peak financial cost objectives.838

The consequences of defection from the regional agreement are highly asymmet-839

ric across the three utilities. Figure 6d shows that Watertown defection has little impact840

on Dryville under either compromise. Conversely, Dryville defection greatly reduces Wa-841

tertown’s reliability under both compromises, as shown in Figure 6b. Under the social842

planner’s compromise, Dryville defection causes Watertown’s infrastructure cost to in-843

crease significantly. Under the pragmatist’s compromise Watertown’s restriction frequency844

and worst case peak financial cost are also degraded by Dryville defection. A similar asym-845

metry is present between Watertown and Fallsland, though to a lesser extent. Figure 6g846
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illustrates how under the social planner’s compromise, Watertown defection increases Fall-847

sland’s infrastructure cost, suggesting that the coordinated infrastructure investment ex-848

poses Fallsland to risk from its cooperating partner. The impact of Fallsland defection849

on Watertown differs notably between the two compromises. When Fallsland defects from850

the social planner’s compromise, Watertown is forced to increase its infrastructure spend-851

ing, but also loses reliability, as shown in Figure 6c. When Fallsland defects from the prag-852

matist’s compromise, Watertown sees a precipitous decline in reliability and small per-853

formance degradations in restriction frequency and worst case cost. Unlike Watertown,854

Fallsland faces very little regret from Dryville defection, and the utility even benefits slightly855

in infrastructure cost under the social planner’s compromise as shown in Figure 6h. Like-856

wise, Fallsland defection has very little impact on Dryville performance as shown in Fig-857

ure 6f.858

Figure 6 illustrates two new dimensions of regional stability not captured in the859

original robustness based metrics used to select the two compromises. First, it reveals860

that the incentives to defect from the regional partnership - the potential causes of re-861

gional conflict - fundamentally differ between the two compromises. Under the social plan-862

ner’s compromise, which relies on careful coordination of infrastructure investment be-863

tween the three utilities, defection allows all three utilities to drastically reduce their in-864

frastructure spending while maintaining performance across other objectives. This sug-865

gests that under the social planner’s compromise, each utility can exploit the investments866

made by their neighbors to increase their own performance. Conversely, under the soft-867

path centered pragmatist’s compromise, the incentives to defect manifest as improve-868

ments to reliability, restriction frequency and peak financial cost. Under the pragmatist’s869

compromise, all three utilities may reduce their restriction frequency and Dryville and870

Fallsland may improve their reliability and peak financial cost objectives. In the absence871

of binding enforcement of the regional agreement, all three utilities are found to have the872

power to unilaterally improve their performance with respect to the original comprise.873

Acknowledging this power, and mapping the incentives to defect can inform the design874

of contractual agreements that reduce these incentives.875

The second new dimension of regional stability revealed by Figure 6 is the differ-876

ing consequences of defection between the two compromise portfolios. Under both com-877

promises, Watertown’s performance across multiple objectives is reduced by defection878

from either cooperating partner. Fallsland faces increased infrastructure investment cost879
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under the social planner’s compromise, and no consequences under the pragmatist’s com-880

promise. Dryville faces little to no consequences from defection under either compromise.881

The disparity between the three utilities suggests that Dryville and Fallsland have the882

power to fundamentally shape Watertown’s performance through defection, while Wa-883

tertown has limited power to shape the performance of its partner utilities. This power884

dynamic is not apparent from the original metrics of cooperative stability and may in-885

form the creation of new cooperative agreements. However, to make this information ac-886

tionable, we must explore the decisions each utility is incentivezed when defecting from887

the regional partnership.888

5.3 Defection Alternatives and Infrastructure Pathways889
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Figure 7. Decision variables of defection alternatives. Each panel shows the set of defection

alternatives for one utility under one compromise policy. Each axis on the radial plot represents

a decision variable, and each line represents a different policy. The distance from the origin rep-

resents increased use of each variable. The top row of panels shows defection from the social

planner’s compromise, while the bottom shows defection from the pragmatist’s compromise. The

original compromise portfolios are shown in dark blue and light red. Defection alternatives are

shown in yellow lines.
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The decision variables that compose the defection alternatives for each utility are890

shown on the radial plots in Figure 7. Each utility’s decision variables are plotted on a891

radial axis, with increased use of each variable corresponding from values further from892

the center. Each line corresponds to a different water supply policy. The top row of plots893

shows the social planner’s compromise, with dark blue lines representing the original de-894

cision variables and yellow lines representing defections. The bottom row of subplots shows895

the pragmatist’s selection, with the light red line representing decision variables of the896

original compromise and yellow lines representing defection.897

Watertown lowers its reliance on water use restrictions when defecting from both898

compromise portfolios, suggesting that Watertown either uses restrictions to aid regional899

partners in the original compromises or needs more conservative restriction policies to900

maintain robust performance under the broader DU sampling. Under the social plan-901

ner’s compromise, Watertown may also raise the level of risk it tolerates before invest-902

ing in new infrastructure, explaining its ability to reduce infrastructure spending. Un-903

der the pragmatist’s compromise, many of Watertown’s defection alternatives increase904

the use of infrastructure, suggesting that Watertown can unilaterally improve its reli-905

ability and restriction frequency by investing in infrastructure. To offset the risk of high906

debt burden from infrastructure investment, Watertown increases its reserve fund con-907

tribution in many defection alternatives. Across both compromise portfolios Watertown908

continues to maximize its allocation of Lake Michael under all defection alternatives.909

Like Watertown, Dryville also seeks to maximize its Lake Michael allocation. Un-910

der all defection alternatives for both compromise policies, Dryville maximizes its own911

allocation of Lake Michael. It also maintains its high reliance on treated transfers, in-912

dicating that these portfolios heavily rely on water from Lake Michael to augment Dryville’s913

water supply in times of drought. Many of Dryville’s defection alternatives from the so-914

cial planner’s compromise maintain a high use of infrastructure investment. Surprisingly,915

results shown in Figure 5 indicate that this does not translate into increased infrastruc-916

ture spending. This suggests that the supply augmentation from Lake Michael lowers917

Dryville’s baseline risk level enough to only trigger new infrastructure under extreme sce-918

narios. This phenomenon can also be observed under the pragmatist’s compromise, where919

many of Dryville’s defection alternatives also increase use of infrastructure investment920

though its investment cost objective remains low.921
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Like Dryville, Fallsland maximizes its Lake Michael allocation in all defection al-922

ternatives under both compromise portfolios. It correspondingly increases its use of treated923

transfers when defecting from both portfolios, suggesting that it also heavily relies on924

Lake Michael to augment its water supply in times of drought. Under the social plan-925

ner’s compromise, the majority of Fallsland’s defection alternatives decrease the use of926

infrastructure investment, while under the pragmatist’s compromise many defection al-927

ternatives increase the use of infrastructure investment. However, as illustrated in Fig-928

ure 5e and f, all defection alternatives under both compromises have low infrastructure929

cost for Fallsland. This suggests that like Dryville, the increased allocation from Lake930

Michael is enough to lower Fallsland’s baseline risk, reducing the need to invest in new931

infrastructure.932

The changes to water supply policies shown in Figure 7 illustrate the careful co-933

ordination between cooperating partners present in the both original compromises. This934

is most strongly emphasized by how the use of treated transfers from Lake Michael dif-935

fer between the original compromises and defection alternatives. Under both original com-936

promises Watertown is granted the majority of the Lake Michael allocation, but provides937

treated transfers readily when its cooperating partners are in need. Watertown’s high938

use of restrictions in both of the original compromises suggests the solutions tacitly as-939

sume that in times of drought it will be willing reduce its own withdrawls from Lake Michael,940

while providing treated transfers to its cooperating partners. Under all defection alter-941

natives however, Dryville and Fallsland maximize their allocation to Lake and take ad-942

vantage of treated transfers to augment their existing supplies.943

Results in Figure 7 further suggest that the allocation of Lake Michael is the most944

likely driver of regional conflict. Under both original compromises, Watertown is assigned945

its maximum Lake Michael allocation while Dryvile and Fallsland are assigned alloca-946

tions near their minimums. In all defection alternatives, each utility seeks to maximize947

its own allocation at the expense of its partner utilities. This exploitation would not be948

possible in the absence of the original agreements; under the original compromise port-949

folios, all three utilities heavily rely on water use restrictions, so when a utility increases950

its Lake Michael allocation, it is exploiting the other utilities’ restrictions to access aug-951

ment supply during time of shortfall. For both Dryville and Fallsland, increased reliance952

on treated transfers can alleviate the need for infrastructure investment while maintain-953

ing high reliability, low restriction frequency and low financial risk. But access to Lake954
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Michael is controlled by Watertown, who owns the only water treatment facility on the955

reservoir. Should Dryville and Fallsland seek to increase their allocations, they risk spark-956

ing a conflict with Watertown and loses access to transfers entirely. The dynamics lead-957

ing to this potential conflict can be further explored by examining how regional defec-958

tion alters the infrastructure pathways generated by the compromise policies.959

Figure 8 shows infrastructure pathways under the social planner’s compromise (the960

pragmatist’s compromise is not shown as it has very little infrastructure). Pathways gen-961

erated from full cooperation are shown in the panels on the left, while pathways result-962

ing from a selected defection alternative for each of the three utilities are shown in the963

other columns. Watertown pathways are shown in the top row of plots, Dryville in the964

middle row and Fallsland on the bottom row. Within each panel, a utility’s infrastruc-965

ture options are shown on the vertical axis, and the horizontal axis represents the time966

each infrastructure option is triggered. The dynamic state-aware rule system used in the967

Sedento Valley cooperative portfolios create a unique sequence of infrastructure devel-968

opment under each future SOW. To visualize the dynamics of these pathways, Figure969

8 summarizes the actions of each utility by clustering high, medium and low infrastruc-970

ture SOWs and plotting the average time each infrastructure is triggered for each clus-971

ter. The frequency that each infrastructure option is triggered across all SOWs is rep-972

resented as the shading behind the clusters.973

Figure 8 reveals how each utility may reduce their reliance on infrastructure invest-974

ment through defection, and how other cooperating partners are impacted by each util-975

ity’s defection. Through defection, Watertown may drastically reduce its infrastructure976

investment, eliminating individual infrastructure investments and only constructing the977

New River Reservoir, which it shares with Fallsland, near the end of the planning hori-978

zon. Similarly, when Fallsland defects, it only constructs the shared New River Reser-979

voir late in the planning horizon. The most dramatic impact of defection however can980

be observed in Dryville’s pathways, where infrastructure investment is almost entirely981

eliminated. Defection by Dryville and Fallsland have little impact on each other, while982

Watertown is forced to build to invest early or more heavily in new infrastructure when983

either cooperative partner defects.984

Results of the individual optimizations reveal that all three utilities have incentives985

to defect from the regional partnership and that this defection may have severe and asym-986
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metry consequences for utility performance and the resulting infrastructure pathways.987

But these results only examine performance changes in expectation across on the smaller988

DU sampling strategy employed during search. This raises the question - does our per-989

ception of cooperative stability change when inter-utility robustness trade-offs are eval-990

uated under the broader DU re-evaluation exploration of SOWs?991
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Figure 8. Changes to Infrastructure Pathways by defection from the social planner’s compro-

mise. The vertical axis contains possible infrastructure options for each utility, and the horizontal

axis represents time. As each SOW generates a unique infrastructure pathway, we visualize a

policy by clustering the SOWs by infrastructure intensity. Three clusters were generated using K-

nearest neighbor clustering, shown as the three lines on each plot. Shading in each row represents

the frequency that each infrastructure option was triggered at a given time across all SOWs. In-

frastructure pathways generated by the original compromise are shown in the column to the left,

while the most robust defection alternative for each utility are shown in the other three columns.

5.4 Cooperative Stability and Deep Uncertainty992
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Figure 9. Changes to robustness from defection across the saticificing criteria. Each panel

contains the robustness change for a single utility under a defection scenario. The three satis-

ficing criteria are represented on the vertical axis and the robustness change is shown on the

horizontal axes. The effect of defection on Watertown is shown in the top row of panels, Dryville

is in the middle row and Fallsland is on the bottom. Each column represents defection by a dif-

ferent utility, with Watertown defection on the far left, Dryville in the center and Fallsland on

the right. Open circles represent the robustness of the original compromise, while closed circles

represent the robustness after defection. Dark blue points/lines represent the robustness of the

social planner’s compromise, while light reg points/lines represent robustness of the pragmatist’s

compromise.
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Figure 9 shows how defection affects each utility’s robustness to deeply uncertain993

futures. Each subplot shows change in robustness for a single utility under a different994

defection scenario. The robustness of the original compromise portfolios are shown as995

open circles, and the robustness after defection are shown as closed circles. Dark blue996

circles represent the social planner’s compromise, and light red circles represent the prag-997

matist’s compromise. Improvement in robustness is indicated by a solid grey arrow mov-998

ing right, decrease in robustness is shown as a grey dashed line moving left.999

Figure 9 highlights important differences between evaluating stability with robust-1000

ness versus cooperative regret based on changes in the individual utilities’ performance1001

objectives. Watertown, which has a clear incentive to defect when measured by coop-1002

erative regret, does not have a clear incentive when defection incentives are assessed us-1003

ing robustness. In fact, under the social planner’s compromise, defection decreases Wa-1004

tertown’s robustness as shown Figure 9a. This indicates that though defection may im-1005

prove Watertown’s performance in expectation across an approximation of the full deep1006

uncertainty space, its defection actions may expose it to new vulnerabilities captured in1007

the larger DU re-evaluation. Watertown’s decrease in robustness is primarily due to a1008

small decrease in its ability to meet the reliability criteria. Watertown is subject to a sim-1009

ilar decrease in reliability robustness under the pragmatist’s compromise, though it also1010

has the potential to greatly improve it’s robustness in terms of its restriction frequency1011

criteria.1012

Unlike Watertown, Dryville and Fallsland have clear and consistent incentives to1013

defect from both compromise portfolios when defection is evaluated from the perspec-1014

tive of robustness. Under both portfolios defection from the cooperative agreement has1015

the potential to make both utilities nearly 100% robust to deep uncertainties, meaning1016

they can meet their performance criteria in nearly all of the one million SOWs used in1017

the DU re-evaluation. This improvement in robustness for Dryville and Fallsland comes1018

at a price for their regional partners. Like cooperative regret, changes in robustness show1019

that Watertown’s performance is severely degraded by defections under both compro-1020

mise selections. Additionally, robustness changes reveals tension between Dryville and1021

Fallsland that is not captured through the cooperative regret results in Figure 6. When1022

Dryville defects from the pragmatist’s compromise, Fallsland’s robustness in reliability1023

is significantly reduced, as shown in Figure 9h. Under the social planner’s compromise1024

however, Fallsland’s robustness is not signicantly a effected by Dryville defection. When1025
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Fallsland defects, Dryville’s robustness is reduced under both compromise portfolios, pri-1026

marily driven by reductions in reliability robustness. These changes demonstrate that1027

in the regional system, the perception of regional tension changes depending on the scope1028

of future scenarios evaluated during the planning process.1029

The impacts of regional defection on utility robustness are further illustrated through1030

scenario discovery. Figure 10 contains factor maps, which plot the utilities success and1031

failure in meeting performance requirements (reliability ¿ 98%, restriction frequency ¡1032

10% and worst first percentile peak financial cost ¡ 10%), for the most robust defection1033

alternative for each utility (details on the robustness of defection alternatives can be found1034

in Section 3 of the supporting information). Each factor map’s vertical and horizontal1035

axes plot the two most influential deep uncertainties for each utility as classified using1036

boosted trees. Grey points represent SOWs where the utility meets all satisficing crite-1037

ria, while red points represent SOWs where the utility fails to meet all criteria. The per-1038

centages next to each uncertainty on the horizontal and vertical axes labels represent the1039

percent decrease in impurity from the tree ensemble by splits on that factor, with higher1040

percentages indicating higher sensitivity to the factor. The color mapped in the back-1041

ground of each factor map represents the predicted success or failure regions for the given1042

utility across the combinations of the two uncertainties. The original compromise port-1043

folios are shown in the left most column, and the columns to the right represent Water-1044

town, Dryville and Fallsland defection scenarios respectively.1045
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Figure 10. Factor mapping generated using boosted trees for the most robust defection alter-

native for each utility. Each figure shows the top two factors that control robustness for a utility

under a different defection scenario. The original compromises are shown in far left column while

each other column represents the most robust defection alternative for one of the partner utilities.

Blue shaded regions represent regions of the uncertainty space where utilities are predicted to

meet their satisficing criteria (Rel > 98%, RF < 10% and WFPFC < 10% AVR), red shaded

regions are areas of the uncertainty space where policies are predicted to fail to meet satisficing

criteria.
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Figure 10 reveals how defection impact each utility’s vulnerability to deep uncer-1046

tainty. Figure 10a illustrates that under the social planner’s compromise, Watertown is1047

vulnerable to SOWs with high demand growth and high restriction frequency effective-1048

ness. High demand growth may stress all three satisficing criteria, lowering reliability,1049

increasing the frequency of water use restrictions and subsequently increasing drought1050

mitigation cost. High restriction effectiveness has the potential to greatly reduce revenue1051

from water sales, exposing the utility to financial failure. Under Watertown’s most ro-1052

bust defection alternative this vulnerability changes: Watertown becomes vulnerable at1053

a lower level of demand growth, and the permitting time for the College Rock Reservoir1054

expansion becomes the second most important deep uncertainty, as shown in Figure 10b.1055

This change reflects Watertown’s higher risk tolerance with respect to water use restric-1056

tions under defection scenarios, exposing it to reliability failures under lower levels of de-1057

mand growth. When Dryville defects from the social planner’s compromise, Watertown1058

becomes vulnerable to much lower levels of demand growth, with failures predicted at1059

values just over the estimated demand growth rate. This shift explains Watertown’s large1060

change in robustness under Dryville defection. Watertown sees a similar change in vul-1061

nerability under Fallsland defection from the social planner’s compromise.1062

Under the original pragmatist’s compromise, Watertown is vulnerable to lower lev-1063

els of demand growth, with demand growth multiplier values above 1.3 likely leading to1064

failure. However, when Watertown defects from this compromise, it may slightly increase1065

its tolerable level of demand growth, reflecting the small positive change in robustness1066

shown in Figure 9a. Under Dryville and Fallsland defections, Watertown becomes vul-1067

nerable to much lower levels of demand growth in a similar manner to defections from1068

the social planner’s compromise. Interestingly, under all defection scenarios Watertown1069

has a small number of SOWs that fail under low levels of demand growth, indicating that1070

other factors or combinations of factors may cause vulnerabilities that are difficult to pre-1071

dict.1072

Transitioning to Dryville, Figure 10e reveals that under the original social plan-1073

ner’s compromise, Dryville is vulnerable to a combination of high demand growth and1074

long permitting time for the Sugar Creek reservoir. This highlights Dryville’s reliance1075

on infrastructure expansion to manage growing demands underthe social planner’s com-1076

promise. When either cooperating partner defects from the social planner’s compromise,1077

Dryville’s failure region increases in both directions, indicating that its cooperating part-1078
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ners may reduce its ability to manage growing demand and increase its reliance on a rapid1079

permitting process for the Sugar Creek reservoir. The importance of the permitting time1080

presents a challenge as this uncertainty is very difficult to predict. Conversely, Figure1081

10g illustrates that when Dryville defects from the regional agreement it is able to meet1082

its satisficing criteria in all tested SOWs, eliminating its vulnerability to growing demand1083

or infrastructure permitting.1084

Under the original pragmatist’s compromise, demand growth rate is the dominant1085

driver of Dryville’s failure, though restriction effectiveness plays a minor role as shown1086

in Figure 10q. When Watertown and Fallsland defect, the main drivers of failure remain1087

the same, though Dryville’s vulnerability to demand growth is increased under Fallsland1088

defection. Like Watertown however, Dryville experiences failure in a small number of SOWs1089

with low demand growth, indicating that other combinations of uncertainties may cause1090

failure in ways difficult to predict. As the case under the social planner’s solution, when1091

Dryville defects from the pragmatist’s compromise, it is able almost completely elimi-1092

nate vulnerability to deep uncertainty, as shown in Figure 10s.1093

Examining Fallsland’s vulenrability reveals that under the social planner’s com-1094

promise, Fallsland is vulnerable to a combination of high demand growth rate and high1095

restriction effectiveness, as shown in Figure 10i. When Watertown defects, this vulner-1096

ability is increased, though the salient factors remain unchanged. Dryville defection from1097

the social planner’s compromise reduces Fallslands vulnerability to all but the most ex-1098

treme demand growth scenarios. When Fallsland defects, it can eliminate vulnerability1099

in all but a small number of SOWs as shown in Figure 10j.1100

Under the original pragmatist’s compromise demand growth rate is the only driver1101

of failure for Fallsland, as illustrated in Figure 10u. Fallsland is not greatly affected by1102

defection from its partners, though like the other two utilities, defection does cause vul-1103

nerability in low demand growth futures that are difficult to predict. Like under the so-1104

cial planner’s compromise, Fallsland can almost completely eliminate vulnerability if it1105

should defect from the pragmatist’s compromise, as shown in Figure 10x.1106

5.5 Mapping regional power relationships1107

Figure 10 highlights how our RDA expansion of the DU Pathways framework broad-1108

ens our conception vulnerabilities in narrative scenarios by explicitly including the ac-1109
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tions of regional partners. Synthesizing our overall results, Figure 11 summarizes the im-1110

pact of defection actions on the cooperative infrastructure investment and water port-1111

folio management compromise policies. Figure 11a asks the question- how does regional1112

defection impact the performance of the social planner and pragmatist compromise poli-1113

cies? Each row of Figure 11a represents a defection scenario, and each column represents1114

a performance metric for one of the regional partners. The shading of each cell repre-1115

sents significant increases (green) or decreases (purple) to performance (defined as changes1116

in robustness ≥ 5% or changes in infrastructure spending ≥ $10 million). This multi-1117

dimensional representation of defection incentives and consequences represents a straight-1118

forward, yet detailed illustration of cooperative stability. While both compromises are1119

vulnerable to regional defection, the incentives and consequences of defection differ be-1120

tween the two compromise portfolios. This information allows regional partners to craft1121

tailored conflict mitigation strategies for each compromise. For example, under the so-1122

cial planner’s compromise, Fallsland and Watertown may seek to implement binding de-1123

fection penalties as a precondition to the exploration of shared infrastructure investment.1124
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Figure 11. Cooperative stability and regional power dynamics. a) A multi-criteria per-

spective on cooperative stability from the RDA. Shaded cells represented significant changes in

performance from regional defection, defined as changes in robustness ≥ 5% or changes in in-

frastructure spending ≥ $10 million. Green shaded cells with up arrows represent incentives to

defect from the regional partnership, while purple shaded cells with down arrows represent conse-

quences of defection. All utilities have incentive to defect from both solutions and defection has

consequences for all three utilities. b) A mapping of power to relationships within the regional

system. For each water utility, we map the power that its cooperating partners have to increase

its vulnerability.
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To further explore the potential for regional conflict, Figure 11b asks the question-1125

how is each actor vulnerable to the actions of their cooperating partners? In Figure 11b,1126

we map each utility’s power to degrade the performance of its cooperating partners. Each1127

panel highlights the vulnerability of a water utility under one of the compromise poli-1128

cies. Arrows represent the power that each of the utility’s partners have to degrade their1129

performance through defection. Figure 11b illustrates how vulnerability -and conflict-1130

may differ between the two compromise policies. For example, under the social planner’s1131

compromise, Fallsland is vulnerable to defection from both Watertown and Dryville, while1132

under the pragmatist’s compromise it is only vulnerable to defection by Dryville. With1133

this information Fallsland learns that it must monitor the actions of both Dryville and1134

Watertown should the the social planner’s compromise be selected, but only Dryville if1135

the pragmatist’s compromise is selected. These insights represent a new dimension to1136

cooperative stability that allow the cooperating partners to monitor how regional con-1137

flict may occur prior to selecting a regional compromise.1138

The power to relationships mapped in Figure 11 are results from our exploratory1139

analysis of possible future scenarios, not a prediction of what will happen in the regional1140

system. With their larger populations, Fallsland and Dryville wield more political in-1141

fluence in the region, and may be able to lobby the federal government to increase their1142

allocations to Lake Michael to levels found in defection alternatives. However, Watertown-1143

the most vulnerable utility to cooperative defection- controls the only water treatment1144

plant on Lake Michael and has the power to restrict access to treated transfers. The re-1145

sults of the RDA allow the larger utilities to foresee strong reaction from Watertown in1146

the event of regional defection. Importantly, there is also a strong power with relation-1147

ship between the three utilities. Our results demonstrate that if the utilities implement1148

a cooperative compromise without defection, they have the collective ability to achieve1149

robust and high performance cooperative water supply management policies for the re-1150

gional system. The comprehensive illustration of the benefits and vulnerabilities of co-1151

operative compromise provided in this study allow the three utilities to enter negotia-1152

tions with a transparent understanding of the regional conflict in the system.1153

6 Conclusion1154

This study advances the DU Pathways framework by contributing the exploratory1155

modeling centered RDA to examine the potential for conflict in cooperative water sup-1156
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ply planning problems. Our RDA first utilizes many-objective optimization as an exploratory1157

tool to discover how cooperating partners may be incentivized to defect from a cooper-1158

ative compromise, then uses scenario discovery to examine how regional vulnerability to1159

deep uncertainty is shaped by defection. We examine our results using visual analytics1160

to reveal how cooperating actors may choose to defect, the impact of defection action1161

on infrastructure pathways and the power relationships between regional actors.1162

We demonstrate our methodology on the Sedento Valley - a regional water supply1163

test case where three urban water utilities seek cooperative infrastructure investment and1164

water supply portfolio pathways. Our findings reveal that seemingly stable cooperative1165

compromises are vulnerable to defection by cooperating partners, and the consequences1166

of defection are asymmetric across partner utilities. We use these results to map regional1167

power relationships, which can be used by stakeholders to anticipate and avoid conflict.1168

While not the central focus of this study, the contrast between the social planner’s1169

compromise and the pragmatist’s compromise echo two diverging approaches in the wa-1170

ter industry today - public sector control and water utility privatization (Beecher, 2013).1171

The social planner’s compromise, with it’s strong investment in shared infrastructure,1172

mirrors a public sector approach, while the pragmatist’s compromise, which emphasizes1173

drought mitigation and purchases of treated transfers has similarity to a private sector1174

approach. Our results show that both strategies must consider cooperative stability and1175

regional power dynamics in order to meet the stated performance targets. Yet the dif-1176

fering nature of power dynamics and regional vulnerability illustrated in this analysis1177

suggests that public sector and private sector management may be susceptible to differ-1178

ing forms of vulnerability. Future work can use the RDA framework proposed in this work1179

to explicitly evaluate trade-offs between public and private sector management of wa-1180

ter resources.1181

This work focuses on the a posteriori examination of conflict in cooperative com-1182

promises. Additional future work may investigate how cooperative problem formulations1183

may be improved to incentivize compromise and improve cooperative stability.1184
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1 Objective Functions

This section presents the details of the objective formulation for the Sedento val-

ley planning problem. These objectives were first formulated for the Sedento Valley by

Trindade et al., (2020).

1. Reliability (fREL): The reliability objective calculated as the fraction of consid-

ered states of the world which may cause the combined storage level of a utility

to drop below 20% of its maximum capacity in any given week (failure condition):

maximize fREL = min
j

[
min
y

(
1

Nr

Nr∑
i=1

gyi,j

)]
(1)

where,

gyi,j =


0 ∀w :

xw,y
s,i,j

Cj
≥ Sc

1 otherwise
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where gyi,j = 0 if there was a week in a given year of a particular realization where

the combined storage of utility j falls below Sc of capacity (20% in this study),

and 1 otherwise, Nr is the number of realizations in one function evaluation, y is

the simulation year, Nys is the number of years in the project horizon, i is the sim-

ulation realization index.

2. Restriction Frequency (fRF ): Restriction frequency represents the fraction of years

across all realizations in which water use restrictions were enacted in at least one

week:

minimize fRF = max
j

 1

Nys ·Nr

Nr∑
i=1

Nys∑
y=1

hyi,j

 (2)

where,

hyi,j =


0 ∀w : xy,wsrof,i,j ≤ θrt,j

1 otherwise

where hi,j,y = 0 if there was a week in a given year of a given realization in which

water use restrictions were enacted, and 1 otherwise.

3. Infrastructure Net Present Cost (fNPC): The average net present cost of all new

infrastructure build across all realizations:

minimize fNPC =
1

Nr

Nr∑
i=1

BM∑
y=1

PMT

(1 + d)y
(3)

where BM is the bond term, d is the discount rate (5%), y is the year of the debt

service payment PMT since the bond was issued, with PMT being calculated as

(assuming a level debt service bond):

PMT =
P
[
BR(1 +BR)BM

]
[(1 +BR)BM − 1]

(4)

where P is the principal (construction cost), BR is the interest rate to be paid to

the lender BT is the bond term. The stream of payments is then discounted to

present values.

4. Peak Financial Cost (fPFC): The average cost objective represents the expected

yearly cost of debt plus all non-infrastructure water portfolio assets used to man-

age droughts over the planning horizon. These costs are revenue losses from re-

strictions, transfer costs, contingency fund contributions, third-party insurance con-
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tract costs, and debt repayment:

minimize fAC = max
j

 1

Nys ·Nr

Nr∑
i=1

Nys∑
y=1

SY Cy
i,j

 (5)

where,

SY Cy
i,j =

∑
c∈Cj

PMTi,j,c + θacfc,j ·ATRy
i,j + IP y

i,j +ATRi,j

ATRy
i,j

where IP is the insurance contract cost in a given year y, PMTi,j,c is the debt pay-

ment for infrastructure option c if it belongs to the set Cj of infrastructure op-

tions to be built by utility j and is built in realization i, and ATR is the total an-

nual volumetric revenue. All these variables are dollar values.

5. Worse First Percentile Cost (fWFPC): The worse case cost objective represents

the 1% highest single-year drought management costs observed across all analyzed

SOWs over the planning horizon:

SY Cy
i,j =

max(RLy
i,j + TCy

i,j − θacfc,j ·ATR
y
i,j − Y IPO

y
i,j , 0)

ATRy
i,j

(6)

where IP is the insurance contract cost in a given year y, RL is the revenue losses

from water use restrictions, TC is the transfer costs, Y IPO is the total insurance

payout over year y, CF is the available contingency funds, and ATR is the total

annual volumetric revenue. All these variables are dollar values. The worse case

cost objective is then:

minimize fWCC = max
j

{
quantile

i∈Nr

(SY Ci,j , 0.99)

}
(7)

S2 Runtime Diagnostics

For reliable search with a MOEA, it is important to run multiple instances of the

algorithm to overcome any biases in search generated by the initial population (Salazar

et al., 2016). For each defection scenario, four random seeds were run for each utility.

The true Pareto set for this problem is not known, so to assess the convergence conver-

gence we measure relative hypervolume (Zitzler et al., 2007), which compares performance

of the approximate Pareto sets discovered at set checkpoints within search to the final

”reference set”, which contains non-dominated solutions across all seeds. If the relative

hypervolume is found to plateau, we conclude that the algorithm has converged to a sat-

isfactory approximation of the true Pareto set.
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Runtime diagnostics for all defection optimizations are shown in Figure S1. There

was very little variance across seeds, and the hypervolume of all defection optimizations

plateaued after around 20,000 function evaluations.

Figure S1. Runtime diagnostics for the individual optimization runs. The plateau of

hypervolume across all seeds for all formulations indicates that number of function evalua-

tions (NFE) were enough to achieve maximum attainable convergence.

S3. Robustness of defection alternatives

Figures S2-S4 show the top 30 defection alternatives for each utility under the least

squares compromise selection (Social planner’s compromise). The robustness of each al-

ternative is plotted on the vertical axes, and the ranking of the solution is plotted on the

horizontal axis. The solutions highlighted in black were used to generate the scenario

discovery results shown in Figure 10 of the main text.
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Figure S2. Robustness of defection alternatives for Fallsland under the LS compromise

selection.
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Figure S3. Robustness of defection alternatives for Dryville under the LS compromise

selection.

Figure S4. Robustness of defection alternatives for Watertown under the LS compromise

selection.
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Figures S5-S7 show the top 30 defection alternatives for each utility under the power

index compromise selection (pragmatist’s compromise). The robustness of each alter-

native is plotted on the vertical axes, and the ranking of the solution is plotted on the

horizontal axis. The solutions highlighted in black were used to generate the scenario

discovery results shown in Figure 10 of the main text.

Figure S5. Robustness of defection alternatives for Fallsland under the PW compromise

selection.
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Figure S6. Robustness of defection alternatives for Dryville under the PW compromise

selection.

Figure S7. Robustness of defection alternatives for Watertown under the LS compromise

selection.
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