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Abstract

The recently developed Micromagnetic Tomography (MMT) technique combines advances in high resolution scanning magne-

tometry and micro X-ray computed tomography. This allows precise recovery of magnetic moments of individual magnetic grains

in a sample using a least-squares inversion approach. Here we investigate five factors, which are governing the mathematical

validity of MMT solutions: grain concentration, thickness of the sample, size of the sample’s surface, noise level in the magnetic

scan, and sampling interval of the magnetic scan. To compute the influence of these parameters, we set up series of numerical

models in which we assign dipole magnetizations to randomly placed grains. Then we assess how well their magnetizations

are resolved as function of these parameters. We expanded the MMT inversion to also produce the covariance and standard

deviations of the solutions, and use these to define a statistical uncertainty ratio and signal strength ratio for each solution. We

show that the magnetic moments of a majority of grains under the inspected conditions are solved with very small uncertainties.

However, increasing the grain density and sample thickness carry major challenges for the MMT inversions, demonstrated by

uncertainties larger than 100% for some grains. Fortunately, we can use the signal strength ratio to extract grains with the most

accurate solutions, even from these challenging models. Hereby we have developed a quick and objective routine to individually

select the most reliable grains from MMT results. This will ultimately enable determining paleodirections and paleointensities

from large subsets of grains in a sample using MMT.
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Abstract18

The recently developed Micromagnetic Tomography (MMT) technique combines advances19

in high resolution scanning magnetometry and micro X-ray computed tomography. This20

allows precise recovery of magnetic moments of individual magnetic grains in a sample21

using a least-squares inversion approach. Here we investigate five factors, which are gov-22

erning the mathematical validity of MMT solutions: grain concentration, thickness of23

the sample, size of the sample’s surface, noise level in the magnetic scan, and sampling24

interval of the magnetic scan. To compute the influence of these parameters, we set up25

series of numerical models in which we assign dipole magnetizations to randomly placed26

grains. Then we assess how well their magnetizations are resolved as function of these27

parameters. We expanded the MMT inversion to also produce the covariance and stan-28

dard deviations of the solutions, and use these to define a statistical uncertainty ratio29

and signal strength ratio for each solution. We show that the magnetic moments of a ma-30

jority of grains under the inspected conditions are solved with very small uncertainties.31

However, increasing the grain density and sample thickness carry major challenges for32

the MMT inversions, demonstrated by uncertainties larger than 100% for some grains.33

Fortunately, we can use the signal strength ratio to extract grains with the most accu-34

rate solutions, even from these challenging models. Hereby we have developed a quick35

and objective routine to individually select the most reliable grains from MMT results.36

This will ultimately enable determining paleodirections and paleointensities from large37

subsets of grains in a sample using MMT.38

Plain Language Summary39

Iron-bearing rocks have the ability to capture and store the direction and strength40

of Earth’s magnetic field. This information is used to unravel the behavior of the mag-41

netic field that protects us from harmful solar radiation. However, obtaining a reliable42

signal from these rocks is difficult using existing methods because many iron-oxide grains43

exhibit complex magnetic behavior and obscure the magnetic information in them. To44

determine magnetic moments from individual grains, a new method known as Micromag-45

netic Tomography has been developed. This method works similarly to imaging tech-46

niques in hospitals, but now a thin slice of rock containing magnetic grains is scanned.47

By using computer models we discovered that Micromagnetic Tomography is able to re-48

liably extract magnetic signals from a majority of grains in many rock samples. Addi-49
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tionally, we have developed two new parameters that help us to easily select the mag-50

netic moments of the most reliable grains in a sample. In this way the signal of those51

grains can be effectively used to provide accurate information on the present and past52

state of Earth’s magnetic field.53
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1 Introduction54

Obtaining a reliable characteristic remanent magnetization (ChRM) from volcanic55

rock samples is an important challenge in paleomagnetism. Volcanic rocks acquire a ther-56

moremanent magnetization (TRM) when they cool in the Earth’s magnetic field that57

is proporational to the direction and strength of the magnetic field at the time of cool-58

ing. TRMs of natural rocks are often regarded to be the most reliable data source for59

geomagnetic field models because of their ability to store information on the paleomag-60

netic field for thousands to millions of years (e.g. Panovska et al., 2019; Pavón-Carrasco61

et al., 2021). Full vector ChRMs consist of both directional and intensity information62

on the past geomagnetic field, but they can generally only be obtained for 10% to 20%63

of volcanic samples carrying TRMs (e.g. Tauxe & Yamazaki, 2015; Nagy et al., 2017).64

One of the reasons for the low success rates is that only single domain (SD) or pseudo-65

single domain (PSD) iron oxide grains, typically with diameters < 1 µm, are reliable recorders66

of the Earth’s magnetic field. Larger multidomain (MD) grains are typically prone to67

more unstable magnetic moments (Néel, 1955; Fabian, 2000, 2001). Natural rocks com-68

monly contain a wide range of iron-oxide particle sizes. Magnetically adverse behaved69

MD grains are therefore often present. When measuring bulk rock samples the measured70

magnetic moment is a statistical summation of all the magnetic grains in the sample.71

The presence of MD grains therefore often explains the low success rate of extracting a72

reliable full vector bulk ChRM.73

A solution to this problem would be to differentiate between signals stored in small74

and large grains by determining the magnetic moment of each iron-oxide grain in a sam-75

ple separately. To obtain all individual magnetic moments, the magnetic flux above a76

thin sample produced by all grains inside is measured on a micrometer scale. Such a map77

of the magnetic flux with the necessary resolution in space and magnetic moments can78

be obtained from a scanning superconducting quantum interference device (SQUID; e.g.79

Egli & Heller, 2000; Weiss et al., 2007; de Groot et al., 2018) or a quantum diamond mag-80

netometer (QDM; e.g. Glenn et al., 2017; Farchi et al., 2017; de Groot et al., 2021). Un-81

fortunately, this is not sufficient to reconstruct the magnetic moments of individual grains82

inside the sample. To reduce the number of unknown variables in the inversion, the po-83

sition of the magnetic grains must be constrained further. Weiss et al. (2007), for exam-84

ple, applied a constraint related to the dipolar magnetization of all grains, by assuming85

that the magnetization for all grains is uniform in intensity and direction. The magnetic86
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signal of grains close to the sensors that detect the surface magnetic field, however, is87

better modeled using multipoles than dipoles (Cortés-Ortuño et al., 2021). Additionally,88

since shapes and volumes of grains can vary, it appears unlikely that the magnetization89

of all grains are uniform in intensity and direction (Dunlop & Özdemir, 1997). To avoid90

further assumptions on the positions of grains, de Groot et al. (2018) employed micro91

X-Ray Computed Tomography (MicroCT) to exactly determine these positions. By com-92

bining MicroCT with the surface magnetic field obtained by magnetometry the result-93

ing mathematical inversion problem becomes well posed (Fabian & De Groot, 2019), and94

it is possible to compute the individual magnetic moments of every grain in the sample.95

It was recently shown that not only the dipole component of the grain’s magnetic mo-96

ments can be recovered, but also higher order multipole components can be determined97

(Cortés-Ortuño et al., 2021). This technique of combining scanning magnetometry data98

with MicroCT analyses to constrain the mathematical inversion and obtain magnetic mo-99

ments of individual grains in a sample is now known as Micromagnetic Tomography (MMT).100

Although the potential of MMT was illustrated by de Groot et al. (2018, 2021),101

significant challenges remain before this new technique is of experimental value for pa-102

leomagnetic and rock-magnetic studies. These challenges are of empirical nature on one103

hand, and of both mathematical and computational nature on the other. Examples of104

empirical challenges are the resolution of the MicroCT and magnetic scanning techniques,105

mapping between the two data-sets and applying routine paleomagnetic and rock-magnetic106

treatments to the samples in the MMT workflow. Here, however, we focus on compu-107

tational and mathematical challenges that remain, and provide a theoretical framework108

on how to obtain and treat uncertainties arising from MMT inversions. Furthermore, we109

provide new statistical parameters that describe and scrutinize MMT results and are there-110

fore necessary to address the standing empirical challenges.111

To assess the accuracy and uncertainty associated with magnetic moments of in-112

dividual grains obtained with MMT, we consider five different factors that may substan-113

tially affect the theoretical uncertainty of MMT solutions: (1) the thickness of the sam-114

ple, (2) the area covered by the surface magnetic scan, (3) the grain density of the rock115

sample, (4) the distance between adjacent measurement points on the surface, and (5)116

the instrumental noise level of the surface magnetometry. We design numerical models117

to cover all combinations of these five factors. To determine the quality of the uniform118

magnetic moments as determined by MMT in a spherical coordinate frame, we define119
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a 95% confidence interval that we obtain from bootstrapping the covariance matrix pro-120

duced by the MMT inversion. The 95% confidence interval gives a quantitative indica-121

tion of the mathematical accuracy of the solution in a single parameter. Additionally,122

we evolve the V/R3-ratio (Cortés-Ortuño et al., 2021) that relates the depth and vol-123

ume of a grain to the strength of the magnetic signal that the grain can potentially pro-124

duce on the surface of the sample, into the ‘signal strength ratio’. We then use this sig-125

nal strength ratio (SSR) to quickly discern which grains are solved with high confidence.126

Finally, we discuss the implications of our results on obtaining highly accurate ChRM127

measurements.128

We selected five parameters for our study to assess the response of the accuracy129

of MMT results to variations in these boundary conditions. There are undoubtedly more130

factors influencing MMT solutions, but they are mostly of empirical nature, e.g. grains131

not recognized by MicroCT, and co-registration errors related to spatial distortions be-132

tween MicroCT data and magnetic field data. These factors are challenging to model133

and depend primarily on the technical details and configurations of the instruments in-134

volved. They are therefore better solved by a technical assessment than by mathemat-135

ical simulations. Furthermore, our study is limited in that we only assign representative136

uniform (i.e., dipolar) magnetic moments to all grains in our models; although multipole137

moments may be more realistic for the larger grains included. The MMT studies to date,138

however, mostly use this dipole approximation in their inversions; MMT studies using139

higher order, multipole, moments were proposed only recently (Cortés-Ortuño et al., 2021).140

The statistical parameters to assess and scrutinize MMT results that we propose here141

will be applicable to higher order MMT results as well.142

2 Methods143

2.1 Model design144

The inversion routine we use here closely follows the procedure as described in de145

Groot et al. (2018, 2021), but we first define synthetic models given the five parameters146

that we consider in this study. This requires populating ‘sample volumes’ with grains147

in random locations and assigning them a somewhat realistic uniform magnetization. Then148

we calculate the map of the magnetic flux on the surface of the sample and perturb these149

maps with realistic noise. Once the sample volumes and magnetic flux map are deter-150
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Figure 1. The MMT workflow of one of our models containing 75,000 grains per mm3 with

a dipolar magnetization. a) Geometric overview of the model with a 200×200 µm2 sample sur-

face size. Each grain is assigned a color for clarity, the colors do not have further meaning. The

sensor grid is located on top of the model at z = 0. Each grain is build from rectangular shaped

cuboids. b) Original magnetic field created by the signal of the grains and after adding noise

with a level of 100 nT. c) Magnetic field produced by the signal of grains with the inverted mag-

netization values. The unit of field strength in b) and c) is µT. d) Residual field obtained by

subtracting the original field in b) from the forward field based on the inversion result in c). The

unit of field strength in d) is nT.
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Table 1. Parameters changed between models. Every possible combination of parameters is

assessed in this study, resulting in 448 models. Each model is then ran 15 times to ensure statis-

tically robust results.

Parameter Unit Modeled values

Sample surface size µm2 200×200, 500×500

Sample thickness µm 50, 75

Grain density 103 grains per mm3 2.5, 5.0, 10.0, 25.0

50.0, 75.0, 100.0

Sampling interval µm 1, 2, 4, 5

Noise level nT 5, 20, 50, 100

mined we apply the inversion routine but also produce the standard deviations associ-151

ated with the individual magnetic moments. Lastly, we define the 95% confidence inter-152

val of magnetic moments to assess the performance of MMT as a function of the five in-153

put parameters for the models.154

2.1.1 Populating sample volumes155

To define the input of the inversions we start with a rectangular sample volume with156

a predefined, rectangular, surface size and a set sample thickness. Inside this volume a157

number of modeled iron-oxide grains are randomly placed such that they do not inter-158

sect. The number and average volume of these grains determine the modeled iron-oxide159

grain density. We modeled samples with an area of 200 × 200 and 500 × 500 µm2. The160

maximum thickness of the models was either 50 or 75 µm (Table 1). The individual grains161

used to populate the models with were taken from the actual geometries obtained from162

a MicroCT scan of a volcanic sample prepared from a sister sample of HW03 (de Groot163

et al., 2013; ter Maat et al., 2018; de Groot et al., 2021). This sample was obtained from164

a lava flow active in 1907 on Hawaii. The sample was drilled at an elevation of 603 m165

(±4 m) with a latitude of 19◦ 4.315’ and a longitude of 155◦ 44.314’. The sample was166

reduced to a thickness of 80 µm, after which the location and size of its magnetic grains167

were obtained with MicroCT. The MicroCT outputted each grain as a list of voxels with168

an elementary volume of 0.75 × 0.75 × 0.75 µm3. The individual voxels were combined169

–8–



manuscript submitted to Geochemistry, Geophysics, Geosystems

into a minimum amount of rectangular shaped cuboids, which together composed one170

grain, for optimization purposes. The MicroCT data showed that all grains have a di-171

ameter between 1 and 20 µm. We populated the models with these grains without chang-172

ing their orientation until the respective grain density was reached, which is specified in173

Table 1. By using this range of grain densities, the models simulated both the low grain174

density of the synthetic sample of de Groot et al. (2018) and the high grain density of175

the volcanic sample of de Groot et al. (2021). Each grain was then placed at a random176

location within the model such that it does not intersect another grain or the bound-177

aries of the model (Fig. 1a). This random placement routine has been made more ef-178

ficient by imposing that the top side of each grain could only be placed between the sur-179

face of the sample and 10 µm from the bottom of the sample, since most grains have di-180

ameters smaller than 10 µm. The sample thickness for some models could, therefore, be181

less than the indicated value. If the grain did not fit at the given location, we retried plac-182

ing the grain up to a hundred times. If the grain did not fit by then, we selected at ran-183

dom another grain geometry and tried to fit the new grain up to a hundred times again.184

2.1.2 Assigning realistic magnetizations185

In the next step, each individual grain was assigned a random magnetization M186

= (Mx, My, Mz), where |M| denotes its magnitude. Therefore, we treat all grains as equiv-187

alent single domain grains. This implies that the cuboid components of each grain have188

the same strength and direction of magnetization as the whole grain. To obtain realis-189

tic magnetization values, the value of |M| was chosen to agree with the magnetization190

versus grain diameter trend for a natural volcanic sample presented in Fig. 4D of de Groot191

et al. (2021). This trend is a SD grain magnetization representation of the magnetiza-192

tion intensity of PSD and MD grains and is in good agreement to the relation between193

the relative magnetization as function of grain diameter in Fig. 29 of Dunlop (1990). The194

trend line in Fig. 4D (de Groot et al., 2021) can be converted to the empirical relation:195

|M| = M0 (V/V0)
α
, (1)

where V0 is the volume, and M0 the magnetization of a sphere with diameter 1 µm; α196

is the relation parameter, and |M| is the absolute expected magnetization of a grain with197

volume V . For the trend line in Fig. 4D in de Groot et al. (2021) we obtained: M0 =198
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46.5 kA/m, and α = −0.355. To simulate the spread in the data points that define this199

relation, we add a perturbation to the magnetizations. To this end the magnetization200

norm |M| was multiplied by 10N(µ,σ2), where N(µ, σ2) represents the Gaussian distri-201

bution with a mean, µ, of zero and a variation, σ2, of 0.52, to produce the final magne-202

tization norm |Mf |. Hereafter, we sampled the uniform distribution U(0, 2π) to obtain203

the angle φ of the magnetization vector in the x − y-plane. The angle θ with respect204

to the z-axis was sampled from the uniform distribution U(0, π). The norm and the two205

angles of the magnetization vector were then transformed into the Cartesian components206

Mx, My, and Mz.207

2.1.3 Calculating the magnetic flux map208

Once the particle positions and magnetizations are assigned, the grid of measure-209

ment points is defined on the surface z = 0. The sampling interval of the magnetic flux210

map is one of the parameters that we investigate in this study, so it is varied to repre-211

sent different realistic sampling intervals (Table 1). The smallest sampling interval used212

in the analysis is 1 µm such that a measurement area of 200 × 200 µm2 contains 201 ×213

201 (=40,401) measurement points, and a model area of 500 × 500 µm2 contains 501214

× 501 (=251,001) measurement points. The largest sampling interval is set to 5 µm, so215

that the 200 × 200 µm2 surface contains 41 × 41 (=1,681) data points and the 500 ×216

500 µm2 surface is limited to 101 × 101 (=10,201) data points.217

Now that the grain shapes and locations, and the grid of the measurement points218

on the surface are determined, the vertical magnetic flux field is calculated in each of the219

measurement points. The flux field is produced by all uniformly magnetized cuboids be-220

longing to a grain and declines in strength when propagating to the sensors at the sur-221

face. To model this behaviour the flux field is represented by a multiplication of the cuboids’222

magnetization components (Mx, My, and Mz) with a corresponding factor Q. This fac-223

tor declines for increasing distance between sensor and cuboid, and is dependent on the224

direction of the magnetization components. Details for calculating this factor is found225

in the Supplementary Information of de Groot et al. (2018). All Q factors associated to226

the cuboids making a single grain are summed per magnetization component. This re-227

sults in three factors Qxsg, Qysg, and Qzsg obtained for a grain g measured at a sensor228

s. To obtain the flux field φs measured at the sensor these factors are multiplied by the229

magnetization of the grain Mxg, Myg, and Mzg, respectively, and summed. The total flux230
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field measured at one sensor, however, is not created by one grain but by K grains. For231

that reason, the total magnetic flux field φs measured at the sensor is a summation over232

the flux field of K grains, or233

φs = Qxs1Mx1 +Qys1My1 +Qzs1Mz1 +Qxs2Mx2 + . . .+QzsKMzK

=

[
Qxs1 Qys1 Qzs1 Qxs2 · · · QzsK

]



Mx1

My1

Mz1

Mx2

...

MzK


.

(2)

Since the magnetic flux field is obtained simultaneously at P sensors, the full represen-234

tation of the forward problem in matrix notation is235



φ1

φ2
...

φP


=



Qx11 Qy11 Qz11 Qx12 · · · Qz1K

Qx21 Qy21 Qz21 Qx22 · · · Qz2K
...

...
...

...
. . .

...

QxP1 QyP1 QzP1 QxP2 · · · QzPK





Mx1

My1

Mz1

Mx2

...

MzK


. (3)

This forward problem, therefore, consists of P rows and 3 × K columns and will be writ-236

ten in the following short notation,237

φ = QMa. (4)

In our models the magnetic signal at each measurement point is the total integrated238

magnetic flux from all grains through a rectangular sensor loop in the x − y-plane of239

the sample with side lengths 1 × 1 µm centered at the measurement point. To simulate240

the effect of instrumental errors introduced by a magnetometer, e, one of the four noise241

levels specified in Table 1 was added to the magnetic field of each model, φ̃ = φ + e.242

This adds white noise that is normally distributed with a standard deviation governed243

by the noise level and with a zero mean to the magnetic surface scan. These noise mag-244
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nitudes are comparable to those described by Glenn et al. (2017). Now the maps of the245

magnetic flux at the surface of our models are known (Fig. 1b).246

2.1.4 Inversion procedure247

Based on the methods of de Groot et al. (2018), Fabian and De Groot (2019), and248

de Groot et al. (2021), we used a least-squares minimization to obtain the magnetiza-249

tion of individual grains in the sample, since the inverse problem has a larger number250

of magnetic flux field observations than unknown magnetization components, i.e. P >251

3×K (Snieder & Trampert, 1999). The magnetization solution, M̂a, is given by252

M̂a = Q†φ̃, (5)

with Q† being the pseudo-inverse of Q. The calculated magnetization is used to com-253

pute the forward magnetic flux field, φ̂ (Fig. 1c). This forward field is obtained through254

matrix multiplication of the calculated magnetizations with matrix Q, frequently called255

the Green’s matrix,256

φ̂ = QM̂a. (6)

Subtracting the initial magnetic field from the forward field results in the residual mag-257

netic field (Fig. 1d).258

2.1.5 Varying the input parameters259

For each of the five input parameters we determined a range of realistic values to260

assess (Table 1). Incorporating all combinations of these five factors yields 448 differ-261

ent computational models, formed by all possible combinations of 2 sample surface ar-262

eas, 2 sample thicknesses, 7 different grain densities, 4 different sampling intervals, and263

4 different noise levels. We executed each of these models fifteen times with different ran-264

dom grain locations and uniform magnetizations to attain enough inversion solutions for265

a stable and meaningful statistical underpinning of the results. The coarser sampling rates266

of 2, 4, and 5 µm grid spacing were simulated by sub-sampling the 1 µm grid after noise267

was added. In this way we make sure that each sampling rate uses the same noise con-268

taminated magnetic field.269
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2.2 Uncertainty ratio270

2.2.1 Covariance and standard deviation271

The inversion as used for MMT also allows for determining the standard deviation272

and covariance associated with each solution. To assess the accuracy and uncertainty273

of the MMT results we define a 95% confidence sphere. The 95% confidence sphere, which274

is similar to a 95% confidence interval in three dimensions, is obtained per grain through275

bootstrapping the covariance matrix for each solution that we obtain from the inversion276

routine. This is done such that if we would repeat the inversion procedure and redraw277

the Gaussian noise e a hundred times, we would expect for a grain that 95 out of the278

100 associated 95% confidence spheres contain the ‘true’ correct magnetization, M (Sim279

& Reid, 1999). The radius of the confidence sphere gives the precision of the correspond-280

ing magnetization solution, where a larger radius indicates a less precise solution.281

The 95% confidence sphere is constructed by means of the magnetization solutions282

M̂a and the covariance matrix Cij . The covariance matrix is defined to indicate the ex-283

pected relationship between two variables a and b relatively to the deviation from their284

expected values E[a] and E[b]. If the covariance between two magnetization variables285

M1 and M2 is positive, and if M2 is larger than expected, then this implies that M1 will286

be larger than expected and vice versa. Conversely, if the covariance is negative and if287

M1 is larger than expected, then this means that M2 will be smaller than the expected288

value and vice versa. The covariance of a magnetization variable with itself, Cii, is al-289

ways positive and indicates the squared deviation from the expected value, which is fre-290

quently called the squared standard deviation. The covariance matrix is mathematically291

defined as292

C = E[(M̂a − E[Ma])(M̂a − E[Ma])T ]. (7)

The value E[Ma] is known as the expected magnetization, which is the magnetization293

that would result from perfect magnetic flux observations without any observational noise294

E[Ma] = Q†φ. (8)

–13–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Note the similarity between equation (8) and equation (5). If we theoretically obtain a295

magnetic flux field without any observational noise, then the magnetization calculated296

through equation (5) is equal to the expected magnetization of equation (8).297

By combining equations (5) and (8), we can define M̂a as the sum of perfect ob-298

servations and instrumental errors e, modeled as Gaussian noise,299

M̂a = Q†(φ + e)

= Q†φ +Q†e

= E[Ma] +Q†e, (9)

with Q†e being the magnetization error caused by Gaussian instrumental noise. The def-300

inition for M̂a in equation (9) is used to simplify equation (7) to301

C = E[(E[Ma] +Q†e− E[Ma])(E[Ma] +Q†e− E[Ma])T ]

= E[(Q†e)(Q†e)T ]

= E[Q†eeT (Q†)T ]. (10)

The matrix Q† is the least squares inverse of the Green’s matrix Q, therefore it is de-302

fined as (QTQ)−1QT (Snieder & Trampert, 1999). The matrix is not a variable, there-303

fore only the expected value of the errors of the magnetic field is left, E[eeT ]. In this study304

we assume that the errors of the magnetic field are uncorrelated, because we disregard305

grain positioning errors caused by MicroCT (de Groot et al., 2018, 2021). Assuming that306

the errors are uncorrelated, E[eeT ] is equal to the squared standard deviation of the er-307

ror e times the unit matrix or σ2I. Note that σ is the standard deviation of the expected308

instrumental noise in the data, which is one of the five parameters we vary in this study.309

Implementing this new expression into equation (10) and rearranging gives the final equa-310

tion for calculating the covariance matrix311

C = Q†E[eeT ](Q†)T

= Q†E[eeT ]((QTQ)−1QT )T

= (σ2(QTQ)−1)T = σ2(QTQ)−1, (11)

We deduced from equation (7) that the covariance matrix is symmetric. Hence, (σ2(QTQ)−1)T312

is the same as σ2(QTQ)−1. The inverse of the matrix QTQ exists, because the problem313

is well posed (Fabian & De Groot, 2019). The squared standard deviations of the assigned314

magnetizations per grain are now found on the main diagonal of the σ2(QTQ)−1 ma-315

trix. The root of the main diagonal therefore gives the standard deviations of the assigned316
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Figure 2. The construction of the uncertainty ratio. The covariance matrix is bootstrapped

to generate a set of 10,000 possible magnetization vectors around mean magnetization vector M.

The radius of a sphere containing 9,500 of the end-points of these vectors is defined as the 95%

confidence sphere with radius u. The length of the magnetization vector |M| and u are then used

to define the uncertainty ratio of a solution.

magnetizations per grain and per x, y, and z-component. Now we have found an expres-317

sion for the covariance and standard deviation of the three magnetization components318

for individual grains. We will use these expressions in the next section to calculate the319

95% confidence sphere and the uncertainty ratio.320

2.2.2 Calculation of the 95% confidence sphere321

The 95% confidence sphere is set-up by bootstrapping the covariance matrix and322

magnetization of all grains simultaneously; the radius of the sphere is determined per323

grain in such a way that 95% of the samples are located within the sphere. First, a mul-324

tivariate normal distribution, which has as input both the total magnetization vector Ma325

and the complete covariance matrix, is sampled 10,000 times to generate 10,000 mag-326

netization vectors for each grain at once. Then, we constructed per grain 10,000 differ-327

ence vectors, which represent the difference between the bootstrapped vectors and the328

individual mean magnetization vector M. The norms of these difference vectors are sorted329
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in ascending order and the 9,500th norm value is used as radius, r, for a 95% confidence330

sphere centered at M.331

By presenting uncertainty in this way we have implicitly assumed that the boot-332

strapped magnetization vectors are Fisherian distributed, which means that the devi-333

ation from the mean is the same in every direction (Fisher, 1953). However, the stan-334

dard deviations of magnetization are not equal in the x, y, and z-direction. The real dis-335

tribution is probably more similar to an elliptic Kent distribution (Kent, 1982). The down-336

side of parametrizing the Kent distribution is the necessity to use three parameters to337

describe an ellipsoid. Nevertheless, it depends on the type of research whether the fo-338

cus is put on either uncertainties in the orientation, the norm, or both. To accommo-339

date both sides we assume a Fisherian distribution, which can be visually represented340

by a 95% confidence sphere around the mean magnetization vector.341

After obtaining the 95% confidence sphere, we notice that the radius of the con-342

fidence sphere is an absolute measure. This makes it difficult to compare the magneti-343

zation uncertainties of grains with different mean magnetizations. Furthermore, the mag-344

netization solution and thus the 95% confidence sphere is dependent on the volume of345

the grain. Unfortunately, the grain volume is not constrained well due to measurement346

errors of the MicroCT. To acquire a volume independent uncertainty parameter per grain,347

we have defined the uncertainty ratio. The uncertainty ratio can be calculated by divid-348

ing the radius of the 95% confidence sphere, u, by the mean magnetization vector |M|349

per grain, which eliminates the volume dependency (Fig. 2):350

uncertainty ratio =
u

|M|
× 100%. (12)

2.3 Signal strength ratio351

The performance of the MMT technique depends on how well the magnetic mo-352

ment of an individual grain is expressed in the magnetic flux map on the surface of the353

grain. To assess the potential maximum contribution to the magnetic flux on the sur-354

face of the sample arising from an individual grain Cortés-Ortuño et al. (2021) defined355

the V/R3 ratio. This property is dependent on the distance of the geometric center of356

the grain to the scanning surface, R, and the volume of the grain, V , (see Appendix of357

de Groot et al., 2018). Unfortunately, the V/R3 ratio does not account for the magne-358
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Figure 3. a) Relation between grain depth and grain volume as a function of SSR. b) Re-

versed cumulative SSR distribution for a 50 and 75 µm thick sample based on grains of the

volcanic sample of de Groot et al. (2013). This panels shows, for example, that 70% of the grains

in a modeled sample with a thickness of 75 µm have a SSR larger than 2.3×10−4, as indicated by

the red dotted lines.

tization of grains as function of their volume. Smaller SD to PSD grains have on aver-359

age stronger magnetizations than larger MD grains (Dunlop, 1990; de Groot et al., 2018,360

2021). de Groot et al. (2021) showed that if the diameter of a grain increases one order361

of magnitude, then the magnetization decreases approximately by one order of magni-362

tude for PSD and MD grains. We already have incorporated this relation in our mod-363

els using equation (1). This equation shows that the magnetization norm decreases with364

one order of magnitude if the volume increases by three orders of magnitude, equivalent365

to an increase in diameter of one order of magnitude. For this reason we have defined366

the signal strength ratio, SSR, as367

SSR :=
V

R3d
, (13)

with d the diameter of the grain in µm, assuming that the volume of the grain is shaped368

like a sphere. Fig. 3a shows the effect of the signal strength. It shows that, although smaller369

grains are now parametrized to produce a stronger signal, larger signal strengths are still370

linked to predominantly larger grain volumes.371

The cumulative distribution of the SSR per model is shown in Fig. 3b. All mod-372

els use the same randomly selected grains from the volcanic sample, therefore, we only373

distinguished a SSR distribution for the 50 and 75 µm thick samples, since the thick-374
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ness of the sample is the only factor influencing the SSR distribution. Because the 75375

µm sample contains deeper grains, the minimum SSR for those models is lower than for376

50 µm thick models. Approximately 70% of the grains in a 75 µm thick model have a377

SSR of at least 2.3× 10−4. This SSR is obtained, for example, for a grain with a vol-378

ume of 10 µm3 at a depth of 25 µm. On the other hand, 70% of the grains in a 50 µm379

thick model have a SSR larger than 9.8 × 10−4. A grain with this SSR and a volume380

of 10 µm3 would be located at a depth of 16 µm. Here, we have seen that a grain with381

a low SSR has more difficulty expressing its magnetic flux at the surface, but the exact382

relation between the grain’s SSR and the uncertainty of a magnetization solution is not383

known and will be investigated in section 3.2.384

3 Results385

First, we present the influence from sample surface size, sample thickness, grain den-386

sity, noise level, and sampling interval on the uncertainty ratio of the obtained magne-387

tizations. Thereafter we will focus on individual magnetization solution, where we in-388

spect the minimally needed SSR to produce magnetization results with an acceptable389

uncertainty ratio.390

3.1 Uncertainty ratio391

3.1.1 Grain density392

After running and combining results of all fifteen iterations per model, the sizes393

of all uncertainty ratios are sorted per noise level and summarized in Fig. 4 for the 200×200394

and 500×500 µm2 sample surface sizes. Per model, the distribution of the uncertainty395

ratio of all grains is presented in a box-plot. We indicate an uncertainty ratio of 10% as396

a reference size in the panels of this figure, because it is the largest uncertainty value still397

considered low (e.g., Berndt et al., 2016). A 10% uncertainty ratio means that 9,500 of398

the 10,000 bootstrapped vectors are located within a sphere, which has a radius of 10%399

of the norm of the mean magnetization vector.400

For the samples with a surface size of 500 × 500 µm and a thickness of 50 µm we401

observe an exponential increase in uncertainty ratio with respect to grain density (Fig.402

4e-f). At least 75% of the grains in models with grain densities smaller than or equal to403

104 grains per mm3 are associated with small uncertainty ratios (<10%), which means404
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Figure 4. Box-plots showing per model the distribution of the uncertainty ratio of all grains

as a function of grain density. The red line in each box-plot indicates the median uncertainty

ratio, the bottom and top edges of the solid rectangles show the first and third quartile respec-

tively. The bottom and top of each box-plot show the minimum and maximum uncertainty ratio

respectively per model. The set of panels a-d show results for a 200×200 µm2 sample surface

and the set of panels e-h show results for a 500×500 µm2 sample surface. Each of the four box-

plots per panel per grain density correspond from left to right to one of the four noise levels,

respectively 5, 20, 50, and 100 nT. The top panels of each set (a-b and e-f) refer to a 50 µm thick

sample. The bottom panels of each set (c-d and g-h) refer to a sample with a thickness of 75

µm. The first column of panels is constructed with a sampling interval of 1 µm and the second

column is constructed with a sampling interval of 5 µm.

–19–



manuscript submitted to Geochemistry, Geophysics, Geosystems

that most grains in these distributions are relatively well solved. For grain density lev-405

els larger than 25×103 grains per mm3, uncertainty ratios of about 25% of the grains406

exceed 100%. These large uncertainties potentially mean that some grains in volcanic407

samples, which have similar grain densities, cannot be resolved well. However, more than408

half of the grains still have uncertainty ratios smaller than 1% for the best-case scenario409

(i.e. instrumental noise of 5 nT, sampling interval of 1 µm). Therefore, most grains can410

be well solved with a sufficiently small uncertainty.411

3.1.2 Noise level412

Increasing the noise level from 5 to 100 nT results in an overall increase of all un-413

certainty ratios between one and two orders magnitude (Fig. 4e). These larger uncer-414

tainties are expected, because a larger noise level directly increases the standard devi-415

ation of the solution through the covariance matrix (see equation (11)). The median un-416

certainty ratio for the highest grain density increases from 0.5% to 10% for a noise level417

of respectively 5 and 100 nT and the smallest sampling interval, but the median uncer-418

tainty ratio for the lowest grain density increases only from 0.01% to about 1%. This shows419

that the noise level has more influence on the total validity of a high grain density so-420

lution than on a low grain density solution, although this trend is partly obscured by the421

log scale in the figures.422

3.1.3 Sampling interval423

The sampling interval has an exponential effect on the uncertainty ratio, which looks424

similar to an intensification of the noise level (Fig. 4e-f). Nevertheless, the increase be-425

comes stagnant between a sampling interval of 4 and 5 µm, but is amplified between a426

sampling interval of 1 and 2 µm or 2 and 4 µm (Fig. S1a-d in Supplementary Informa-427

tion). This property can be attributed to the relatively smaller decrease in the number428

of surface magnetic scan points because the amount of points lowers by only 36% when429

reducing the sampling rate from 4 to 5 µm, yet the amount of points lowers by 75% when430

reducing the sampling interval from 1 to 2, or from 2 to 4 µm.431

The effect of a decreasing sampling rate on the solution uncertainty shows that the432

increase in uncertainty ratio becomes progressively larger for increasing grain density.433

Additionally, the combination of elevated noise levels and coarser sampling rates results434
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in median uncertainty ratios over 10% for the largest grain density (Figure 4f). This makes435

a majority of the grains in such samples difficult to use in subsequent interpretation stages,436

as the uncertainty increases substantially. However, it is premature to state that using437

a coarser resolution always increase uncertainty. For example, scanning a sample four438

times with a resolution of 2 µm results into the same uncertainty ratio as obtained when439

scanning a sample once using a 1 µm resolution. Additionally, the inversion is proven440

to be faster for lower resolution due to the smaller number of data points. On the other441

hand, small scale features, which might be important for solving higher order multipole442

moments, may not be detected using a coarser resolution.443

3.1.4 Sample thickness444

Sample thickness is a major factor that influences the uncertainty ratio. A com-445

parison of panels e against g, and f against h of Fig. 4 shows that for every noise level446

and sampling interval scenario, the median uncertainty ratios of a majority of grains in-447

crease more than one order of magnitude when increasing the sample thickness from 50448

to 75 µm. The first quartile for a grain density of 25×103 grains per mm3 is below 10%449

for a 50 µm sample, but for a 75 µm sample this range is partly exceeding the 10% al-450

ready for all sampling intervals. For the high grain density samples (> 25×103 grains451

per mm3) the effect of a higher sample thickness is more severe, because more than half452

of their grains have an uncertainty ratio of ≥10%. For the highest noise levels at least453

50% of the grains have uncertainty ratios larger than 100%. However, low grain density454

samples (< 25×103 grains per mm3) still have a majority of grains with an uncertainty455

ratio <10% for every combination of noise level and sampling interval.456

3.1.5 Sample surface size457

The effect of the sample surface size is small compared to sample thickness. A com-458

parison of the panels a-d and e-h of Fig. 4 indicates that the first and third quartiles of459

the uncertainty ratio distribution of the 75 µm samples for both domain sizes are very460

similar. The lowest grain densities of the 75 µm sample show somewhat lower and less461

scattered uncertainty ratios for the 200 × 200 µm2 sample surface size than for the same462

sample in the 500 × 500 µm2 sample surface. The uncertainty ratio distribution for the463

larger grain densities for both sample surfaces is on average the same. It is therefore rea-464

sonable to assume that the surface area of the sample does not play a major role in de-465
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termining correct grain magnetizations for most grain densities, because the extra un-466

known grain magnetizations are balanced by the data from the increased amount of flux467

sensors at the top of the sample. The only downside of using a large sample surface size468

is the increased amount of computational power needed to solve the inversion, since the469

Green’s matrix expands linearly for the number of grains, and expands squarely for the470

number of sensors.471

3.2 Signal strength ratio472

Up to this point the distribution of the uncertainty ratios for combinations of dif-473

ferent grain densities, noise levels, sampling intervals, sample thicknesses, and sample474

surface sizes have been assessed. From the results we observe that for samples with high475

uncertainty (e.g. 75 µm thickness and high grain density) it is possible to find small groups476

of grains with very low uncertainty ratios (< 10%). To determine which grains in a cer-477

tain model produce acceptable uncertainties, we assess the SSRs as function of the un-478

certainty ratios of the magnetizations. In Fig. 5 the minimally needed SSR to solve the479

magnetization of 99% of the grains with a certain uncertainty ratio is plotted as func-480

tion of grain density in the models with a sample surface size of 500×500 µm2. Each panel481

in the figure contains five uncertainty ratios, namely, 1%, 3%, 5%, 10%, and 20%.482

Panel a of Fig. 5 shows that up to a grain density of 104 grains per mm3 in a sam-483

ple with a thickness of 50 µm, SSRs of 6.7×10−5 can be solved within uncertainty ra-484

tios as small as 10% for a low noise level and a high sampling resolution. This means,485

for example, that grains with a volume of 10 µm3 can be solved with an uncertainty ra-486

tio of at least 10% at a maximum depth of 38 µm. However Fig. 5b shows that for the487

worst possible conditions, i.e. a noise level of 100 nT and a sampling rate of 5 µm, only488

grains with a SSR of 2.4 × 10−3 can be solved at 10% uncertainty ratio, which corre-489

sponds to solving a 10 µm3 volume grain at 12 µm depth. According to Fig. 3b, about490

55% of the grains have a SSR equal to or larger than 2.4× 10−3.491

The 99% resolved SSR is rising quickly for grain densities higher than 104 grains492

per mm3. For the largest grain density and best-case scenario, i.e. a noise level of 5 nT493

and a sampling rate of 1 µm, SSRs larger than 3.4×10−3 can be solved within an un-494

certainty ratio of 10%. This SSR corresponds to solving about 50% of total amount of495

the grains. In a worst-case scenario grains with a SSR larger than 2.9×10−2 can be solved496
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Figure 5. SSR resolved at 99% criterion, plotted against grain density for different uncer-

tainty ratios for the 500×500 µm2 sample surface. The top row of panels is obtained for a sample

thickness of 50 µm. The bottom row of panels is based on a sample thickness of 75 µm. Panels

a and c represent results for a noise level of 5 nT and sampling interval of 1 µm. Panels b and d

show results for a noise level of 100 nT and sampling interval of 5 µm. Each panel contains five

lines corresponding to different uncertainty ratios, namely, 1% (circle), 3% (upper base triangle),

5% (lower base triangle), 10% (cross), and 20% (star). The red dotted lines in panel a and b rep-

resent an example described in section 3.2, which shows that the SSR increases from 7 × 10−5 to

10−2 when experimental conditions deteriorate for a sample with a grain density of 104 grains per

mm3 and 10% uncertainty ratio. These signal strengths corresponds to, e.g., solving a 10 µm3

grain at a depth of 38 and 7 µm, respectively. Some points are missing because no SSR could be

found for cases where 99% of the grains pass the uncertainty criterion.
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for the same grain density and uncertainty ratio. For both scenarios only grains close497

to the sample surface produce a SSR large enough to be properly solved.498

The sample thickness is again a major factor determining the minimally needed SSR499

to solve grains for a given uncertainty ratio as shown by the panels c-d of Fig. 5. Espe-500

cially the influence on small grain densities for the lowest noise levels and sampling in-501

tervals is large. Only for an uncertainty ratio larger than 1% can all grains be solved for502

the smallest grain density. Furthermore, the larger grain densities contain few grains that503

can be solved for the highest noise level and sampling interval. For the smallest uncer-504

tainty ratios of 1% and 3% there are no SSRs for which 99% of the grains are solved. Nev-505

ertheless, comparing panels a-b against c-d in Fig. 5 shows that the minimum SSR of506

the larger grain densities for the same noise level and sampling interval scenario does not507

change significantly. This means that a thicker sample does not increase the minimally508

needed SSR to solve a grain for a given uncertainty ratio, implying that shallow grains509

are not solved worse due to distortion of the weak signal of deep grains. The reason for510

solving less grains in thicker samples is, therefore, that less grains have, relatively, the511

minimally needed SSR, which is caused by a changed SSR distribution as shown by Fig.512

3b.513

Decreasing the sample surface size causes minor changes in resolved SSR for both514

sample thicknesses (see Supplementary Figs. S5 and S6). The SSR of smaller grain den-515

sities decreased the most. This decrease in SSR makes it more likely for samples with516

grain densities up to 104 grains per mm3 to obtain confidence sphere sizes lower than517

10%, even for high noise levels and coarse sampling rates.518

4 Discussion519

4.1 Parameter impact on uncertainty520

We set up a range of numerical models to investigate the responses of grain den-521

sity, sampling interval, noise level, sample surface size, and sample thickness on the un-522

certainty of magnetization solutions. Additionally, we assess which combinations of depth523

and grain size provide stable results given the changing initial conditions. The overall524

results indicate that the quality of the solutions is highly dependent on grain density in525

the sample. The grain density directly increases the amount of variables in the inversion,526

which leads to an increase in condition number and, therefore, in uncertainties. The grain527
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density enlarges the uncertainty ratio distribution up to four orders of magnitude from528

the best to the worst case scenario in our models. The uncertainty ratio raises rapidly529

for grain densities larger than 10× 103 grains per mm3.530

The effect of noise level and sampling interval on magnetization uncertainty is sim-531

ilar, because they both affect the uncertainty ratio with an increase of up to two orders532

of magnitude. Compared to the influence of grain density, however, we perceive the ef-533

fect of noise level and sampling rate to be less severe over the magnetization uncertainty.534

The noise level does not have a significant influence because the surface magnetic field535

has, on average, a strength in the order of 10−6 to 10−3 T, which is many times larger536

than the largest realistic noise level of 100 nT (Glenn et al., 2017). In the case of sam-537

pling interval, its limited influence can be attributed to the vastly overdetermined in-538

version system, considering that the system contains at least twice as many knowns than539

unknowns. Moreover, these two parameters can be directly controlled during the exper-540

imental set-up, hence the noise level and sampling interval can be further minimized when541

needed.542

The sample surface size has the smallest effect on the magnetization uncertainty543

of all parameters tested here, because it does not change the ratio of known magnetic544

field data and unknown magnetization variables in the inversion. Nevertheless, results545

show that the smallest grain densities obtain slightly better solutions in smaller domain546

areas, which can only be attributed to the presence of less unknown magnetization vari-547

ables in the corresponding inversion.548

Sample thickness has a major influence on magnetization uncertainty; the uncer-549

tainty can rise up to two orders of magnitude by increasing the sample thickness from550

50 to 75 µm. This rise is partly caused by the SSR that quickly becomes lower for the551

additional deeper grains in the thicker sample (see Fig. 3b). We suggest, therefore, that552

the distance between sample and sensor should be as small as possible to retrieve the553

strongest possible signals. This leads to relatively high SSRs, resulting into signals that554

are well visible above the noise.555

4.2 Implications for uncertainties in previous MMT studies556

In the study of de Groot et al. (2018) MMT was used for the first time to success-557

fully obtain individual magnetizations while making use of scanning SQUID microscopy558
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(SSM). They inverted magnetic signals from three subdomains in a synthetically created559

sample with low grain density, but without providing confidence limits for the solutions.560

The accuracy of the obtained magnetization solutions is hence unknown. With the re-561

sults obtained here, the uncertainties of these magnetization solutions can finally be es-562

timated.563

The study focused on solving the magnetization of grains in three subdomains with564

an average area of 300×300 µm2, a thickness of 50 µm, and an average grain density close565

to 2500 grains per mm3. The sampling interval is 1 µm and the height of the SSM sen-566

sor above the samples is 1-2 µm. The noise level of the magnetic field produced by SSM567

is estimated to be much lower than 5 nT, although positional noise can further increase568

the noise level (Weiss et al., 2007; Lee et al., 2004). We combined the provided informa-569

tion with the newly acquired results of section 3.2. Based on the assumption that we ap-570

proximately have a 200×200 µm2 sample surface with a thickness of 50 µm for compat-571

ibility, we conclude that the uncertainty ratios of the grains in the study were much smaller572

than 1% (see Fig. 4a). In the extreme case that positional noise would increase the noise573

level to an unrealistically high level of 100 nT, grains with a SSR larger 9.7×10−4 could574

still be solved with uncertainty ratios of 1%, which is about 70% of the total amount of575

grains (see Supplementary Information Fig. S5d). The effect of the additional distance576

of 1-2 µm between sample and scanning sensor is not significant, considering that the577

comparison of panels a and c of Fig. 5 show almost no difference in the minimally needed578

signal strength to solve a grain with an uncertainty ratio of 1% for a density of 2500 grains579

per mm3. In conclusion, the magnetization results in de Groot et al. (2018) were obtained580

with high precision.581

4.3 Convergence of model results582

Although the models have been iterated fifteen times, variations caused by model583

specific configurations can still persist in the obtained uncertainty ratios and distribu-584

tion or SSRs. The variations in the uncertainty ratio distribution (Fig. 4) have been es-585

timated by comparing the change in cumulative uncertainty ratio distribution each time586

after a model has been run. The change in median declines, on average, from 80% af-587

ter two iterations to less than 5% after fifteen iterations. Extending the amount of it-588

erations appears to have no effect, as the average deviation remains around 5% and does589

not show a declining trend. The lowest grain densities show the highest deviations in me-590
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dian uncertainty ratio of up to 15%, probably because the confidence interval is aver-591

aged over less grains compared to denser samples.592

The SSR distribution exhibits deviations of a quarter of a log scale after fifteen it-593

erations for most sampling intervals, noise levels, and sample thicknesses. The SSR as-594

sociated with the lowest grain densities can change more than half an order in magni-595

tude, contrary to denser samples that change on average less than a quarter of an or-596

der magnitude. Similarly to the uncertainty ratio distribution, lower grain densities have597

more difficulty to produce a constant signal strength average over the model iterations,598

because they have less grains to cover all positions in the model within fifteen iterations.599

It is possible that increasing the number of iterations of the model can improve the con-600

vergence of the SSRs of grains with lower grain densities. On the other hand, low grain601

densities have on average a lower minimal SSR and initially a higher percentage grains602

that pass the uncertainty ratio. Therefore, an error of a quarter of magnitude that is in-603

troduced here will not increase the uncertainty ratio of the majority of the grains such604

that they become unusable for further analysis. The estimated errors for the higher grain605

densities, likewise, have little effect on the percentage of grains that can be solved, be-606

cause the potential raise in minimally needed SSR will only result in the rejection of a607

very small percentage of grains (see Fig. 5).608

4.4 Setting a SSR threshold609

The SSR is a powerful statistic to quickly discriminate between grains that are re-610

solved well by the MMT inversion and grains that are not properly resolved. For each611

MMT inversion it is important to set a useful threshold for the SSR for the specific pur-612

pose of a study. This threshold depends on the five parameters of the inversions as stud-613

ied here, and on the required accuracy of the accepted magnetizations. The SSR thresh-614

old needs to be balanced between rejecting grains with an accurate solution that do not615

meet the SSR criterion and including grains that do fulfil the SSR requirements, but are616

not properly resolved by the inversion. In Fig. 6 we illustrate this based on all grains617

in the models with dimensions 500×500×50 µm, a grain density of 105 grains per mm3,618

sampling interval in the magnetic scan of 1 µm, and a magnetic noise level of 5 nT. We619

once again accept a magnetization solution as accurate if the uncertainty ratio is <10%.620

In total there are 18,750 grains in these models, of which 15,301 grains have uncertainty621

ratios <10%; they would ideally be selected as the accurate subset of grains. We deter-622
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Figure 6. Using the SSR to select subsets of grains with accurately resolved magnetizations

for our models with a grain density of 105 grains per mm3, sampling interval of 1 µm, and noise

level of 5 nT for a 500 × 500 × 50 µm sample surface. The grains are colored according to their

uncertainty ratio. Four different SSRs select 99.9, 99.0, 95.0, and 90.0% of the grains with an

uncertainty ratio of maximum 10%.

mined SSRs to select sets of grains for which 90.0, 95.0, 99.0, and 99.9% of all accepted623

grains have an uncertainty ratio <10%. When 99.9% of the grains in the subset must624

fulfill the uncertainty ratio criterion, 6,565 grains are selected using a SSR of 8.6×10−3,625

i.e. only 42.9% of the desired grains are selected. When 1% of the grains are allowed to626

violate the uncertainty ratio criterion, the number of grains in the subset increases to627

9,342, but 93 of these violate the uncertainty ratio criterion, so 58.0% of the desired grains628

are recovered by the SSR of 3.4×10−3. For the case where 95% of the grains is allowed629

to have an uncertainty ratio <10%, the SSR of 7.3×10−4 accepts 13,863 grains. This im-630

plies that although there are 693 grains in this subset that violate the uncertainty ra-631

tio criterion, 86.1% of all desired grains are accepted. When 10% badly resolved grains632

are accepted, 16,289 grains pass the SSR selection of 2.8×10−4, and 95.8% of all prop-633

erly resolved grains pass, although also 1,629 grains that violate the uncertainty ratio634

criterion are accepted as well.635

The SSR to select a set of accurately resolved grains can be estimated for inver-636

sions with different parameters by running computational models with these specific sam-637
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ple dimensions and magnetic scan parameters. Running these additional computational638

models to determine the best SSR for a specific MMT inversion and purpose of course639

takes some time, but it is currently the only way to select the most reliable subset of grains640

after an inversion in a objective way. Moreover, these computational models can also be641

analyzed before the actual MMT experiments are done based on the parameters that are642

difficult to control during the experiments (e.g. the grain density of the sample). This643

can help to determine to optimal sample dimensions and boundary conditions for the644

magnetic surface scans for the MMT experiments.645

4.5 A preliminary assessment of empirical uncertainties646

Here we studied the mathematical accuracy and performance of MMT inversions647

by running simulations with varying boundary conditions. We proposed and assessed new648

statistical parameters to scrutinize MMT results that allow to select the magnetic mo-649

ments of only well resolved grains. This theoretical framework will also aid solving the650

empirical challenges that the development of MMT still faces. A prerequisite for MMT,651

for example, is that all surface magnetic signals within a domain belong to grains within652

that same domain (Fabian & De Groot, 2019). This condition is often violated in MMT653

studies on natural samples because a proportion of small magnetic sources in samples654

are undoubtedly missed due to the resolution limits of the MicroCT experiments (de Groot655

et al., 2021). The currently used MicroCT analyses have resolutions >0.7 µm and in-656

herently miss smaller grains. Small PSD and SD grains, therefore, remain undetected657

in natural samples even though they may produce a signal in the surface magnetic map.658

A comprehensive study on the impact of errors in the MicroCT analyses is currently an659

ongoing project but here we provide a preliminary assessment of the effect of missing grains.660

We set up and inverted 15 models which also contain grains smaller than 1 µm3.661

To obtain a realistic amount of small grains, a grain diameter distribution was defined662

by fitting a log-normal distribution to the MicroCT data described in section 2.1.1 to663

populate our models (Yu et al., 2002; Smirnov, 2006). This distribution was created in664

SciPy (Virtanen et al., 2020) using the parameters scale = 0.9, shape = 0.9, and loca-665

tion = 0.0. Then this distribution was sampled to obtain approximately 550 spherical666

grains of which 200 grains have a volume larger than 1 µm3. All grains were assigned667

a magnetization according to equation 1 and were randomly placed in a 200×200×50668

µm3 domain without intersecting other grains. A forward field was obtained with a sam-669
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pling interval of 1 µm and a noise level of 5 nT. Grains smaller than 1 µm3 were then670

removed before the MMT inversion, simulating missing grains in the MicroCT analysis.671

The remaining 200 grains, which represent a grain density of 105 grains per mm3, were672

inverted and their relative magnetization error was assessed as function of SSR.673

For this configuration, without missing grains, a SSR of 2 × 10−3 was sufficient674

to solve 99% of the grains with an uncertainty level of 10%, according to our SSR anal-675

ysis in section 3.2 (Figure S5a). However, the results obtained when grains are missed676

by the MicroCT show that a SSR of approximately 10−1 is required to obtain a relative677

magnetization error of 10% for 99% of the grains in the inversion. We observe that this678

occurs independent of noise level, sampling interval, grain density, and domain size, in-679

dicating that every grain would require a SSR of 10−1 when a MicroCT with 1 µm res-680

olution is used. Remarkably, even in the present very unfavourable scenario MMT is still681

capable of producing accurate results for both large and shallow grains in the sample.682

Given the preliminary nature of these results we must remark that to fully quantify the683

impact of the effect of missing grains by MicroCT analysis on MMT results it is required684

to do a focused future in-depth study.685

4.6 Limitations and future research686

This modeling study is the first attempt to quantify errors associated with indi-687

vidual magnetization solutions as produced by MMT. We have made, therefore, some688

simplifying assumptions. First of all, we assumed uniform magnetization sources for all689

grains. Most natural grains will not have a uniform magnetization structure, but a more690

complex magnetic structure best represented by a multipolar approximation (Butler, 1992;691

Cortés-Ortuño et al., 2021). This complex structure could introduce additional uncer-692

tainties in the inversion, since the sensitivity to noise of quadrupole, octupole, and higher693

order magnetization terms is currently unknown. However, results from Cortés-Ortuño694

et al. (2021) show that the solved dipolar magnetization changes when multipole terms695

are added to the calculation. Also the amount of variables to solve per grain increases696

when solving for multipole terms, while the amount of data points in the magnetic sur-697

face scan does not increase. Therefore, it would be worthwhile to investigate the sensi-698

tivity of these higher order multipole terms to noise, and to study the effect of adding699

these higher order terms on the uncertainty of the total solution. Fortunately, the mag-700

netic response of multi-domain grains quickly declines with increasing depth, hence we701
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would solely need to model multi-domain grains until a depth of 10 to 20 µm (Cortés-702

Ortuño et al., 2021).703

Furthermore, we assumed that the noise in the magnetic field scan is Gaussian dis-704

tributed. This assumption is incorrect for natural samples for a couple of reasons. First705

of all, most grains have a complex multi-domain magnetization structure, but they are706

solved as if they were in a uniform state. This means that residuals caused by unsolved707

higher order magnetic moments will introduce correlated noise to the magnetic surface708

field. This problem can be approached by using a computational code that allows for solv-709

ing higher order multipole moments (Cortés-Ortuño et al., 2021).710

Another problem that persists within MMT is the limited amount of grains we can711

invert for at once. Computationally, we can now run an MMT inversion for a sample of712

500×500×75 µm and a grain density of 105 grains per mm3. This requires a compu-713

tational system with 52 cores and 192 GB of RAM, which enables us to invert for almost714

2000 grains at once. Currently, the main limitation for the inversion of larger samples715

is the RAM capacity of the machine. The RAM requirements can be lowered in the fu-716

ture with further optimizations to the numerical code (e.g. Kabir et al., 2017). Alter-717

natively, it is also possible to reduce the resolution of the scanning grid or reduce the amount718

of variables by grouping grains when solutions, according to the covariance matrix, are719

strongly correlated and consequently have a high individual uncertainty ratio. Although720

this does not decrease the number of data points at the surface, the uncertainty of the721

grouped grains is improved and the amount of variables is reduced. Another option is722

to invert smaller subdomain regions that can be handled by the computational system.723

Nonetheless, problems will arise in consistency of the magnetization solution of grains724

near the boundaries of the subdomains, because the subdomains are likely magnetically725

joint, thereby violating the assumption of magnetic independent regions (Fabian & De Groot,726

2019). Nevertheless, the inner grains of the subdomains might still have reliable solu-727

tions as long as sufficient information on their produced magnetic surface field is avail-728

able in the subdomain. An option is to use a thicker sample, which will immediately in-729

crease the number of grains without changing the amount of data points in the magnetic730

surface scan. However, we have shown that increasing the sample thickness leads to a731

significant increase in uncertainty ratio, because the deeper grains have an insufficient732

signal strength to be noticeable at the surface.733
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4.7 Paleomagnetic outlook734

One of the ultimate aims of Micromagnetic Tomography studies is to derive pa-735

leomagnetic interpretations, i.e. paleodirections and paleointensities, from subsets of grains736

in a sample. In our study we assigned the magnetizations of our grains randomly. There-737

fore an interpretation of the magnetic moment of the entire sample of subsets of grains738

in our model is meaningless. Nevertheless, future MMT studies could obtain a total mag-739

netic moment vector of a real sample by plotting the magnetic moment solutions and740

respective uncertainties of each grain on a polar plot. Then by applying appropriate statis-741

tics (e.g. Fisher, 1953; Kent, 1982) an estimate of the total magnetic moment vector of742

a sample can be obtained. Conclusions about paleointensities are even harder to obtain.743

As shown by Berndt et al. (2016), at least 10 million small SD grains are required to ob-744

tain a proper estimation of the paleomagnetic field. But it is currently unknown under745

which conditions larger, PSD or MD, grains may provide valuable paleomagnetic infor-746

mation; and if so, how many of these grains would be sufficient for a reliable interpre-747

tation of paleodirections and/or paleointensities. Recently, PSD grains receive increas-748

ingly more attention as reliable paleomagnetic recorders. For example, Nagy et al. (2017)749

suggests that grains with diameters up to 1 µm are capable of retaining stable magne-750

tizations of geologic timescales. Solving for the magnetization of PSD grains using MMT751

is currently still challenging since most MicroCTs cannot completely detect grains < 1752

µm, creating errors in the magnetic moments (see Section 4.5). The MicroCT scans for753

ongoing MMT studies, however, attain resolutions < 500 nm, implying that the detec-754

tion of large PSD grains is within technological reach. Given the technological develop-755

ments in MicroCT scanners combined with the rapidly maturing MMT inversion tech-756

nique, we believe that MMT will be a valuable asset in the paleomagnetic toolbox in the757

near future.758

5 Conclusions759

In this study we have acquired a first order estimation of the uncertainties of in-760

dividual magnetization solutions using MMT. With the help of numerical models we showed761

that grain density and sample thickness are the major factors influencing the mathemat-762

ical uncertainty of the magnetization solutions. Noise level and sampling interval are of763

secondary importance, because these parameters are controllable during experiments.764
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The sample surface size minimally influences the results and should only be decreased765

when the size of the surface magnetic scan leads to overflowing computer memory.766

Using the SSR as defined in this study helps to identify individual grains with an767

accurate magnetic solution as indicated by a low uncertainty ratio, even when a specific768

combination of the investigated parameters (grain density, noise level, sampling inter-769

val, sample surface size, and sample thickness) pose a challenge to the MMT inversion.770

The SSR is based on volume and depth of a grain, hence it is not necessary to rerun the771

inversion to obtain individual uncertainty levels through the covariance matrix. The thresh-772

olds for the SSR obtained in this study can, therefore, be applied to other MMT stud-773

ies that involve the same inversion procedure. In this way we can extract individual well-774

resolved grains from overall challenging samples and obtain an accurate magnetic mo-775

ment solution from only those grains.776

We verified that the results for uncertainty ratio distribution and SSR converge within777

fifteen model iterations. Nevertheless, the stability of magnetization results can degrade778

due to undetected grains in the MicroCT scan. Through the ongoing development of Mi-779

croCT, this challenge will eventually be solved for. Additionally, errors caused by incor-780

rectly solving shallow multi-domain grains using the dipole assumption might influence781

the solution, but this source of error can be controlled by employing the multipole method782

of Cortés-Ortuño et al. (2021). In this context, modelling shallow grains with higher or-783

der magnetic moments will allow to observe the effect of higher order terms on the un-784

certainty of the individual magnetization solutions in a future study. In summary, by an-785

alyzing the effect of five strongly influencing parameters in MMT experiments we have786

provided a first framework to quantify the uncertainties of the magnetization solutions787

of natural magnetic grain samples. Consequently, these results can be applied to further788

paleomagnetic studies to determine the accuracy of obtained natural remanent magne-789

tizations and to individually select reliable grains from bad samples.790
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1. Extra figures uncertainty ratio distribution
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Figure S1. Boxplots showing the distribution of the uncertainty ratio in a 500×500 µm2 domain. Each panel shows the

relation between uncertainty ratio and grain density. The red line in each box-plot indicates the median uncertainty ratio, the bottom

and top edges of the solid rectangles show the first and third quartile respectively. The bottom and top of each box-plot shows the

minimum and maximum uncertainty ratio respectively per model. The four boxplots per grain density correspond from left to right

to four noise levels, i.e. 5, 20, 50, and 100 nT. The upper 4 panels (a-d) refer to a 50 µm thick sample. The lower 4 panels (e-h) refer

to a sample with a thickness of 75 µm. Each set of four panels (a-d or e-h) have a sampling interval of respectively 1, 2, 4, and 5 µm.
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Figure S2. Boxplots showing the distribution of the uncertainty ratio in a 200×200 µm2

domain, similar to Figure S1.
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2. Extra signal strength figures
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