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Abstract

The Lee and Heghinian’s bayesian approach was applied to CRU TS 3.1 grid precipitation data to detect change points at the

Congo watershed scale. The locations that were sensitive to change point have been widely detected during 1969 and have

been grouped in two zones that are located mainly in (a) the sub-basins of Bangui and (b) the Kasai and in the Cuvette

Centrale. The signal of the persistence over two zones has been estimated at 8 years and 15 years covering respectively the

period 1966-1973 (78% of the years on the total area) and 19661-1975 (68% of the years on the total area). Moreover, the

change points over mentioned zones are respectively associated with 85% and 77% of the negative values of the shift magnitude.

However, about 20.0% and 10.6% of the total area of the Congo watershed were sensitive to change points and the base of

precipitation, respectively.
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Key Points: 20 

 Highlighting of the occurrence and persistence of two sensitive zones at the change 21 

points observed in the Congo watershed. 22 

 Each of these two zones is characterized by a persistence of 8 (1966-1973) and 15 23 

years (1961-1975).   24 

 These two zones are located in the Bangui and Kasai sub-basins and in the Cuvette 25 

Centrale (inner plain or inner lowland). 26 

Abstract 27 

The Lee and Heghinian's bayesian approach was applied to CRU TS 3.1 grid precipitation 28 

data to detect change points at the Congo watershed scale. The locations that were sensitive to 29 

change point have been widely detected during 1969 and have been grouped in two zones that 30 

are located mainly in (a) the sub-basins of Bangui and (b) the Kasai and in the Cuvette 31 

Centrale. The signal of the persistence over two zones has been estimated at 8 years and 15 32 

years covering respectively the period 1966-1973 (78% of the years on the total area) and 33 

19661-1975 (68% of the years on the total area). Moreover, the change points over mentioned 34 

zones are respectively associated with 85% and 77% of the negative values of the shift 35 

magnitude. However, about 20.0% and 10.6% of the total area of the Congo watershed were 36 

sensitive to change points and the base of precipitation, respectively. 37 

Key words: Spatio-temporal variability, Precipitations, Change point, Bayesian approach, 38 

Congo watershed. 39 

1. Introduction 40 

Change point can be understand as an abrupt change in the parameters of the distribution of a 41 

data set that occurs at a point where the data splits into two subsets with different statistical 42 
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properties, such as mean, median, variance and interquartile range (Ryberg et al., 2019). It is 43 

important to note that the detection of a changepoint can be considered as evidence of a 44 

natural or anthropogenic change in climatic, hydrological or landscape processes (Ryberg et 45 

al., 2019, Perreault et al., 2000) and can help to quantify the excess or deficit (drought) of 46 

precipitation during a given period over a given region. 47 

During 1970s and 1980s the African continent, particularly the north and west Africa has 48 

experienced a significant hydrological deficit (Mahé et Olivry., 1995, Bricquet et al., 1997, 49 

Houndenou et Hernandez., 1998, Morel., 1998, Servat et al., 1998, Laraque et al., 2001, 50 

Nguimal et Orange., 2013, 2019) that has been characterized by a high frequency of low 51 

water level occurrence (Bricquet et al., 1997, Kisangala., 2009, Pandi et al., 2009). A memory 52 

effect on base flows that leads to the depletion of water resources has also been reported 53 

(Wesselink et al., 1996, Bricquet et al., 1997, Orange et al., 1997, Laraque et al., 1998,2001, 54 

Olivry et al., 1998, Nguimalet et Orange., 2013, 2019).  Morel (1998) has analyzed 55 

occurrence of the drought and its progression over the West Africa, including the Sahelian 56 

and the Gulf of Guinea zones. He found that the start of the drought has a space-time gradient. 57 

In fact, the drought has progressed from the northeast to the southeast (Morel., 1998). Thus, 58 

the equatorial zone, including the Gulf of Guinea (Houndenou et Hernandez., 1998) and the 59 

Congo Basin (Demarée et al., 1998, Asani., 1999, 2000) has also been affected. The causes of 60 

this rainfall deficit are multiples. We can mention the anomalies (space-time variation) of the 61 

ITCZ position, especially the reduction of its northward migration over the Atlantic Ocean 62 

(Lamb.,1978, Citeau et al., 1989) and physical processes related to the atmospheric and 63 

oceanic modes of variability, including the Atlantic Multi-decadal Oscillation (AMO) 64 

(Shanahan et al., 2009) and La Nina events (Druyan., 2011). According to Nicholson et al 65 

(2018), the Western equatorial Africa (i.e., the North of Angola, the Congo-66 

Brazzaville/Gabon and the Cameroon regions), which represents the western side of the 67 
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Congo Basin, describes two opposites precipitation trends since the three last decades of the 68 

20th century. Trends in Cameroon region mimics those in Sahel and the dryness conditions 69 

prevail since 1968, year during which an abrupt change or discontinuity in precipitation series 70 

has been detected over this region. In contrast to the Cameroon region, the Congo/Gabon and 71 

Angola are characterized by an increase of precipitation since 1980.  72 

According to Ndehendehe et al (2019), more than 40% of the area of the Congo watershed 73 

was affected by persistent droughts during 1901-1930, 1994-2006 respectively and has 74 

particularly become drier during the last decade 1994-2014. This can reflect either the natural 75 

or anthropogenic changes in the climate process in this basin. The latter has also experienced 76 

an impact of climate change which has led to a slight modification of its water cycle (Lienou 77 

et al., 2008, Ndehedehe et al., 2019, Sonwa et al., 2020). 78 

In the same way, the Ubangui sub-basin in Bangui has experienced the effects of rainfall 79 

variability on these water resources both on the surface and underground (Orange et al., 1997) 80 

that were much more pronounced in the northern part of the sub-basin (Orange et al., 1997, 81 

Runge and Nguimalet., 2005). A downward trend in floods and low flows and an increase in 82 

the severity of the low flow has been also observed in this sub-basin by several authors such 83 

as Orange et al. (1997), Runge and Nguimalet (2005) and Nguimalet (2017). Even if a 84 

memory effect was observed in the groundwater of the sub-basin (Orange et al., 1997, 85 

Nguimalet., 2017) a sponge-like delay was also observed between precipitation and runoff 86 

(Orange et al., 1997, Laraque et al., 2001, Nguimalet., 2017). Although the runoff deficit was 87 

much greater than that of precipitation, the precipitation time-series show a discontinuity in 88 

1968, three years before the runoff discontinuity (Orange et al. al., 1997, Laraque et al., 89 

2001). The effects of this variability in precipitation appear to be linked to a purely natural 90 

dynamic (Nguimalet., 2017). 91 
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Many other sub basins of the Congo watershed have experienced the either the precipitation 92 

deficit or discontinuity in precipitation time-series. Thus, the Sangha sub-basin describes a 93 

greater rainfall variation at the seasonal scale than at the annual scale (Samba et al., 2011) and 94 

show a discontinuity in precipitation time-series during 1970 (Laraque et al., 2001, Laraque et 95 

al., 2020), but has no significant change in annual precipitation (Laraque et al., 2020). In the 96 

Kasai sub-basin, rainfall has decreased and reached the lowest amounts during 1970 (Laraque 97 

et al., 2001, Kisangala., 2009, Tshitenge et al., 2016, Laraque et al., 2020). The effect of this 98 

decrease in precipitation on river runoff was observed 10 years later (Tshitenge et al., 2016, 99 

Laraque et al., 2001, 2020). Finally, the Lualaba sub-basin shows high precipitation in the 100 

early 1960s and a decreasing trend in precipitation towards the 1980s (Laraque et al., 2020). 101 

However, the chronicles of runoff from the Lualaba river in Kisangani show discontinuities in 102 

1960 and 1964 (Laraque et al., 2020). 103 

Several studies on hydroclimatic variability in space and time over West Africa, the Congo 104 

Basin at the whole or over smaller sub-basins are based on a local approach, which consists of 105 

performing analyze of a variable on one or more gauging sites in a region. For example, 106 

Paturel et al (1997) use nearly 200 rainfall stations to map the points of change before 1965, 107 

between 1965 and 1975 and after 1975 in West and Central Africa. However, many other 108 

studies are based on a global approach. This consists in estimating and using the spatially 109 

averaged precipitation of a given region to detect the changepoint. Comparatively, the global 110 

approach leads to spatially less or not diversified results or solutions while the local approach 111 

allows obtaining a spatial structure of changepoints over studied area.  112 

The Congo Basin is the most significant wet zone of Africa, which is covered by the biggest 113 

bloc of the tropical rainforest of the continent (O'Loughlin et al., 2019). This forest is the most 114 

important sink of carbon in the world and the most important biodiversity hotspot. Congo 115 

Basin is also an important hydrological region in the World that covers more than 4.1 million 116 

https://www.sciencedirect.com/science/article/abs/pii/S0022169419309382?via%3Dihub#!
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km2 and its drainage represents 40% of the continent’s total discharge (Crowley et al., 2006). 117 

Understanding the space-time variation in precipitation over the Congo Basin is an important 118 

task. It will lead, for instance, to understand the variation of the balance between precipitation 119 

and runoff, the evapotranspiration that explain the recent decrease in the river flow. 120 

Unfortunately, less attention has been deserved on this issue over the entire Congo Basin 121 

given to a lack of precipitation gauge data. As noted by Shem et Dickinson (2006), despite the 122 

resources the basin has, it has not yet received sufficient attention particularly in the domains 123 

of climate and hydrological research. Therefore, it seems important to extend the study of 124 

changepoint over the whole basin given to its significant ecological importance in order to 125 

determine the spatial range of changepoints and the temporal occurrence of the Sensitive 126 

Zones at change points as well as their persistence. This study is based on the assumption that 127 

only one change of the non-stationary occurs on an annual precipitation series. Therefore, it is 128 

not addressing the issues related with (1) the causes of non-stationarity which may be of 129 

anthropogenic origin or modifications of measurement or protocol equipment, etc. or (2) the 130 

multiple changes of change points. 131 

2. Review of the literature on Bayesian change point approaches 132 

Several approaches have been developed and can be used to detect changepoint in time series 133 

(Mood., 1954, Lee and Heghinian., 1977, Pettitt., 1979, Perreault et al.,1999, Rasmussen., 134 

2001, Seidou and Ouarda., 2007, Seidou et al., 2007, etc.). They can be grouped into two 135 

categories: parametric approaches and non-parametric approaches. For example, the approach 136 

of Pettitt (1979) which detects the changepoint in the median, the Mann-Whitney test for 137 

location shift (Ross., 2015) is the non-parametric approaches. In contrast, the approach of Lee 138 

and Heghinian (1977) is a parametric approach which detects the point of change in the mean.  139 
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Non-parametric approaches are widely applied in the hydro-climatic domain than parametric 140 

approaches because although the non-parametric approaches always have the independent and 141 

uniformly distributed assumption as do parametric approaches but however they do not 142 

assume a particular statistical distribution (Machiwal and Jha., 2006, Ryberg et al., 2019). The 143 

parametric approach assumes the assumption of Gaussian distribution in time-series and 144 

consider that the parameters of the model may change at unknow moment in time (Gichuhi et 145 

al. 2012). It works better with transformed data, logarithmically for example (Ryberg et al., 146 

2019). However, sometimes difficulties occur in interpreting a change in parameters 147 

(Jarušková., 1997) and often do not give satisfactory results.   148 

Lubes - Niel et al (1998) show that only 40% of the sample simulated by the Bayesian 149 

approach of Lee and Heghinian succeed in detecting the points of change unlike the other 150 

approaches which detect the points of change at about 90 % of the simulated sample. Ryberg 151 

et al (2019) show that of the eight approaches to detect points of change in location and scale 152 

applied to a sample peak flow simulated by Monte-Carlo Markov, only two non-parametric 153 

approaches that of Mood's (Mood., 1954)  and Pettitt (1979) gave satisfactory results. The 154 

parametric approaches did not work well with or without approximation of normality, 155 

whereas non-parametric approaches that detect more than one point of change gave an 156 

unacceptable number of points of change. It should also be emphasized that the persistence of 157 

hydro-climatic phenomena obscures the hypothesis of the independence of certain parametric 158 

approaches (Machiwal and Jha., 2006). For example, Lubes - Niel et al (1998) show that 159 

approaches requiring independence of successive observations are not robust with respect to a 160 

trend in a time series. 161 

Despite the disadvantages of parametric approaches compared to non-parametric approaches 162 

(Machiwal and Jha., 2006, Ryberg et al., 2019), they have been applied in several studies. 163 

Among them we can mention Lee and Heghinian (1977), Bruneau and Rassam (1983), Maftei 164 
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et al (2012), Berti et al (2012), Thiemann et al (2001), Perreault et al (1999, 2000), Tapsoba et 165 

al (2004), Rasmussen (2001), Seidou and Ouarda (2007), Seidou et al (2007), Ahokpossi 166 

(2018) that have been based on Bayesian parametric approach. The Bayesian approach 167 

assumes the a priori existence of a changepoint somewhere in a time series and gives at each 168 

time step an a-posteriori probability of this change (Lee and Heghinian., 1977, Bruneau and 169 

Rassam, 1983). Lee and Heghinian (1977) use the Bayesian approach to determine the 170 

marginal and joint posterior distributions of the changepoint of central tendency and scale. 171 

The Lee and Heghinian’s method was than applied by several authors to detect changepoint, 172 

such as Maftei et al (2012) for the eastern part of Romania, Bruneau and Rassam (1983) that 173 

applied a Bayesian model to detect shifts in the mean of series and determined the impact of 174 

the impoundment and operation of four water reservoirs on the monthly series of discharges 175 

observed on the Sainte-Anne River in Canada. Berti et al (2012) propose a Bayesian approach 176 

to determine the probability threshold on rainfall conditions likely to trigger landslides in 177 

Italy. Perreault et al (1999) present an extension of the Lee and Heghinian approach by 178 

introducing the possibility that no change in non-stationarity occurs in a time series using a 179 

detection procedure. The authors consider much more general earlier distributions that allow 180 

more flexibility in Lee and Heghinian's approach. The extension of the Lee and Heghinian 181 

approach is applied to the precipitation and discharge data series in eastern Canada and the 182 

United States during the 20th century. Finally, Thiemann et al (2001) propose a recursive 183 

Bayesian approach to reduce the uncertainty associated with the parameter estimates of 184 

hydrological models. They describe hydrological prediction in terms of the probabilities 185 

associated with different model output values (simple unit hydrograph model and Sacramento 186 

model). According to this study that the uncertainty associated with the parameter estimates is 187 

reduced recursively resulting from lower prediction uncertainties as the measurement data are 188 

successively simulated. 189 
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Tapsoba et al (2004) applied Bayesian approach proposed by Perreault et al (1999) on three 190 

precipitation grids corresponding to three selected areas in West Africa during the period 191 

1950–1990. As results, they found that the most important rainfall changes in the Sahel most 192 

likely occurred between 1965 and 1970 with the decrease in the average level of rainfall. 193 

Rasmussen (2001) applied Bayesian approach to the generalized linear regression model and 194 

found that the combination of the linear regression model with the Bayesian approach is a 195 

practical framework for describing changepoints with a variety of associated changes. 196 

More recently, Seidou and Ouarda (2007) proposed a Bayesian approach to detecting multiple 197 

change points based on multiple linear regressions. They found that the proposed approach is 198 

numerically efficient and does not take time for the simulation of the Monte-Carlo Markov 199 

chain. Ahokpossi (2018) applied the Seidou and Ouarda’s approach (Seidou and Ouarda, 200 

2007) to precipitation time series over Benin (West Africa) during 1940 - 2015. They 201 

conclude that changes in both central tendency and scale (variance) of precipitation time-202 

series over Benin are not significant. However, most of the series exhibited changepoints 203 

corresponding to shift from humid to dry period (before 1968 and after 1990) and from dry to 204 

wet period (1969-1990). Seidou et al (2007) propose a practical and general Bayesian 205 

approach based on multivariate linear regression, which also takes into account missing data 206 

in the time series. The authors applied this approach to three examples to illustrate its 207 

characteristics and flexibility. 208 

3 Study area  209 

The Congo Basin is located in the heart of the African continent (Figure 1). It has an area of 210 

approximately 3665916.7 km
2
 (Tshimanga, 2012) expanded from 09°20'N to 13°35'S and 211 

12°05'E to 34°00'E. The Congo Basin is basically located in the Democratic Republic of 212 

Congo that accounts at least 63% of the total area. The rest of the area is distributed between 213 
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Cameroon (2.2%), CAR (10.9%), Angola (7.6%), Burundi (0.4%), Congo (6.7%), Tanzania 214 

(4.3%), Zambia (4.8%) and Rwanda (0.11%). 215 

 216 

Figure 1 : Location of the Congo watershed in the African Continent. (D.R.C: 217 

Democratic Republic of Congo, C.A.R: Central African Republic, TZA Tanzania: 218 

United Republic of Tanzania). 219 

The Congo River is the second in the world (Bricquet, 1993), both by its annual modulus 220 

estimated at 41000 m3 s-1 and by the size of its watershed (Bricquet, 1993; Laraque et Olivry, 221 

1995). It is the only African river that has a dense hydrographic network. In addition, it is also 222 

characterized by its length: 4.700 km, and by a very low general slope of the order of 0.033% 223 

whose evolution from upstream to downstream is very irregular (Bricquet, 1993). The main 224 

navigable tributaries of the river are: Luapula, Lualaba, Lomami, Ruki-Tshuapa, Oubangi, 225 

Sangha and Kasai River. But the main tributaries that feed the river are: Kasai, Oubangi and 226 

Sangha (Bricquet, 1993). The position of the basin on both sides of the equator gives its river 227 

a very regular and stable bimodal hydrological regime (Bricquet, 1993). 228 
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A depression that does not exceed 400 meters of altitude dominates the center of the basin. It 229 

consists mainly of sandy sandstone formations and Mesozoic argillites topped with ferralitic 230 

soils. This depression is covered by a dense rainforest so that 35% of the basin area is 231 

partially flooded during floods (Laraque et Olivry, 1995). 232 

The Congo Basin is subdivided into the following climatic zones: (1) the equatorial zone 233 

located on the center and astride the equator is characterized by an absence of a true dry 234 

season; (2) the tropical zone on the north and the south of equatorial zone; (3) the temperate 235 

zone over the mountains in the east (Bultot, 1971). In the equatorial zone of the Congo Basin 236 

the annual precipitation amount varies between 1500 and 2000 mm and the temperature 237 

average temperature is estimated at 26 ° C (Tshimanga, 2012).  238 

However, its different characteristics give it enormous potential for the development of its 239 

water resources on a regional scale, such as hydropower, irrigation, navigation, etc. 240 

4. Data  241 

In this study, we used the CRU TS 3.1 gridded dataset provided by CRU (Climate Research 242 

Unit) of the University of East Anglia. The CRU uses an iterative homogenization procedure 243 

to obtain homogenized data. Based on this procedure, the reference series is used to correct 244 

any heterogeneity in the station records. The corrected data are then merged with the existing 245 

database and converted to anomalies (Mitchell et Jones 2005). The resulted anomalies were 246 

than interpolated to produce gridded data of 0.5x0.5 spatial resolution using the function 247 

Spline Technique and the Inverse Weighted Distance. Both techniques are adapted for data 248 

irregularly distributed in space. The CRU TS 3.1 dataset is described with details in Harris et 249 

al (2013). 250 
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 251 

Figure 2 : The 4760 grids (points) of the CRU T.S.3.1 database which cover the entire 252 

Congo watershed. 253 

The CRU climate data consist of concatenated global grids, in which the first line represents 254 

cells with centres on 89.75°S and the first column represents cells with centres on 179.75°W. 255 

Thus, the first cell in the file - and of every subsequent global grid is centered on (89.75°S, 256 

179.75°W). For the purpose of this study, the CRU gridded data that cover the Congo Basin 257 

(with about 4760 grids) for the period 1940 to 2009 have been downloaded and then 258 

transformed to create monthly and annual time series. Thus, the dataset used in this study 259 

consists of the CRU T.S. 3.1 gridded monthly precipitation with spatial resolution of 0.5x0.5 260 

for the period 1940-2009 and covering the entire area of the Congo Basin that accounts 4760 261 

node points. 262 

The CRU grid has already been proven globally and regionally (Döll et Fiedler, 2008; 263 

Tshimanga, 2012). In addition, this gridded dataset allows large scale studies and spatial 264 

analysis and is appropriate for large scale regions. Therefore, it may be more useful than a set 265 

of individual stations (Mitchell et Jones, 2005).  266 
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5. Methods  267 

5.1 Choice of the Bayesian approach 268 

The asymmetry, persistence and cyclicity of environmental data (Jarušková., 1997, Machiwal 269 

and Jha., 2006) give more flexibility to non-parametric approaches such as Péttit's approach 270 

than to parametric approaches such as Bayesian approaches. In fact, the assumptions of a 271 

particular statistical distribution are often the constraints for applying parametric approaches 272 

to environmental data unlike non-parametric approaches, which do not require these 273 

conditions. However, to overcome these constraints, approximations on environmental data 274 

are made (Helsel and Hirsch., 2002, Ryberg et al., 2019). Very often these approximations are 275 

logarithmic transformations (Ryberg et al., 2019). There are considerable number of 276 

approaches for changepoint detection in literature and therefore it is not easy to select the best 277 

one. Most authors offer simulations of a Monte-Carlo Markov sample and finally compare the 278 

different results of the approaches (Lubes - Niel et al., 1998, Ryberg et al., 2019). This 279 

comparison helps to decide on the choice of the best approach to use (Ryberg et al., 2019). 280 

For the purposes of this study, a changepoint approach to select should satisfy the at least the 281 

following conditions: first, the ability to associate to changepoints, the distribution of the a 282 

posteriori probability. Second, the single-shift models rather than multiple change points 283 

models. Third, the approach that involves an initial assumption of non-stationarity in time 284 

series. According to these reasons the Lee and Heghinian Bayesian parametric approach, 285 

which is a single shift model, has been used in this study. 286 

The Lee and Heghinian approach, as described in Lee and Heghinian (1977), was applied on 287 

4760 annual precipitation time series evenly distributed onto 0.5 x 0.5 spatial resolution grid 288 

over the whole Congo Basin. The logarithmic transformation was applied to the annual 289 
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precipitation data in order to satisfy the assumption of normality required by parametric 290 

approaches. 291 

5.2 Visualization of the occurrence of sensitive Zones at change points 292 

The application of the Lee et Heghinian approach on 4760 time series of precipitations evenly 293 

distributed over the Congo Basin leads to a space-time representation of changepoints and 294 

these associated parameters. In fact, this approach results both in detection at various 295 

locations (spatial variation) of change point and these associated parameters, i.e., the date of 296 

change point (time variable), the posterior probability, magnitude of change as well as the 297 

unconditional posterior probability of the magnitude of shift (Lee et Heghinian., 1977, 298 

Bruneau et Rassam., 1983). 299 

Evaluating the area covered by change points at the scale of the Congo watershed allows 300 

selection of the most dominant change point that covers the basin. This dominant point is then 301 

used to spatially represent the posteriori probabilities on the date of detection of this point. 302 

The analysis of the structure of this spatial representation allows us to visualize the 303 

occurrence of sensitive areas at the points of change on the date of the most dominant change 304 

point. However, the ratio expressed as a percentage of the area covered by a value of one of 305 

the change point parameters over the total area of a region is called an “area ratio” (Figure 3a) 306 

or “spatial range”.  307 

5.3 Persistence of sensitive zones at change points 308 

The persistence of a phenomenon can be defined as its similitude over time (Bunde et al., 309 

2001) and is characterized by the temporal correlation (Ehsanzadeh and Adamowski., 2010). 310 

Several temporal correlations can be used in measuring the persistence, such as Pearson 311 

(1909), Spearman (1904) and Kendall (1948). The latter are the most widely used (Chok., 312 

2008, Croux and Dehon., 2010, Mukaka, 2012). However, Pearson is a parametric approach 313 
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unlike the other two which are non-parametric (Chok., 2008). The application of Pearson 314 

correlation requires normally distributed data and is sensitive to outliers (Chok., 2008, Joshi et 315 

al., 2021). Therefore, the transformation of data is used as solution before performing Pearson 316 

correlation (Box and Cox., 1964, Manly., 1976, Osborne., 2002) as well as the approaches 317 

involving the rank transformation (Spearman., 1904, Kendall., 1948). Croux and Dehon 318 

(2010) conclude that Kendall transformation has a slight advantage over Spearman because its 319 

distribution quickly converges to a normal distribution (Chok., 2008). Despite this slight 320 

advantage of Kendall's rank transformation over Spearman's, however, we preferred to use the 321 

spearman rank transformation to analyze persistence of the changepoint sensitive area. 322 

In this study, the persistence of sensitive zones at change points is defined as residence times 323 

of values of the a posteriori probabilities over each one of the two delineated changepoint 324 

sensitive zones. It has been measured calculating the Spearman correlation coefficient 325 

between the change point posterior probabilities values of the reference year (which is 1969) 326 

over change point  sensitive zone and the change points posterior probabilities values of the 327 

remaining years over the same change points sensitive  zone. It expresses the persistence of 328 

temporal signal i.e., changepoint signal over the given geographical area. 329 

6. Results and discussion 330 

6.1 spatial range 331 

Figure 3 below displays (a) the distribution of the spatial range of change points from 1943-332 

2004, (b) the spatial ranges of posterior probabilities of change points, (c) the spatial range of 333 

the magnitudes of shift and (d) the spatial range of the unconditional posterior probabilities of 334 

magnitudes shift.  335 

 336 
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 337 

Figure 3: Spatial range of (a) dates of change points from 1943-2004, (b) posterior 338 

probabilities of change points, (c) magnitudes of shift and (d) unconditional posterior 339 

probabilities of magnitudes shift. 340 

As it can be seen from Figure 3a, change points appeared and have been detected almost 341 

every year from 1943-2006 at least in one of the 4760 times series located somewhere in the 342 

Congo Basin. However, the mode of the distribution of spatial range appears in 1969 and 343 

decay in 1970-1972 which means that the signal of change point over the Congo Basin is 344 

strong in 1969. Therefore, 1969 year correspond to the year of change point in over the. This 345 

result is consistent with that found by Laraque et al (2001). They found a rainfall deficit of 346 

4.5% during 1970-1980 compared to 1951-1969. Although changepoints have been detected 347 

in 1943 with the second important spatial range just after 1969 and 1970 (Figure 3a), 348 

unfortunately it is rejected due to the number of values used to estimate the change point 349 

(Ouarda et al., 1999). The spatial range in 1943 estimated at 10% (Figure 3a), is 350 

approximately equal to that of the year 1971. However, during 1968 the changepoint has no 351 

spatial range, i.e., it is very locally limited unlike 1970 whose spatial range is estimated at 352 

18% (Figure 3a). 353 
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 354 

Figure 4: Values greater than or equal to 0.45 of posterior probabilities superimposed 355 

with periods chosen in an arbitrary manner of change points dates associated with those 356 

posterior probabilities values. The count of 992 grids (points) of change points 357 

associated with values greater than or equal to 0.45 of the a posteriori probabilities on a 358 

total of 4760 grids (points) which cover the entire Congo watershed shows that about 359 

20% of the area basin was sensitive to change points. 360 

Lee and Heghinia (1977) Bayesian approach estimates the posterior probability density 361 

function (hereafter referred to as the posterior probability of a change point), which associates 362 

the posterior probability on the point of change. The estimate of the spatial distribution of this 363 

function over the Congo Basin is presented in Figure 3b. Figure 3b shows that the posterior 364 

probabilities of change point varying between 0.00 to 0.27 have a very high spatial range at 365 

the basin scale. This spatial range reaches 66% of the total area of the basin. It should be 366 

noted that the value of 0.45 for the posteriori probability of change point represents the 367 
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threshold from which the change point detection is acceptable. In other words, the posteriori 368 

probability values varying from 0.45 to 1.00 represent the confidence interval to detect the 369 

changepoint. This interval can also be referred to as the "changepoint sensitivity interval or 370 

simply the changepoint sensitivity". According to the figure 4, we estimate that about 20% of 371 

the area of the Congo Basin was affected by the change points. 372 

Figure 3a shows the spatial range of change point over the Congo Basin and the Figure 3c the 373 

spatial range of their magnitudes. The figure 3c shows that the changepoint magnitudes vary 374 

between -209 mm and 183 mm over the whole (about 98% area) of the Congo watershed. The 375 

maximum value of 1.09% of spatial range is obtained at an offset magnitude of -15 mm 376 

(Figure 3c). 377 

 378 

Figure 5: The negative and positive values of the shift magnitude to Congo watershed 379 

scale that cover: (a) 4760 grids (points) and (b) 992 grids (points) sensitive to change 380 

points. 59% of the points have negative shift magnitude values and only 11% are 381 

sensitive to decreased precipitation. 382 
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However, Figure 5 which presents the negative and positive values of the shift magnitude at 383 

the scale of the Congo watershed shows that about 59% of the area of the basin is occupied by 384 

negative values of the shift magnitude (figure 5a) and 11 % only are sensitive to the decrease 385 

in precipitation (figure 5b). These results show that rainfall across the Congo Basin decreased 386 

considerably during the study period (Figure 5). This agrees with previous results obtained by 387 

Laraque et al. 2001 on the scale of the Congo watershed.  However, many other regions of the 388 

basin experienced increased precipitation (Figure 5). For example, in the west and east of the 389 

basin rainfall has increased unlike the northern, central, and southern parts of the basin 390 

(Figure 5). 391 

Regarding the spatial range of the unconditional posterior probability of changepoint, it can 392 

be seen in Figure 3d that approximately 99.41% and 93.7% of the basin are affected by lower 393 

values varying from 0.09 and 0.03. 394 

6.2 Delineation of changepoint sensitive zones  395 

The spatial distribution of the different years during which the change points was detected 396 

highlighted the presence of homogeneous regions which deserve to be delimited. These 397 

regions can be taken as the sensitive zones to the change points occurred during 1969. Figure 398 

6 below related to the posteriori probabilities of change during 1969 over the Congo Basin 399 

displays two homogeneous zones of change points. The first are, Zone 1, is located mainly in 400 

the Ubangui sub-basin in Bangui (Figure 6) with a tail southward in the Cuvette Centrale 401 

(inner plain or inner lowland) (Figure 6). The core of the second area, Zone 2, is located in the 402 

Cuvette Centrale, around Salonga National Park (figure 6) with two extensions that cover the 403 

Kasai-Basin. The first extension stretches out along the Kasai River and (2) the second 404 

extension cover the Kwilu and the Plateau of Batéké regions (figure 6). The Cuvette Centrale, 405 

particularly the region around Salonga National Park (Reinartz et al., 2006) that is the core of 406 
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the second zone, is characterized by an intense healing during the year that leads this region 407 

being the one of the most important convection cells in the continent. It is also one of the 408 

rainiest areas over the Congo watershed. Thus, precipitation decrease over this region can 409 

leads to significant hydrological and ecological impact over the entire watershed.  410 

Moreover, it can be seen in figure 6 that the posterior probabilities during the changepoint 411 

year 1969 are close to 0.00 over the whole Congo Basin, except for the two mentioned 412 

homogeneous areas (Figure 6). Some points in these two zones (Figure 6) have posterior 413 

probability values that reach 0.96. 414 

 415 

Figure 6: Superposition of the Batéké plateau, the central or Congolese basin, the main 416 

tributaries of the Congo rivers and as well as the sub-basins of Bangui, Kasaï, Lualaba 417 

with the temporal window of probabilities posterior to 1969. This superposition allows 418 

the geographical location of two sensitive zones at change points. 419 
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6.3 Persistence of the changepoint sensitive Zones  420 

Figure 7 shows the spatio-temporal variability of two shapes of the posteriori probability 421 

structure delineated at 1969 over the period 1959-1978. It shows that the shape of the 422 

structure of the a posteriori probabilities on the two zones occurred several years before 1969, 423 

but in a lower proportion compared to the year 1969. From its first occurrence, the shape of 424 

the structure has weak spatial range of probabilities posteriori and little by little, its spatial 425 

range gradually increases over time, describing a spatio-temporal expansion up to 426 

itsmaximum at 1969, and then decreases from this year. 427 

 428 

Figure 7: Spatio-temporal variation in the shape of the structure of the posteriori 429 

probabilities of zone1 and zone2 over the period 1959-1978. CW : Congo Watershed, PP 430 

: Posterior Probability. 431 
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Figure 8 presents: (a) the dates of change points, (b) the posteriori probabilities of these dates 432 

of change points and (c) the magnitudes of shifts associated with these dates on the scale of 433 

each of the zones on the period from 1943-2006. It shows that 78% of the total area of zone1 434 

and 68% of the total area of zone2 are characterized by the years covering the period 1966-435 

19973 and the period 1961-1975 respectively (figure 8a). In addition, 85% and 77% of the 436 

total area respectively of zone1 and zone2 are characterized by negative values of the 437 

magnitude of the shift, the maximum values of which reach -162.34 mm and -233.29 mm 438 

respectively (figure 8c).  439 

 440 

Figure 8: (a) the dates of change points, (b) the a posteriori probabilities of these dates of 441 

change points and (c) the magnitudes of shifts associated with these dates on the scale of 442 

each of zones over the period 1943-2004. 443 
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To select the year from which or to which persistence must be taken into account, a value of 444 

Spearman correlation coefficient (consisting of 0.44 or -0.44) from which the correlation is 445 

significant was used as threshold (Figure 9). 446 

 447 

Figure 9: Spearman's rank correlation coefficient of the shape of the posterior 448 

probability structure of (a) zone1 or (b) zone2 of the time window at 1969 (taken as 449 

reference) on the same shape of the zone1 or zone2 to the time windows of posteriori 450 

probabilities covering the period of 1943-2004. The equation line Correlation coefficient 451 

= 0.44 shows the threshold set at the significant values of the correlation coefficients. The 452 

correlation coefficient value 1 shows that the year 1969 is taken as a reference for 453 

evaluating the coefficients of the Spearman rank correlations on the shape of the 454 

posterior probability structure of zone1 and zone2. 455 

According to figure 9 and using the correlation threshold 0.44 (or -0.44), the strongest signal 456 

of posterior probabilities has spatially strong or persisted during 1966-1973 over zone1 and 457 

1961-1975 over the zone2. In other words, zone1 persisted over a period of 8 years covering 458 

the years from 1966 to 1973. However, for zone2, the persistence lasted 15 years over a 459 
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period covering the years from 1961-1975. Therefore, we can conclude that the effects of 460 

rainfall variability were much more persisted in the Kasai sub-basin than in that of the Bangui 461 

sub-basin.  462 

Figure 9 also shows that the persistence of occurrence was not significant before 1966 in the 463 

zone1 and before 1961 in the zone2. Correlation coefficients were rejected because they were 464 

under the threshold significant value. In the same way, the persistence of occurrence was not 465 

significant after 1973 in the zone1 (figure 9a) and after 1975 in the zone2 (figure 9b). 466 

Although the correlation coefficient values are above the correlation threshold in 1975 (Figure 467 

9b), the spatial structure of zone2 is distorted over this year (Figure 7). In other words, the 468 

spatial structure of zone2 tends to change in 1975 (figure 7).  469 

The space-time variation of changepoint (figure 7) highlights the specificity of some 470 

geographical zones over the Congo Basin, where the space-time signal of changepoint was 471 

strong, that deserves to be pointed out. For example, the Ubangui Basin that is the core of the 472 

first zone, the Salonga Park that is the core of the second zone, as well as the Kasai Basin and 473 

Bateke Highlands. In the later mentioned geographical area no changepoints have never been 474 

detected before in previous studies (Laraque et al. 2001). The local-based changepoint 475 

detection performed in this study (figure 7 and figure 6) allowed bringing out abrupt changes 476 

in precipitation series over smaller geographical zones such as over the Bateke Highlands and 477 

the Lefini sub-basin. This could be explained not only by the smaller resolution of analyzed 478 

time-series but also the local particularity of some geographical zones that have an impact in 479 

analyzed runoff time-series. For example, the Lefini sub-basin has a powerful aquifer which 480 

plays the role in attenuating the flood peak, thus helping to minimize drought in the Batéké 481 

plateau (Laraque et al., 2001; Olivry, 1967) make this geographical being not sensitive to 482 

change points. 483 
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The Oubangui river in Bangui and the Kasaï river (Figure 1) experienced the problem of the 484 

decrease in the number of navigable days in the 1980s (Kisangala, 2009; Pandi et al., 2009). 485 

This problem therefore testifies to the extent of the persistence of sensitive areas at the points 486 

of change observed during the period 1961-1975 and which are characterized by a persistence 487 

of a rainfall deficit more than 75% (figure 8). 488 

6 Conclusion 489 

The merger of the local approach and the Bayesian approach of Lee and Heghinian apply on 490 

the CRU TS 3.1 precipitation database made it possible to detect a spatial distribution of 491 

change points at the scale of the Congo watershed. Changepoints have been widely detected 492 

during 1969 over major analyzed grid points grouped in two zones. Thoses two zones at have 493 

their cores respectively over the Ubangui sub-basin and around the Salonga Park. The 494 

sensitivity of the two zones to changepoints suggests that they are highly sensitive to 495 

precipitation variability. This fact deserves to be taken into account in the water management 496 

over these areas which, moreover, are drained by the two largest tributaries of the Congo 497 

River. The proportions of the area of negative values magnitude shift were estimated at 85% 498 

on the first zone and 77% on the second. This results in a decrease in precipitation in these 499 

two areas in particular on the Salonga National Park, which is one of the most important 500 

wetland and convection cells of the continent and could have negative impacts on the surface 501 

water flow over the basin. A further analysis that will address this issue should be useful. 502 

The results found in this study are consistent to those found in previous studies. In fact, the 503 

changepoint in precipitation series during 1969 and the decrease in precipitation have been 504 

detected by several authors both at the scale of the Congo watershed and at the scales of sub-505 

basins.  506 
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Moreover, the structure shape of the posterior probabilities of the two change point sensitive 507 

zones identified in the present study persisted during the period 1966-1973 (8 ans) for the 508 

zone 1 and the period 1961-1975  (15 ans) for the zone 2, respectively. This suggests that the 509 

effects of rainfall variability lasted much longer in the Kasai sub-basin than in the Bangui sub-510 

basin. These effects were characterized by a decrease in precipitation estimate at around 20% 511 

of the total area of the Congo watershed. It should also be added that more than 65% and 75% 512 

of the proportion of the surface area of these zones is characterized respectively by the years 513 

of pointchange observed on the period 1961-1975 and by negative values of the magnitude of 514 

the shift. The remaining part of the basin seems to be affected very slightly by the change 515 

points and by its persistence over the 1961-1975 periods. 516 

Although the spatial range was used to select time windows in this study, other available 517 

alternative, and effective methods can be used and would be helpful for this purpose. In the 518 

same way further studies can be carried out to understand oceanic and atmospheric events that 519 

can explain the variability of precipitation over to those two zones. 520 

The point-based Bayesian approach seems to be an excellent tool for visualizing the 521 

occurrence and persistence of change point sensitive areas. However, even though it is not 522 

demonstrated in this paper, however, the results found using this approach are accurate in case 523 

of high quality and high-density rain gauge observations or high resolution grid precipitation 524 

data. In this context, a comparative study using for example the SIEREM grid (Environmental 525 

Information System on Water Resources - Hydrological Modeling) or other grids with the 526 

CRU grid will be very interesting. Likewise the results found in this paper are highly 527 

dependent on the method to be used. Indeed, it has been demonstrated that the percentage of 528 

detection of change points on a Monte-Carlo Markov sample is low using the Bayesian 529 

approach of Lee and Heghinian. In order, this study may well be extended to the scale of the 530 

African continent and to the planetary scale. 531 
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