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Abstract

In the Indus River Basin, groundwater plays a key role in mitigating the water storage fluctuations due to climate variation and

meeting the rapidly increasing water demand in agriculture dominated basins. A comprehensive understanding of groundwater

dynamics is essential for a transition to more efficient and sustainable water resources management. To gain detailed insight

response of water flows and storage in the Indus aquifers to agricultural activities, we build a high resolution 3D regional

groundwater flow model for the entire basin. However, in practice, regional flow models, as they are most widely used, suffer

from calibration challenges. To address the sparsity of in-situ groundwater data in the region and to acquire a realistic

reproduction of flow dynamics, we calibrate the model using both in-situ and satellite-based estimates of ground states. We test

the advantage of such a multi-objective approach by comparing its results with a single-objective approach in which we constraint

the model parameter only against in-situ data. We examine and discuss the model results for flow and storage conditions, which

reveal: 1) depth to water table has decreased (1998-2007) almost exclusively in urban areas (1 m), and 2) groundwater storage

depletion averaged ˜5cm in equivalent water thickness basin-wide over 20 years of simulations. Groundwater storage depletion

results primarily from intensive groundwater withdrawal to meet extensive irrigation demands. Optimizing crop patterns and

associated groundwater extraction in space and time could improve groundwater conditions.
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Abstract 

In the Indus River Basin, groundwater plays a key role in mitigating the water storage 

fluctuations due to climate variation and meeting the rapidly increasing water demand in 

agriculture dominated basins. A comprehensive understanding of groundwater dynamics is 

essential for a transition to more efficient and sustainable water resources management. To gain 

detailed insight response of water flows and storage in the Indus aquifers to agricultural 

activities, we build a high resolution 3D regional groundwater flow model for the entire basin. 

However, in practice, regional flow models, as they are most widely used, suffer from calibration 

challenges. To address the sparsity of in-situ groundwater data in the region and to acquire a 

realistic reproduction of flow dynamics, we calibrate the model using both in-situ and satellite-

based estimates of ground states. We test the advantage of such a multi-objective approach by 

comparing its results with a single-objective approach in which we constraint the model 

parameter only against in-situ data. We examine and discuss the model results for flow and 

storage conditions, which reveal: 1) depth to water table has decreased (1998-2007) almost 

exclusively in urban areas (<-25 m) but has slightly increased in agricultural land adjacent to 

rivers (>1 m), and 2) groundwater storage depletion averaged ~5cm in equivalent water thickness 

basin-wide over 20 years of simulations. Groundwater storage depletion results primarily from 

intensive groundwater withdrawal to meet extensive irrigation demands. Optimizing crop 

patterns and associated groundwater extraction in space and time could improve groundwater 

conditions.  

 

Keywords: groundwater dynamics; regional flow model; MODFLOW; GRACE; Indus 

 

1. Introduction 

The Indus River Basin (IRB) has the world’s largest irrigation system. Groundwater 

provides close 35% of the basin’s overall water supply, of which 94% is for irrigated agriculture 

[Pakistan Bureau of Statistics, 2017]. Agriculture is the largest single sector of Pakistan’s 

economy; hence, groundwater plays a vital role in Pakistan’s economic development [Dalin et 

al., 2017; Gleeson et al., 2012]. Groundwater depletion in the IRB is among the highest in the 

world [MacDonald et al., 2016]. As such, quantitative estimates of temporal and spatial 

variability of groundwater level and storage are paramount for water resources management and 

planning [Y. Wada et al., 2014; Yoshihide Wada et al., 2010].  

Regional groundwater flow modeling is a valuable quantitative tool to support water 

resources decision making, in a variety of relevant contexts including, flux dynamics [Aliyari et 

al., 2019; Furlong et al., 2011; N. R. Rossman et al., 2018; Sahoo and Jha, 2017; Sridhar et al., 

2018; Zhou and Li, 2011], water resources management and planning [Cao et al., 2013; Nathan 

R. Rossman and Zlotnik, 2013; Tian et al., 2015], and assessment of groundwater system 

responses to stresses [Furlong et al., 2011; Hassen et al., 2019; Imaz-Lamadrid et al., 2019]. 

However, in practice, large scale distributed models are computationally expensive and time 

consuming [B Wu et al., 2015].  Moreover, calibration and validation of large-scale, regional 

models are cumbersome [Alexander Y Sun et al., 2012]. One significant obstacle to calibration is 

the lack of consistent, regional-scale, hydrogeological information to represent the real physical 

structure of groundwater system and to capture the groundwater flow head fluctuations [de Graaf 

et al., 2017]. A second reason is that the model process is iterative, involving model 
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conceptualization, construction and calibration, which brings in structural uncertainty [Xu et al., 

2017a]. Finally, the model output has significant uncertainty associated with the imperfection of 

input parameter values and structures [Xu et al., 2017b].  

In situ groundwater level measurements alone do not suffice for calibrating regional 

models, especially when these point measurements are unevenly distributed. Other data, such as 

evapotranspiration, groundwater surface water exchange fluxes and environmental tracers can be 

used as supplemental data to improve model calibration [Castro and Goblet, 2003; Schilling et 

al., 2019]. These supplemental datasets have similar limitations (few or uneven point estimates).  

By contrast, satellite data eliminate many of the aforementioned limitations.  Launched in 2002, 

GRACE monitors Earth’s gravity anomaly [Tapley et al., 2004]. With the continuous refinement 

in GRACE satellite data post processing techniques, GRACE products have significantly 

increased the spatial localization and amplitude of recovered terrestrial Total Water Storage 

anomalies (TWSA)[Scanlon et al., 2016], providing much needed information for inferring 

changes in the groundwater system. By the end of 2019, there will be more than 16 years of 

continuous TWSA data available. In this vein, GRACE observations have been used to calibrate 

surface hydrology models [Long et al., 2017; Scanlon et al., 2018; S. Werth and Güntner, 2010], 

to detect groundwater variations [Richey et al., 2015; A. Y. Sun, 2013; S Werth et al., 2017], to 

infer evapotranspiration and groundwater recharge [Long et al., 2014; Pan et al., 2017; Q Wu et 

al., 2019], and to estimate change in groundwater storage and water table [Seyoum et al., 2019; 

Stampoulis et al., 2019]. 

GRACE has been used in combination with hydrologic models to estimate trends in 

groundwater depletion in parts of the Indus River Basin,  For example, GRACE based gravity 

anomalies from 2003 and 2010 in the Punjab were converted into GW storage changes by 

subtracting simulated surface water storage from the Variable Infiltration Capacity (VIC) 

hydrological model [Iqbal et al., 2017].  The authors found that the most depleted area in Punjab 

is Bari Doab. However, a comparison of groundwater depletions calculated from GRACE and 

piezometric data in the same region revealed a gap of 0.16 billion cubic meters per year. In this 

same study, a Visual MODFLOW model was used to validate the GRACE calculated 

groundwater storage change and the authors found that the satellite-estimated anomalies 

generally agree with the groundwater trends simulated by groundwater flow model even though 

there are gaps in simulated average depletion rates and some disagreement in depletion trends 

[Iqbal et al., 2017]. Methods for fusing GRACE into hydrologic models for calibration and 

estimation of groundwater trends need further improvement. 

In this study, we built a regional groundwater flow model for the entire IRB in order to 

explore future interventions that can be used to predict groundwater depletion in the Indus river 

basin. In doing this, we address the aforementioned data challenges by developing new way for 

integrating satellite-based (GRACE) data products in to the groundwater model as an additional 

calibration constraint as well as an independent method for validation. Our premise is that a 

groundwater model calibrated and validated with satellite data products will be more robust that 

the traditional approach constrained by in situ data only. In the following sections, we first 

introduce the study area, applied data sets and methods, including the modeling scheme and the 

calibration approach (Section 2-4). Next, we present basin scale model results and discussion 

(Section 4) and conclude by comparing the reliability of model estimates of change in 

groundwater storage using in situ and satellite data products (Section 5).  

https://docs.google.com/document/d/1hshpNHrrn394NBg7nKQYsyimWVc2b181/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1hshpNHrrn394NBg7nKQYsyimWVc2b181/edit#heading=h.1ci93xb
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2. Study Domain and Data 

2.1. Site Description  

The Indus River Basin is located in south Asia, in between the coordinates 66°E-82.5°E 

and 23.5°N-37.5°N, covering a total area of ~1 million km2 (Figure 1). The basin is one of the 

most intensively developed, agriculture dominated basin in the world [Watto et al., 2018]. It 

contains the world’s largest irrigation system-Indus Basin Irrigation System (IBIS).  

The basin has an arid to semi-arid climate with a mean annual precipitation of 365 mm. 

The Indus River originates in the Tibetan Plateau and the Himalayas, it is fed by at Panjnad by 

five major tributaries that merge with the ~2900 km long mainstream, and subsequently it flows 

into the Arabian Sea [Inam et al., 2007]. Annual peak flow occurs between June and late 

September, during the southwest monsoon. The waters of the Indus River and its tributaries are 

heavily appropriated for irrigation in this relatively arid area and the river is a lifeline for the 

economy and culture of the region [Fahlbusch et al., 2004]. The arid climate, high population of 

density (145 people/km2) and intensive agriculture results in major impacts on the water cycle in 

the IRB. 90% of the original forests are lost, many channels and rivers have shrunk and have 

been modified [Inam et al., 2007].  

The Indus River Basin is shaped by the collision of the Indian Plate and Eurasian Plates 

around 45 million years ago and the erosion after. The Indus River follows the Indus-Tsanpo 

suture zone and flows along the active strike-slip plate boundary within its foreland. The IRB has 

various landscape types including glacier, high mountains, alluvial plains and desert and ranges 

from 6677 to 0 m above mean sea level from north to south. The Indus River Plain Aquifer, 

including the Upper Indus, the Middle Indus and the Lower Indus, is part of the Indo-Gangetic 

Basin (IGB) alluvial aquifer system [Bonsor et al., 2017]. The aquifer system, formed from 

sediments eroded from Himalayas and redistributed by the Indus River, is unconsolidated 

alluvium deposition in most parts. Finally, it is often considered as a single highly permeable 

homogenous aquifer, but with significant spatial variability in permeability, hydraulic 

conductivity and storage characteristics [Richts et al., 2011] (Figure 1). 

2.2. Data sources 

The datasets used to establish the ArcGIS database and construct the flow model for this 

study are detailed in Table 1. All data, unless explained elsewhere, were obtained from the 

Lahore Water and Sanitation Agency (WASA) and the Water and Power Development Authority 

(WAPDA). A Digital Elevation Model (DEM), lithological map, and soil and deposits thickness 

were used to define the aquifer extent. Land use, soil type, and aquifer information were used to 

define aquifer parameters. River networks and irrigation canals were used to define drainage 

system. Precipitation, evapotranspiration, irrigation and groundwater pumping data served as 

model inputs to drive the flow system. Streamflow and groundwater level monitoring data were 

used to calibrate the model. We acquired 82887 groundwater values from 1998 to 2017 (20 

years) for 4096 wells spread unevenly across Indus basin within both Pakistan and India (Figure 

1) from WASA, the Programme Monitoring and Implementation Unite (PMIU) and the Water 

Resources Information System of India (India_WRIS). Most wells from India have continuous 

pre-monsoon and post-monsoon measurements from 1998-2017, most of the wells from WASA 

have continuous yearly Measurements from 2000-2014 and most of the wells from PMIU have 

continuous pre-monsoon and post-monsoon measurements from 2003-2016. GRACE results are 

independent information used to crosscheck the model performance. Figure 2 presents some of 

the key GIS data layer.  
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3. Methods 

Figure 3 shows a flowchart of the applied modeling process. As demonstrated, based on 

data collection and database development, a conceptual model has been constructed and revised 

before developing numerical model. Once the numerical model is running, we used GRACE data 

in addition to in situ data for model calibration and validation.   

3.1. Model development 

We used the U.S. Geological Survey Modular Ground Water Flow Model- or 

MODFLOW to estimate change in groundwater levels at the basin scale in the IRB.  The 

MODFLOW model is a distributed process-based numerical model, using finite different 

approach, which simulates runoff and infiltration from precipitation, as well as the interaction of 

surface water with groundwater in watersheds that range from a few square kilometers to several 

thousand square kilometers and for time periods that ranges from months to several decades 

[Harbaugh, 2005; Langevin et al., 2017; Markstrom et al., 2008]. In a groundwater flow system, 

natural discharge and recharge are estimated within the EVT, DRN, RCH packages. Human 

interventions (e.g., pumping) can be simulated by the WEL package, and canals and irrigation 

return are simulated by DRN and RCH packages. Modifying cropping patterns can be simulated 

by RCH and EVT package. Specifically, groundwater surface-water interactions are simulated 

by Streamflow Routing package (SFR). By adjusting the input parameters within relevant 

packages, such as well volumetric recharge rate, infiltration rate, maximum ET rate, extinction 

depth, etc., the model is used to predict the response of the flow system to external stresses 

(natural stresses or human interventions).  

The governing equation of groundwater flow model can be described by: 
𝜕

𝜕𝑥
(𝐾 𝑥

𝑑ℎ

𝑑𝑥
) +

𝜕

𝜕𝑦
(𝐾 𝑦

𝑑ℎ

𝑑𝑦
) +

𝜕

𝜕𝑧
(𝐾 𝑧

𝑑ℎ

𝑑𝑧
) + 𝑞𝑠𝑠 = 𝑆𝑠

𝑑ℎ

𝑑𝑡
 

𝑤ℎ𝑒𝑟𝑒 𝐾𝑥, 𝐾𝑦 and  𝐾𝑧 are the hydraulic conductivities aligned with the x, y, and z coordinate 

directions; h is the potentiometric head; 𝑞ss represents the sources and(or) sinks of water; 𝑆𝑠 is 

the specific storage of the aquifer. Based on the 3-D differential equation, all parameters in the 

flow model including hydraulic conductivity, specific yield, effective porosity, total porosity are 

spatially distributed, and the recharge and discharge rates are both spatially and temporally 

variable. The simulation results can be used to calculate the groundwater storage change based 

on water balance formula:  

Δ𝑆𝐺𝑊 = P − ET + Δ𝑆𝐵 + Δ𝑆𝑆 + Δ𝑆𝑜 

where, Δ𝑆𝐺𝑊 is the groundwater storage change; P is the precipitation, ET is the 

evapotranspiration over the same period, Δ𝑆𝐵 is the net volume of flow exchanged in the 

boundary, Δ𝑆𝑆 is the net volume of flow exchanged between groundwater and stream, and Δ𝑆𝑜 is 

the net volume of other sinks or sources, such as pumping. 

In this study, we constructed a 3D multi-layer groundwater flow model for the Indus 

River Basin (IRB model) using MODFLOW-2005. The surface domain was delineated into 28 

sub-basins. The subsurface was divided into three layers, each with 35752 active cells 

(5km×5km), represent the unconfined alluvial aquifer. Aquifer extent was estimated based on 

cross-section details for the mainstream (along A-A’ cross-section line in Figure 1). The 

thickness of layer 1 ranges from ~10m to 100m, with a mean of ~60m. Layer 2 is ~50-200m in 

thickness, with a mean of ~160m. The thickness of layer 3 ranges from ~100 to 360m with a 

mean of ~200m. The zonation of parameters, values of hydraulic conductivity and specific yield, 

ET rate and extinction depth were estimated based on the lithology, soil and land cover 
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information, and published references (Table 2,[Ahmad et al., 2010; Alam and Olsthoorn, 2014; 

Bonsor et al., 2017; Chandio et al., 2012; Hussain et al., 2017; Khan et al., 2008; Shakoor et al., 

2018; Usman et al., 2015]). The initial condition of groundwater flow system of IRB is projected 

based on observed groundwater level and USGS report [Greenman et al., 1967] (Figure 2).  

 

3.2. Model calibration  

3.2.1. In-situ data calibration process 

We apply the trial-and-error approach and the Parameter ESTimation (PEST) program to 

calibrate the IRB models by adjusting individual model input parameter structures and values 

and assessing the difference between observed and model simulated values of hydraulic head and 

hydrographs [Doherty, 1994]. The goal of the calibration is to minimize the root-mean-square 

error of simulated and measured values (RMSE), the calibrated model was evaluated by using 

the Pearson correlation coefficient (R): 

𝑂1 = RMSE = (
1

𝑛
∑(𝑆𝑖 − 𝑀𝑖)2

𝑛

𝑖=1

)

1
2

 

 

R = (∑ (𝑆𝑖 − 𝑆̅)2𝑛
𝑖=1 ⋅ ∑ (𝑀𝑖 − 𝑀̅)2𝑛

𝑖=1 )−
1

2 ⋅ ∑ (𝑆𝑖 − 𝑆̅)(𝑀𝑖 − 𝑀̅)𝑛
𝑖=1 , 

where 𝑆𝑖 and 𝑀𝑖 are the ith simulated and measured values; 𝑆̅ and 𝑀̅ are the average simulated 

and measured values; n is the total number of simulated and observed values. R lies between -1 

and 1. A value of 1 indicates a perfect positive linear correlation. 

The in-situ data calibration process (Cal-I) was divided into two steps: steady-state model 

calibration and transient model calibration. A steady-state flow model was first constructed and 

calibrated to reproduce the initial flow condition. Values and zonation of hydraulic conductivity 

and storage parameters are adjusted in this step. In the next step, we performed a 20-stress period 

transient simulation and then calibrated the model using the observed data for the period 1998-

2017 as listed in Table 1, anisotropy ration Kv/Kz (vertical-to-horizontal hydraulic conductivity) 

was also adjusted in this calibration. In Figure 4 we compared simulated and observed 

groundwater levels of representative wells for the southeastern portion of the IRB (Punjab). This 

focused calibration was aimed to capture the groundwater dynamics of the highly stressed area of 

Punjab which has strong data support. In the next calibration step, we are applying satellite data 

to improve model simulations in regions of the IRB with sparse ground data.   

3.2.2. GRACE calibration and validation 

The Gravity Recovery and Climate Experiment (GRACE) mission measures large-scale 

mass changes of earth system with unprecedented accuracy ([Scanlon et al., 2016]) and hence, 

provides an alternative way to estimate groundwater storage change 

Δ𝑆𝐺𝑊 = Δ𝑆𝑇𝑊𝑆 − (Δ𝑆𝑆𝑊 + Δ𝑆𝑆𝑀 + Δ𝑆𝑆𝐼), 

where Δ𝑆𝐺𝑊 is the groundwater storage change; Δ𝑆𝑇𝑊𝑆 the total water storage change; Δ𝑆𝑆𝑊 

is surface water storage change; Δ𝑆𝑆𝑀 is soil moisture storage change; Δ𝑆𝑆𝐼 is snow and ice water 

storage change.  To isolate GRACE estimated GW storage change ( Δ𝑆𝐺𝑊), we derived and 

removed storage changes in surface water, soil moisture, snow and ice using estimates of these 

changes from the Global Land Data Assimilation System (GLDAS).  GLDAS estimates of soil 

moisture are considered robust ([Rodell et al., 2004]), while the others are less reliable; however, 

these three sources of water balance change are negligible in the IRB.  In Pakistan—and in most 
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agricultural settings in the world—groundwater pumping is unregulated and undocumented.  

Understanding this missing but critical component of the water budget can be achieved more 

efficiently with satellite data. Hence we further calibrated and validated our MODFLOW model 

using GRACE data [Castellazzi et al., 2016; Long et al., 2017; Alexander Y Sun et al., 2012]; 

that is, we adjusted the input pumping rates in certain heavily depleted areas and areas without 

in-situ data (Cal-II). The Nash-Sutcliffe efficiency coefficient was used to indicate the agreement 

between GRACE-based and flow model simulated groundwater storage change averaged within 

the entire Indus river basin and on annual basis [Nash and Sutcliffe, 1970]. 

 

𝑂2 = 𝑁𝑆𝐸 = 1 −
∑ (Δ𝑆𝐺𝑊𝑖

𝐺 − Δ𝑆𝐺𝑊𝑖
𝑆)

2𝑛
𝑖=1

∑ (Δ𝑆𝐺𝑊𝑖
𝐺 − Δ𝑆𝐺𝑊

𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑛
𝑖=1

 

Where Δ𝑆𝐺𝑊𝑖
𝐺

 and Δ𝑆𝐺𝑊𝑖
𝑆
are the i th groundwater storage changes obtained from 

GRACE observation and model simulation; Δ𝑆𝐺𝑊
𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean of GRACE-based groundwater 

storage changes; n is the total number of simulated and observed periods. NSE can range 

from−∞ 𝑡𝑜 1. A value of 1 indicates a perfect match, and a value smaller than 0 indicates a 

worse agreement than the temporal mean of the observation would provide.   

3.3. Multi-objective parameter estimation and optimization 

In this study, we first use trial-and-error, by running the forward simulation to calibrate 

the parameter structures (e.g, zonation, ratio of horizontal to vertical hydraulic conductivity, 

etc.). Because of the large degrees of freedom in a large-scale regional model, model calibration 

by manual adjustment of input parameters is only the first recourse. To improve the parameter 

space examined, trial-and-error approaches are followed by application of the inverse method to 

estimate the numerical solutions of parameters by optimizing the objective functions. Model 

calibration is a nonunique process [Konikow and Bredehoeft, 1992], especially in large scale 

model with many degrees of freedom and sparse data. A single objective function may not 

adequately emphasize important model characteristics, and multi-objective calibration has been 

found to provide more consistent and efficient results [Yapo et al., 1998]. In this study, we used 

an algorithm to recalibrate the model by simultaneously optimizing the objectives 𝑂1 (minimize 

𝑂1  and maximize 𝑂2). Most groundwater flow modes are nonlinear, a general nonlinear model 

can be expressed as:  

𝑦𝑖 = 𝑓𝑖(𝑥, 𝑦, 𝑧, 𝑡, 𝑝1, … , 𝑝𝑚) + 𝜀𝑖 

where 𝑦𝑖 and 𝑓𝑖   are the measured and calculated dependent variables at the i th observation 

point; x, y, z and t are the independent variables; 𝑝1 through 𝑝𝑚 are the input parameters; 𝜀𝑖 is 

the residual term. Thus, the parameter estimation process can be formulated as: 

Min 𝑂1 = 𝑀𝑖𝑛 [(
1

𝑛
∑(𝑦𝑖 − 𝑓𝑖(𝑥, 𝑦, 𝑧, 𝑡, 𝑝1, … , 𝑝𝑚))

2
𝑛

𝑖=1

)

1
2

] 

 

𝑀𝑎𝑥 𝑂2 = 𝑀𝑎𝑥 [1 −
∑ (𝑦𝑖

∗ − 𝑓𝑖
∗(𝑥, 𝑦, 𝑧, 𝑡, 𝑝1, … , 𝑝𝑚))

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)2𝑛
𝑖=1

] 

                               

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑝𝑗
𝑎 ≪ 𝑝𝑗 ≪ 𝑝𝑗

𝑏 
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where 𝑦𝑖, 𝑓𝑖, 𝑦𝑖
∗, 𝑓𝑖

∗ represent the measured and calculated values for two dependent variables; 𝑝𝑗
𝑎 

and 𝑝𝑗
𝑏 are the lower and upper bounds on the j th parameter.  

 

4. Results and Discussion 

4.1. Multimethod to enhance model performance 

Regional groundwater flow models are valuable part of the toolkit supporting water 

resources planning and adaptive management, especially in regions with limited surface water 

resources and highly stressed aquifers. Unfortunately, a distributed large-scale process-based 

model is computationally expensive and more importantly, hard to calibrate because of 

temporally sparse or unevenly distributed ground data (ie., head measurements). Interestingly, 

remote sensing products have become increasingly relevant and fusing these multisensory data 

into groundwater flow models can improve estimation of groundwater storage change.  

In this study we use a combination of rich (but unevenly distributed) in situ water level 

measurements and satellite-based (GRACE) groundwater storage changes for calibrating 

regional groundwater models. We first run the IRB model calibrated with in situ water level data 

(Cal-I) resulting in RMSE of 1.34m, NRMSE (normalized RMSE) of ca. 4% and NSE of 0.25. 

(Figure 5). These values suggest that the IRB Cal-I model is valid; however, predicted (Cal-I) 

and measured (GRACE) change in groundwater storage are incoherent in time suggesting that 

that the model captures only local groundwater dynamics for the spatial domain with adequate in 

situ data.  

Satellite-based data improve model performance.  The IRB Cal-II using GRACE data, led 

to better indicators of model fit. RMSE improved to 0.91m, NRMSE increased to 0.97, and NSE 

was to 0.71 (Table, Figure X?). The most significant changes made during the calibration is to 

the pumping rates and their distributions. The initial pumping inputs are estimated based on data 

obtained from WASA, in a single domain of relatively small area compared to the IRB (Table 3). 

After calibration, we add more wells to heavily depleted area (Table 3). 𝛥𝑆𝐺𝑊
𝑆

 generated from 

IRB Cal-II clearly better captured groundwater dynamics—including coherence of modeled 

(Cal-II) and observed (GRACE) groundwater storage changes (Figure 5).  Clearly, the IRB 

model could be improved further to better simulate the flow in extremely wet and dry years. 

 

4.2. Groundwater flow and storage changes  

The calibrated IRB model robustly reproduces long term groundwater flow and change in 

groundwater levels across the Indus River Basin (Figure 6). Simulated groundwater levels vary 

gradually from ~200m to ~300m in the piedmont area to 0-10m southwest near the Arabian Sea. 

Groundwater in the basin generally flows from the piedmont area towards the center the basin 

and discharges at the edge of the alluvial fan in the middle and lower parts of this basin, then 

enters the Arabian Sea.   

In Figure 4c, we present the temporal variation of observed and simulated depth to water 

table (DTW) at 10 selected observation wells. DTWs mostly have a decreasing trend (water table 

is rising) in heavily irrigated areas (e.g., wells 157, 220, 460, 500, and 1176). By contrast, DTWs 

exhibit an increasing trend in urban areas (e.g., wells 287, 559 and 2721).  Similarly, DTW 

trends also increased in areas where surface water has been diverted to the IBIS irrigation system 

(e.g., wells 106 and 595). 
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Depth to water table (DTW) has increased in most parts of the basin in the past 20 years 

(Figure 6). DTW largely increased in parts of Ravi, lower and central Punjab, with average rate 

larger than 1m/year.  More than 75% of the Ravi basin has experienced increases in DTW of 

between 1 to 5m in the last two decades (1998 to 2017) and in some cases more than 25m. 

Groundwater storage depletion in those areas results mainly from intensive groundwater 

withdrawal due to the uneven distribution of irrigation demands.  

The simulated annual water budget over 1998-2017 is listed in Table 4. Although the 

annual recharge from precipitation varies largely between 19.22 to 39.34 billion cubic meter 

(BCM) with a general increase over the last twenty years, groundwater water levels have not 

increased concomitantly because groundwater withdrawals have increased by nearly 7 BCM. 

Even after considering recharge returned to groundwater through irrigation infiltration, 

groundwater storage has generally decreased basin wide. For the period of 1998 to 2017, we 

estimate the cumulative groundwater depletion to ~32.5 BCM, which is equivalent to a reduction 

of 5cm in water thickness across the entire IRB.   

4.3. Pumping Estimates.  

The agricultural area in the IRB mostly lies in the arid and semi-arid portions of the 

basin, thus groundwater serves as a primary water source for this land use activity. In this study, 

both irrigation and pumping are inferred from previous published references and they are 

distributed to cells based on known abstraction locations and land use land cover data (Table 3). 

As described in our calibration results, there is a big gap between actual groundwater depletion 

and our IRB Cal-I simulated depletion even though the simulated groundwater levels have good 

match with in site measurement. By contrast, the IRB Cal-II model generates calibrated pumping 

inputs by virtue of fusion with GRACE. According to the calibrated IRB Cal-II model, total 

annual groundwater withdrawals in the Lahore area have increased from 1.68 BCM to 1.94 

BCM, with a yearly rate increase of 13 Million cubic meters (MCM). The total withdrawal in the 

Punjab area has increased from 58.06 BCM to 65 BCM, while the agriculture withdrawal has 

increased from 55.1BCM to 61.3BCM. The overall pumping across IRB has a yearly increasing 

rate of 0.35BCM. As present, the IBIS manages water resources based on per/post -independence 

historical allocations without differentiating between the waterlogged area and groundwater 

depletion area. Thus, optimizing crop patterns and associated groundwater extraction in space 

and time could improve groundwater system conditions compared to current situation. 

5. Conclusions 

A regional groundwater flow model calibrated using in situ data alone yielded incomplete 

solutions and satellite observations from GRACE helped us further constrain model parameters 

over the study period and, thus, enhanced the model performance. This study presents an 

innovative method for calibrating regional groundwater flow models more effectively and 

efficiently using both in situ measurements and remote sensing products by adjusting both input 

parameter structures and values following the iterative modeling process.  

Major findings from this study include the following. First, although the current GRACE 

observations are limited by coarse resolution, GRACE proved very useful when integrated with 

physical process-based regional flow modeling. Second, the GRACE calibrated flow model, 

outperforms the model calibrated by in situ water level measurements alone, and better captures 

the overall groundwater dynamics. Last, the calibrated model produces more accurate spatial and 

temporal details about the groundwater system with less uncertainties.  
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The calibrated model provides valuable insights about groundwater flow dynamics in the 

Indus River Basin, and is useful for evaluating potential management strategies for more 

sustainable groundwater development in this region. 
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Figure 1 Map of Indus River Basin (23.5°N-37.5°N, 66°E-82.5°E) and geological 

cross-section along the central part of the basin (roughly NE-SW direction). Groundwater 

monitoring wells in the Indus River Basin, along with major cities, topography, major river 

network, drainage elevation, cross section and boundary. The maps were created using ArcGIS 

10.6. 
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Figure 2 a) DEM of the Indus River Basin (IRB); b) Initial groundwater level of the 

IRB; c) Lithological map of the IRB; d) Soil types of the IRB; e) Average soil and deposits 

thickness of the IRB; f) Land cover and land use map of the IRB for year 1998. 
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Figure 3 Flow modeling flowchart. 
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Figure 4 a) Locations of the selected 10 wells; b) Comparison of observed and 

simulated groundwater levels in Indus River Basin; C) Temporal variation of observed and 

simulated depth to water table (DTW) at 10 selected observation wells. 
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Figure 5 Comparison between 𝛥𝑆𝐺𝑊

𝐺  and 𝛥𝑆𝐺𝑊
𝑆

(equivalent water thickness 

averaged across the IRB) of Cal-I (just land-based well data) and Cal-II (well data plus 

GRACE), where the gray area corresponding to estimated confidence zone of Δ𝑆𝐺𝑊
𝐺

. 
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Figure 6 a) Depth to water table trend over 1998-2017; b) Depth to water table change 

over 1998-2017. 
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Table 1 Datasets and sources 

Category Data 

Temporal 

resolution 

Spatial 

resolution Data format Sources 

Model setup and 

parameterization 
DEM 2008, one time 90m Raster HydroSHEDS 

River network 2013, one time 15 second Shapefile HydroSHEDS 

Aquifer 

characteristics Various, one time Various Documents 

USGS, IWaSP, WASA, 

WAPDA, IGRAC 

Soil type 2007, one time 1:5 000 000 Raster FAO-UN DSMW,  

lithological map one time 1:1 000 000 Shapefile GLiM  

Soil and deposits 

thickness one time 90m Raster NASA 

Land cover 1998-2015, yearly 300m Raster ESA CCI LC L4 LCCS 

Initial condition Groundwater 

contour map one time 1:1 000 000 Shapefile USGS 

Inputs 

Precipitation 

1998.01-2018.12, 

yearly 0.25 degree  NetCDF 

NASA TRMM 

(TMPA/3B43) Rainfall 

Estimate L3 

Evapotranspiration 2000-2010, yearly 500m Raster NASA MOD16A3 L4 

Irrigation data yearly Various Documents PMIU 

Groundwater 

pumping 

1998-2017, Daily, 

yearly Various Excel WASA 

Calibration 

  
Stream flow Daily Various Excel PMIU 

Groundwater level 

1998-2016, 

various, yearly 4096 wells Excel PMIU, WASA, India_WRIS 

GRACE Jan 2004-Dec 2009 0.5 degree Raster JPL-RL04M 

Soil Moisture 1998-2017, 

monthly 

0.25 degree Raster GLDAS 
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Table 2 Values of key hydrogeological parameters of Indus Basin from previous publications 

Location 

Horizontal 

hydraulic 

conductivity (Kh, 

m/day)  

Vertical hydraulic 

conductivity (Kv, 

m/day) 

Specific yield 

 (Sy) 
Sources 

Rechna Doab 0.05-200 0.005-20 0.05-0.25 [Khan et al., 2008]  

Soan River 2-170 - - [Ahmad et al., 2010] 

Thal Doab 155-362 - - [Hussain et al., 2017] 

Indo-Gangetic basin 25-500 - 0.1-0.25 [Bonsor et al., 2017] 

Lower Chenab Canal 24-264 0.1-0.33 0.1-0.15 [Usman et al., 2015] 

Punjab 35 8.75 0.35 [Alam and Olsthoorn, 2014] 

Lower Chenab Canal 1-265 1-15 0.05-0.25 [Shakoor et al., 2018] 

Lower Indus Basin 0.5-31 0.06-10 -  [Chandio et al., 2012] 

 

 

 

 

 

 

 

 

 

Table 3 Pumping inputs and calibrated values 

 

Type Location 

Pumpage 

(m3/day) 

Annual 

withdrawals 

(billion cubic 

meters) 

Total 

number 

of wells 

Calibrated 

pumpage 

(m3/day) 

Calibrated 

total well 

numbers 

Agricultural well 1 Lahore 1143 - 2744 1680-1940 2744 

WASA tubewell 1 Punjab 733-9133 - 573 9000-12500 573 

Non-WASA tubewell 1 Punjab 1223-9786 - 153 6000-9800 3000 

Total groundwater 2  Indus - 53.7-65.2 N/A 9000-12000 12000 

GW agricultural 2 Indus - 50.5-61.3 N/A 9000-12000 10000 
1   Data obtained from WASA. 
2  Data obtained from World Bank. Date range from 1977-2012. 
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Table 4 Water budgets of IRB for year 1998-2017. Units: billion cubic meters. 

 
Year Recharge from 

Precipitation 

ET River leakage 

In-Out 

Pumping Return flow from 

irrigation 

Groundwater 

Storage Change 

1998 29.63 -44.00 22.80 -58.06 49.63 0.00 

1999 25.22 -44.85 19.00 -58.66 56.79 -2.50 

2000 19.22 -44.48 18.62 -59.26 64.90 -1.00 

2001 23.36 -44.78 18.43 -59.86 59.85 -3.00 

2002 20.50 -44.80 18.24 -60.41 66.47 5.00 

2003 38.10 -43.69 18.05 -60.81 39.35 -9.00 

2004 25.70 -45.28 17.48 -61.21 57.31 -6.00 

2005 32.72 -43.31 17.10 -61.61 63.10 8.00 

2006 35.43 -44.93 17.20 -62.01 60.31 6.00 

2007 32.19 -44.42 17.29 -62.41 54.35 -3.00 

2008 33.70 -44.02 14.44 -62.81 52.69 -6.00 

2009 27.71 -44.89 11.59 -63.21 56.80 -12.00 

2010 38.21 -45.19 15.96 -63.61 57.63 3.00 

2011 32.51 -44.58 19.19 -64.01 64.89 8.00 

2012 27.43 -43.17 18.24 -64.23 53.73 -8.00 

2013 35.55 -44.27 17.10 -64.43 49.05 -7.00 

2014 26.75 -43.98 18.62 -64.63 55.24 -8.00 

2015 39.34 -43.93 16.34 -64.83 49.08 -4.00 

2016 32.04 -44.18 19.51 -65.00 52.63 -5.00 

2017 30.28 -44.36 17.64 -62.16 55.59 -3.00 
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