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Abstract

The Barents Sea attracts year-around human activity as the winter sea ice cover retreats, creating a need for short and long

term prediction of environmental conditions in the region. Previous studies have shown that local ocean heat content and

heat transport at the Barents Sea Opening provide interannual to decadal predictability of Barents Sea ice cover. Part of this

predictability is suggested to originate from thermodynamic anomalies propagating along the Norwegian Atlantic Current. To

better understand this source of predictability, and the relevant timescales, we use models (Coupled Model Intercomparison

Project Phase 6; CMIP6) and satellite observations, to study the linear response of the monthly mean Barents Sea ice cover

to downstream sea surface temperature anomalies. We show that in March the sea ice response is strongest on short lead

times (<2 year), vanishing towards ˜7 year timescale and that the linear sea ice response function can be reconstructed using

an advective-diffusive ‘leaky-pipe’ model with multiple propagation timescales. The sea surface temperature based sea ice

predictability is linked to decadal and longer timescale variability. Our results also show that sea surface temperatures close

to the sea ice edge provide the best predictability at short timescales, but with a skill that approaches that of the sea surface

temperatures further away at long timescales.
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Key Points:6

• Monthly mean Barents Sea ice cover responds to upstream ocean temperatures7

within a 7 year timescale.8

• The CMIP6 mean sea ice response function can be represented using multiple anomaly9

propagation speeds in a ’leaky-pipe’ model.10

• The linear response functions provide weak predictability of the March Barents11

sea ice concentration in climate models.12
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Abstract13

The Barents Sea attracts year-around human activity as the winter sea ice cover retreats,14

creating a need for short and long term prediction of environmental conditions in the re-15

gion. Previous studies have shown that local ocean heat content and heat transport at16

the Barents Sea Opening provide interannual to decadal predictability of Barents Sea17

ice cover. Part of this predictability is suggested to originate from thermodynamic anoma-18

lies propagating along the Norwegian Atlantic Current. To better understand this source19

of predictability, and the relevant timescales, we use models (Coupled Model Intercom-20

parison Project Phase 6; CMIP6) and satellite observations, to study the linear response21

of the monthly mean Barents Sea ice cover to downstream sea surface temperature anoma-22

lies. We show that in March the sea ice response is strongest on short lead times (<223

year), vanishing towards ∼ 7 year timescale and that the linear sea ice response func-24

tion can be reconstructed using an advective-diffusive ’leaky-pipe’ model with multiple25

propagation timescales. The sea surface temperature based sea ice predictability is linked26

to decadal and longer timescale variability. Our results also show that sea surface tem-27

peratures close to the sea ice edge provide the best predictability at short timescales, but28

with a skill that approaches that of the sea surface temperatures further away at long29

timescales.30

Plain Language Summary31

The Barents Sea attracts year-around human activity as the winter sea ice cover32

retreats, creating a need for short and long term prediction of environmental conditions33

in the region. Previous studies have shown that ocean temperatures can be used to pre-34

dict Barents Sea sea ice area years ahead suggesting that changes in ocean temperatures35

move from south to north along the Norwegian coast. We use climate models and satel-36

lite observations to better understand this source of predictability. We show that the monthly37

sea ice response in winter is strongest on short lead times (<2 year) and vanishes after38

∼ 7 years from a change in the ocean temperatures. We also find that the predictabil-39

ity, even at short timescales, is due to variability at ∼10 year and longer timescale and40

that the relationship is strongest close to the sea ice edge.41

1 Introduction42

Predictions of Barents Sea ice cover are crucial for year-round operations in the re-43

gion that is an important marine habitat and hosts large natural resources from fish stocks44

to oil-and-gas fields. Previously, both observations and models have shown that the ocean45

heat transport to the Barents, and the heat content of the Barents Sea, are both good46

predictors for the winter ice cover in the region at interannual timescales (Årthun et al.,47

2012; Onarheim et al., 2015; Årthun & Eldevik, 2016; Årthun et al., 2017). At the same48

time, there could be potential to extend this predictability as both observations and mod-49

els show that there are sea surface height and temperature anomalies that seemingly prop-50

agate along the Norwegian Atlantic Current from at least as far as the Greenland Scot-51

land Ridge on a timescale of several years (with a speed of 1-2 cm/s; Furevik, 2000; Sk-52

agseth et al., 2008; Chepurin & Carton, 2012; Broomé & Nilsson, 2018; Årthun & El-53

devik, 2016; Årthun et al., 2017; Muilwijk et al., 2018, and Fig. 1).54

The idea of using upstream ocean observations to predict downstream evolution
in environmental conditions along the Norwegian Atlantic Current as such is not new
(see e.g. Helland-Hansen & Nansen, 1909), and the process understanding of the prop-
agation mechanisms behind the predictable anomalies has been discussed ever since. Pos-
sible mechanism include both anomaly propagation as an oceanic mode (Broomé & Nils-
son, 2018) and as a coupled atmosphere-ocean mixed layer mode (Nilsson, 2000). Most
recently, oceanic propagation in the boundary current with lateral mixing has been shown
to provide results that are qualitatively similar to observations (Broomé & Nilsson, 2018).
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To better understand the propagation mechanisms and to quantify the associated pre-
dictability, we examine how the monthly Barents Sea ice cover co-varies with the upstream
ocean conditions in CMIP6 models and in observations. Specifically, we will use the stochas-
tic climate model paradigm of Hasselmann (1976) and assume that the Barents Sea ice
cover (C; concentration) can be represented by a convolution of a (unknown) response
function G and the (known) forcing history F :

C(t) =

∫ τmax

0

G(τ)F (t− τ)dτ + ε. (1)

Where F are the upstream ocean conditions i.e. the SST anomalies at given sections along
the Norwegian Atlantic Current (Fig. 1), τ is a time lag, τmax is a maximum time lag,
and ε is an error term. Writing (1) in an matrix form gives:

C = G · F + ε, (2)

and allows us to solve for an estimate of G through regression (omitting the error term):

Ĝ = C · F−1. (3)

Where the hat implies that we only solve for a statistical estimate of the true G, and55

the negative exponent marks a matrix inverse. The stochastic climate model paradigm56

has been successfully used for prediction of many aspects of the climate system (Kos-57

tov et al., 2017, 2018; Johnson et al., 2018; Seviour et al., 2019; Lambert et al., 2019; Cor-58

nish et al., 2020). One of the main advantages of the methodology over naive lagged re-59

gression, is the response function G which provides a direct link to the dynamics gov-60

erning the system - given that the the underlying covariances reflect causal relations.61

The manuscript is structured as follows: we describe the data and methodology used62

in this study in section 2, we analyse the co-variability of sea ice concentration and sea63

surface temperatures in the CMIP6 models in section 3.1, we invert the sea ice concen-64

tration response functions in section 3.2, compare them to theory in section 3.3, and use65

the response functions together with SST anomalies to reconstruct and predict sea ice66

concentration anomalies in section 3.4. Finally, in section 4 we summarize and discuss67

the results in a broader context.68

2 Data and Methods69

In order to gain robust estimates of the response function G we will use long pre-70

industrial coupled climate model simulations from the Coupled Model Intercomparison71

Project phase 6 (CMIP6). Although previous studies have often focused on the ocean72

heat transport as a predictor for the Barents Sea ice cover, we will use sea surface tem-73

perature (SST) as a predictor. Using SST is a pragmatic choice that allows using a much74

larger number of CMIP6 models as well as allowing for comparison to satellite observa-75

tions (Reynolds et al., 2007). We acknowledge that we are limited in predictive capa-76

bility since the heat transport is a function of both temperature and volume transport,77

and it is really the heat transport convergence that enters the heat content equation that78

ultimately impacts sea ice formation. Not accounting for the volume transport variabil-79

ity is likely to decrease the skill of the prediction80

We will use (3) to solve for Ĝ. Following Johnson et al. (2018) we take C to be the81

sea ice concentration timeseries (vector of length N ; the length of the timeseries in years)82

for a given month and F the lagged SST forcing history (matrix of size N×τmax). All83

values are detrended and de-seasonalized by removing the monthly average values for84

each month and then normalized by dividing by their (monthly) standard deviations.85

Similar to Johnson et al. (2018) we form an ensemble of Ĝs by dividing the full SST86

timeseries of length N to overlapping segments of length τmax and by varying τmax be-87

tween 2-10 years in 12 month increments (resulting in Nmax different response functions).88
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This procedure gives us a matrix of response functions for each model with dimensions89

(τmax, N/τmax, Nmax). To construct a response function that is robust to over-fitting90

to a particular time period, we take the median over the two last dimensions.91

3 Results92

3.1 Timescales of variability in CMIP6 models93

We focus our analysis on March which is when the observed Barents Sea ice area94

peaks. In March, the CMIP6 models show a large spread in both mean and variability95

of the Barents Sea SIC and the Nordic Seas SSTs (Figs. 1a and 2a). The lagged corre-96

lation analysis suggest that the Barents Sea SIC is (inversely) linked to upstream SSTs97

with decreasing correlation (Fig. 1a) and increasing lag (Fig. 1b) when moving away from98

the sea ice edge along the Norwegian coast.99

Figure 2a shows that both the Barents Sea SIC and upstream SST spectra are red,100

peaking at multidecadal timescales, with increasing ensemble spread towards the long101

timescales. Similar dominance of long timescales in the region has been previously demon-102

strated by e.g Årthun & Eldevik (2016) who found an approximately 14 year timescale103

for Nordic Seas temperature variability in the observations and somewhat wider range104

(10-20 years) of variability in CMIP5 models.105

The CMIP6 median coherence between the upstream sea surface temperatures and106

Barents Sea ice cover suggest that at 0-lag most of the co-variability takes place at the107

decadal and longer timescales (Fig. 4b). There is also a notable increase in coherence,108

especially at decadal timescales, when moving from the southern Nordic Seas to close109

to the Barents Sea Opening.110

Given the long timescales of variability, and the fact that the coherence is largest111

at long timescales, we expect that most of the predictability coming out of the response112

functions is also linked to the long timescales.113

3.2 Reconstructed Response Functions114

We use (3) to invert for the response function Ĝ in 30 CMIP6 models (Table S1)115

and in the satellite observations (OI-SST, 1982-2019; Reynolds et al., 2007). As expected,116

the response functions reflect the multiple timescales seen in the timeseries analysis (Figs.117

3 and S1). Most models have strong weights for the first few months (lags), but then for118

some models (e.g CESM2 variants) the Ĝ reaches zero at ∼2-3 year lags, whereas oth-119

ers (e.g. NorESM2 variants) show close to constant weights for the first 4-5 year lags be-120

fore reaching zero at around 6-7 year lags (Fig. S1). In the northernmost sections the121

OI-SST (satellite observations) based response function lies within the CMIP6 response122

functions for the first ∼ 4 year lags. However, further south and at longer lags the OI-123

SST response function becomes increasingly noisy, which we attribute to the short ob-124

servational record, and eventually departs from the CMIP6 ensemble.125

The wide spread among the CMIP6 models is clear in the step response (integral126

of the response function, Fig. 3b). The CMIP6 median shows that in the absence of any127

other forcing, the sea ice response to instantaneous 1 standard deviation perturbation128

in SST at 72◦N leads to 0.6 standard deviation perturbation in sea ice concentration within129

∼5 years. Although it is unclear if the OI-SST based response function is robust at long130

lags, it suggests that there is a net positive response between 5-9 year lags, possibly in-131

dicating a secondary feedback from the sea ice to the sea surface temperatures. The CMIP6132

mean response does not show such behaviour, but some individual models (gray lines133

in Fig. 3) do.134
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In general there is only a small decrease in the CMIP6 response functions when mov-135

ing further away from the sea ice edge (Figs. 3, S1). However, especially in the models136

with a response function dominated by short timescales, the response function is the strongest137

for the sections that are closest to the ice edge. In models where long timescales are pro-138

nounced, the different sections have similar response functions. The CMIP6 median sug-139

gest that the integrated sea ice response is ∼0.4 STD for a 1 STD SST perturbation in140

the Greenland-Scotland ridge, but ∼0.6 STD for a 1 STD SST perturbation in the Bar-141

ents Sea Opening. Our analysis here has focused on March, but the response functions142

for other winter months are similar (Fig. S2).143

3.3 Comparison to Theoretical Response Functions144

Theoretical response functions based on anomaly propagation in a diffusive ocean145

(e.g. Jeffress & Haine, 2014; Broomé & Nilsson, 2018, , so called ’leaky-pipe’ model) or146

in an atmosphere-ocean mixed layer mode (e.g Nilsson, 2000) suggest that a SST anomaly147

that is initially a delta function, has an imprint of a widening Gaussian function with148

a decaying amplitude as one moves further away from the source. In reality the situa-149

tion is more complex; at any given time an anomaly consists of contributions from a mul-150

titude of signals due to variability at different timescales. In addition, between two lo-151

cations there are a number of different processes that propagate an anomaly forward (see152

e.g. Sundby & Drinkwater, 2007; Lien & Vikebø, 2014; Chafik et al., 2015; Asbjørnsen153

et al., 2019; Broomé et al., 2020, for discussion on remote and locally generated anoma-154

lies). Therefore, we propose that instead of representing one propagating anomaly be-155

tween the target section and the Barents Sea, the reconstructed response functions rep-156

resent the envelope that a multitude of Gaussian functions create.157

Here we will demonstrate such behavior with the response function for the leaky
pipe-model, which simulates anomaly propagation in an advective-diffusive system that
is connected to a large heat reservoir. Such a system could be the boundary current -
deep basin system imagined here following (Broomé & Nilsson, 2018), but with a dif-
ferent set of parameter values the same model could represent the atmosphere - ocean
mixed layer system, for example. The asymptotic form (assuming large distances and
lead times) of the response function for the leaky-pipe model is (slightly rewritten from
Broomé & Nilsson, 2018)

Glp =

√
aε

4Lcπτ
exp

(
2ax

Lr

)
︸ ︷︷ ︸

A

√
ue exp

(
−aτ

2u2e + ax2

Lrueτ

)
, (4)

where the parameters are as follow: Lc is the width of the advective current (pipe), Lr
is the reservoir width and ε is their ratio, ε = Lc/Lr. ue is the effective velocity of the
anomalies (not the underlying advective velocity) and a is its relation to a eddy veloc-
ity ve i.e. we take the two to be linearly related ve = aue and choose a = 1 so that
faster anomalies are also more diffusive. Finally, τ is the time lag and x is the distance
from the source. To define the envelope of multiple Gaussian functions we find those ue
that lead to the largest Glp. This can be done by solving when the ue derivative of (4)
is 0. Before going forward we note this derivative would have a much simpler form with-
out the

√
ue term in (4). As we will see, removing this additional ue dependency will also

provide better match with the CMIP6 median response, and therefore we will further
assume that Glp has an additional ue dependency of the form B/

√
ue (where B is a con-

stant). A relevant physical argument is that the atmosphere (fast propagator, large ue)
dampens the SST anomalies more effectively than the ocean (slow propagator, small ue).
With these assumptions, the ue derivative of (4) becomes

∂Glp
∂ue

= −
aAB(τue − x)(τue + x) exp

(
ax2

Lrτue
− aτue

Lr

)
Lrτu2e

, (5)

–5–



manuscript submitted to JGR: Oceans

where A refers to the group of variables in (4). Ignoring the trivial solutions,
∂Glp

∂ue
=

0 when τue − x = 0 gives

ue = x/τ. (6)

Note that by keeping the
√
ue term in (4) will require solving a quadratic equation to

find ue such that
∂Glp

∂ue
= 0. The solution to that quadratic equation becomes (nega-

tive root is not plausible)

ue =
Lr
4aτ

+

√
L2
rτ

2 + (4aτx)2

4aτ2
. (7)

Substituting (6) or (7) to (4) then defines the envelope of multiple Gaussian functions158

representing signals that propagate at different speeds. In order to connect the SST anoma-159

lies propagating in the leaky-pipe model to the sea ice concentration, we assume that160

the sea ice concentration would be linearly related to the SST anomalies and allow for161

an additional coefficient in front of the Green’s function in (4). In the following we then162

fit the upper and lower limits for the propagation speeds together with the constant con-163

necting SST to the Barents Sea ice concentration.164

Figure 4 shows a comparison between CMIP6 results and the leaky-pipe model with165

different velocities representing fast and slow propagation of anomalies. Note that the166

theoretical envelopes derived above return the maximum for each τ (dashed lines in Fig.167

4), but as seen from Figure 4, the fitted models suggest that CMIP6 based Green’s func-168

tions are best explained with a lower limit of 1 cm/s for the anomaly propagation, con-169

sistent with previous studies (Broomé & Nilsson, 2018). The upper limit suggested by170

the fit is not robust as it increases with the distance and at the same time the fits at short171

lags get gradually worse as one moves southward in the Nordic Seas. Nevertheless, the172

Green’s functions suggest that only relatively fast propagation can explain the response173

function weights at short lags.174

Based on our results it remains unclear if the fast propagation at short lags is due175

to SST anomaly propagation or due to a spatially coherent atmospheric forcing. How-176

ever, the correlation structure at short lags (Fig. 1) is more in line with anomaly prop-177

agation along the Norwegian Atlantic Current than what one would expect for spatially178

coherent forcing. Therefore, we suggest that the anomaly propagation at least takes place179

at short lags, even if spatially coherent forcing might also contribute to the large weights.180

Finally, we note that the heat transport based response functions for two models181

suggests a dominating propagation at 4-5 year timescale with a Gaussian like imprint182

on top of the SST response function like smooth envelope (Fig. S3).183

Our next step (section 3.4) is to use the estimated response function Ĝ to recon-184

struct the original timeseries C. It is important to realize that even though the response185

functions show large weights on annual (<1 year lag) and inter-annual (1-5 year lag) timescales,186

we do not necessarily expect that those timescales would be well reconstructed. A re-187

sponse function reflects the relationship between a predictor and a predictant, but if the188

relationship is weak relative to all the other influences at a given timescale, the recon-189

struction can still be poor.190

3.4 Hindcasts and Prediction191

We use (2) with the estimated response function Ĝ and the known forcing (SST192

at the different sections) to estimate the original sea ice concentration timeseries (hind-193

cast). As suggested by the analysis in section 3.1 the reconstruction captures the long194

timescales well, but struggles to represent the short timescales (Fig. 5). In most mod-195

els, and in the CMIP6 mean, essentially none of the SIC variability at timescales shorter196

than ∼10 years is captured by the SST based reconstruction.197
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Whereas in the hindcasting the forcing (SST) history is known up to zero lag, for198

predictability purposes we are interested in a longer predictability window i.e. lags that199

are greater than zero. The predictability depends on both the unknown future values200

of the predictor as well as the response function which links the time evolution of the201

predictor to that of the predictant. The naive approach is to use the response function202

with a zero-padded timeseries of the predictor or to assume that the last value persists203

to the future. However, a straightforward extension is to formulate a statistical model204

for the unknown future values of the predictor as well. Here, in addition to the naive ap-205

proaches, we use a simple Gaussian process model to estimate the future values of SST206

given its historical (observed/simulated) values (Appendix A).207

The prediction of the simulated sea ice with the model based response functions208

shows a slow decay in explained variance as the lag increases and one moves away from209

the sea ice edge (Fig. 6). There is a considerable spread among models and the distri-210

bution is skewed towards high skill. Although the response function based prediction out-211

performs the lagged regression at short lags and especially away from the sea ice edge,212

the persistence of the sea ice concentration itself is the best predictor for the fist 2 years.213

The differences between the SST prediction methods are relatively small for the first two214

years, after which the skill of the Gaussian process model based prediction quickly de-215

teriorates. Both SST persistence and lagged regression show a seasonal signal, most likely216

due to summer SST anomalies being worse measures for the upper ocean heat content217

than the winter SST anomalies.218

4 Summary and Discussion219

We have shown that in the CMIP6 ensemble the Barents Sea ice cover responds220

to upstream ocean conditions within ∼7 year timescale, with the strongest response within221

the first ∼2 years. Close to the sea ice edge, this response is remarkably similar in the222

satellite observations and in the CMIP6 multimodel mean. The linkage between SST and223

the sea ice cover is strongest close to the ice edge, and translates to moderate predictabil-224

ity in the CMIP6 models (r2 ∼ 0.3 for the first ∼3 years, Fig. 6).225

Our analysis of the spectral properties, together with the response functions, sug-226

gest that although the timescales that link the SSTs and sea ice together are short, the227

predictability is linked to decadal and longer timescales. Essentially, it is the short de-228

lay in the emergence of these long timescale signals between southern and northern Nordic229

Seas that provide the predictability.230

In section 3.3 we have shown that allowing for multiple speeds in a ’leaky-pipe’ model231

(Jeffress & Haine, 2014; Broomé & Nilsson, 2018) an advective-diffusive propagation can232

explain the shape of the CMIP6 median response functions. Although the parameters233

for the leaky-pipe model in this work are inspired by the ocean, the model itself can be234

modified to represent e.g. atmosphere - ocean mixed layer anomaly propagation. There-235

fore, we do not take the leaky-pipe fit to be definitive support for the dominance of the236

oceanic anomaly propagation, but rather we want to emphasize that instead of a single237

Gaussian like Green’s function as in idealized systems, in the realistic systems there are238

multiple processes acting to propagate anomalies and therefore an envelope of Gaussians239

provides a better approximation to the reconstructed Green’s functions.240

Previous studies have shown that the short term variability of the Barents Sea ice241

cover is linked to the atmospheric variability, and the ice export from the Arctic proper242

to the Barents Sea. For operational purposes one could use a statistical model that ex-243

tend the SST based response functions we have presented with a model that takes into244

account the short term atmospheric forcing (see also Onarheim et al., 2015). It is also245

likely that within one model system, or in observations, one could design more targeted246

–7–
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Figure 1. Lagged correlation between Barents Sea ice concentration and local SST in CMIP6

pre-industrial control simulations. Shading in panel a) shows the minimum correlation coefficient

across 1-12 month lags whereas shading in panel b) shows at which lag the minimum correlation

coefficient is found. Zero lag is omitted here, because it is uninteresting in terms of prediction.

In panel a) we also show i) mean observed sea ice extent (1982-2019) in white, ii) 25% and 75%

quartiles of the sea ice extent from the CMIP6 pre-industrial control simulations in black dashed

contours, iii) Averaging region for the Barents Sea (used later in this study) as a red box, and iv)

seven sections along the Norwegian coast that are used for averaging the sea surface temperatures

that we use as a predictor for the sea ice conditions. Note that the average is taken over a 1◦

wide band centered at each section, and the sections are centered at every second latitude be-

tween approximately 60N and 72N (sections are defined in a rotated coordinate system in order

to have sections perpendicular to the coast). In the text and in the other figures we refer to these

sections by their (approximate) latitude.

sections than we did here, that would give more skilful SST based prediction of the ice247

cover.248

Appendix A Gaussian Process model249

We utilize a simple Gaussian Process (GP) model to model the predictor time se-250

ries and assume that we are dealing with a zero mean process which has random but smooth251

changes with a certain degree of memory. The fact that the predictor variable is SST252

anomalies supports the assumption of a zero mean process. The GP model used here is253

described in detail in Bohlinger et al. (2019). We assume that the SST anomalies (here-254

after referred to as y) are following a zero mean multivariate Gaussian distribution y ∼255

N (0,Σ) with a covariance matrix Σ = K + σ2
nI, where Gaussian noise (σn) is added256

to the diagonals of the covariance matrix K that stems from the GP. We parameterize257

K with the following squared exponential kernel function (SE):258

cov(yt, yt′) = σ2
s exp

(
− (t− t′)2

2l2

)
(A1)

The SE kernel has the parameters σs and l which represent the signal variance and259

the length scale of the process, respectively. σs, σn, and l are learned and optimized based260

on the input data utilizing gradient descent. We put constraints on l to values between261

3 and 10 years to reduce the influence of short term signals and increase the weights on262

longer time scales. The GP is more thoroughly described in Rasmussen & Williams (2006)263
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Figure 2. Spectral properties and coherence of the Barents Sea ice cover and the upstream

ocean conditions. (a) Spectral power of normalized (by standard deviation) sea ice concentration

(SIC) and sea surface temperature (SST) at northernmost and southernmost sections shown in

Figure 1 (b) the spectral coherence between SIC and the SST at the respective sections. Solid

lines show the median over the CMIP6 ensemble, whereas the shading shows the 5%-95% range.

and was recently applied for the purpose of time series modelling in Bohlinger et al. (2019)264

and? for the above described configuration. For convenience, we used the scikit-learn265

implementation (Pedregosa et al., 2011).266
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Figure 5. Same as Figure 2, but for the SST based hindcasts. Also, in addition to the full

spectra in (a) we show the residual spectra with the dashed lines.
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lations are due to long-term variability as shown in 4. The solid lines show the median, while

the shading shows the 5%-95% range. The different gray lines show the prediction assuming SST

anomalies (i) are predicted using a gaussian process model, darkest gray (ii) go to 0 in future

lags (iii) persist indefinitely. Red line shows lagged regression at 0 lag and blue shows prediction

based on sea ice anomaly persistence.

–12–



manuscript submitted to JGR: Oceans

ocean heat anomalies in the norwegian sea. Journal of Geophysical Research:290

Oceans, 124 (4), 2908-2923. Retrieved from https://agupubs.onlinelibrary291

.wiley.com/doi/abs/10.1029/2018JC014649 doi: https://doi.org/10.1029/292

2018JC014649293

Bohlinger, P., Breivik, Ø., Economou, T., & Müller, M. (2019). A novel approach to294

computing super observations for probabilistic wave model validation. Ocean Mod-295

elling , 101404.296
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Introduction This supplementary material provides a more detailed view of individual

model performance (Fig. S1) as well as multimodel mean response functions for all the

months of the year (Fig. S2). We also provide response functions for three models with

heat transport output (Fig. S3) as well as table S1 listing all the models used in the

analysis.

noindentTable S1. List of CMIP6 models and the links to the data on ESGF servers.
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Figure S1. SST response functions for observations and for models (different panels) for

different sections (different line colors).
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Figure S2. CMIP6 mean sea ice response function in different months, for four SST sections.
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Figure S3. Sea ice response (first column), predictive skill in measured in correlation (second

column), predictive skill in measured as mean error (third column). The rows are (from the top)

as follows 72N, 68N, 64N, and 60N. The different colors mark the different models, and in the

second and third column the different linestyles are as follows: solid line denotes OHTGPR·G,

dashed-dotted line denotes OHTPersistence·G, dashed line denotes sea ice persistence.
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Model Name Institute ID Ensemble member
ACCESS-CM2 CSIRO-ARCCSS r1i1p1f1
ACCESS-ESM1-5 CSIRO r1i1p1f1
BCC-CSM2-MR BCC r1i1p1f1
BCC-ESM1 BCC r1i1p1f1
CAMS-CSM1-0 CAMS r1i1p1f1
CESM2 NCAR r1i1p1f1
CESM2-FV2 NCAR r1i1p1f1
CESM2-WACCM NCAR r1i1p1f1
CESM2-WACCM-FV2 NCAR r1i1p1f1
CNRM-CM6-1-HR CNRM-CERFACS r1i1p1f2
CNRM-ESM2-1 CNRM-CERFACS r1i1p1f1
CanESM5 CCCma r1i1p1f1
EC-Earth3 EC-Earth-Consortium r1i1p1f1
FGOALS-g3 CAS r1i1p1f1
FIO-ESM-2-0 FIO-QLNM r1i1p1f1
GFDL-CM4 NOAA-GFDL r1i1p1f1
GFDL-ESM4 NOAA-GFDL r1i1p1f1
HadGEM3-GC31-LL MOHC, NERC r1i1p1f1
HadGEM3-GC31-MM MOHC r1i1p1f1
IPSL-CM6A-LR IPSL r1i2p1f1
MIROC-ES2L MIROC r1i1p1f2
MIROC6 MIROC r1i1p1f1
MPI-ESM-1-2-HAM HAMMOZ-Consortium r1i1p1f1
MPI-ESM-1-2-HR MPI-M, DWD, DKRZ r1i1p1f1
MPI-ESM-1-2-LR MPI-M, AWI r1i1p1f1
MRI-ESM2-0 MRI r1i1p1f1
NESM3 NUIST r1i1p1f1
NorESM2-LM NCC r1i1p1f1
NorESM2-MM NCC r1i1p1f1
SAM0-UNICON SNU r1i1p1f1
UKESM1-0-LL MOHC, NERC, NIMS-KMAr1i1p1f2
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