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Abstract

We present a framework for identifying and flagging malfunctioning antennas in large radio interferometers. Using data from

105 antennas in the Hydrogen Epoch of Reionization Array (HERA) as a case study, we outline two distinct categories of metrics

designed to detect outliers along known failure modes of the array: cross-correlation metrics, based on all antenna pairs, and

auto-correlation metrics, based solely on individual antennas. We define and motivate the statistical framework for all metrics

used, and present tailored visualizations that aid us in clearly identifying new and existing systematics. Finally, we provide a

detailed algorithm for implementing these metrics as flagging tools on real data sets.
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Abstract54

We present a framework for identifying and flagging malfunctioning antennas in large55

radio interferometers. Using data from 105 antennas in the Hydrogen Epoch of Reion-56

ization Array (HERA) as a case study, we outline two distinct categories of metrics de-57

signed to detect outliers along known failure modes of the array: cross-correlation met-58

rics, based on all antenna pairs, and auto-correlation metrics, based solely on individ-59

ual antennas. We define and motivate the statistical framework for all metrics used, and60

present tailored visualizations that aid us in clearly identifying new and existing system-61

atics. Finally, we provide a detailed algorithm for implementing these metrics as flag-62

ging tools on real data sets.63

1 Introduction64

The Hydrogen Epoch of Reionization Array (HERA; (DeBoer et al., 2017)) is a many65

element radio interferometer designed to observe large scale structures during the Epoch66

of Reionization (EoR) using the redshifted 21 cm signal from neutral hydrogen. Study67

of the EoR through detection and observation of the 21 cm line will provide critical in-68

sights into the formation of the earliest structures of the universe, and help inform un-69

derstanding of the underlying physics behind galaxy formation and the intergalactic medium70

(Furlanetto et al., 2006; Morales & Wyithe, 2010; Pritchard & Loeb, 2012). Other in-71

terferometric arrays aimed at detecting the 21 cm signal include the the Precision Ar-72

ray for Probing the Epoch of Reionization (PAPER) (Parsons et al., 2010), the Giant73

Metrewave Radio Telescope (GMRT; Paciga et al. (2011)), the Murchison Widefield Ar-74

ray (MWA; Tingay et al. (2013)), the LOw Frequency ARray (LOFAR; van Haarlem et75

al. (2013)), and the Canadian Hydrogen Intensity Mapping Experiment (CHIME; Newburgh76

et al. (2014)), as well as the upcoming Square Kilometer Array (SKA; Mellema et al. (2013))77

and the upcoming Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX; Saliwanchik78

et al. (2021)).79

The 21 cm fluctuation signal is very faint; typical models forecast signal amplitudes80

in the tens of millikelvin, making the signal four to five orders of magnitude fainter than81

the bright radio foregrounds (Santos et al., 2005; Bernardi et al., 2010). Attempts to mea-82

sure the power spectrum using radio interferometers must therefore be executed with high83

sensitivity and precision analysis techniques in order to realistically achieve a detection84

(Liu & Shaw, 2020). Achieving sufficient sensitivity requires an interferometer with a85

large number of antennas observing for months, which introduces a high level of com-86

plexity to the system. For example, when completed HERA will have 350 individual dishes87

each with a dual-polarization signal chain including several analog and digital subcom-88

ponents. Therefore, the need for high sensitivity and precision results in thousands of89

interconnected subsystems that must be commissioned by a relatively small number of90

people, which poses a significant challenge. Additionally, due to the faintness of the sig-91

nal, low level systematics that might be deemed negligible in other astronomical appli-92

cations can have the potential to leak into the power spectrum and obscure the 21 cm93

signal. Therefore, systematics must either be resolved, methodically avoided, or directly94

removed in order to achieve sufficiently clean data. Some examples of contaminants com-95

mon in these types of interferometers include adverse primary beam effects (Beardsley96

et al., 2016a; Ewall-Wice et al., 2016; Fagnoni et al., 2020; Joseph et al., 2019; Chokshi97

et al., 2021), internal reflections (Ewall-Wice et al., 2016; Beardsley et al., 2016b; Kern98

et al., 2019; Kern, Parsons, et al., 2020; Kern, Dillon, et al., 2020), radio frequency in-99

terference (RFI) (Wilensky et al., 2020; Whitler et al., 2019), and any analog or digi-100

tal systematics resulting from the specific design and configuration of the array and its101

component electronics (Benkevitch et al., 2016; de Gasperin et al., 2019; Star, 2020).102

In this work we focus on any systematics arising from a malfunction in an individ-103

ual antenna, component, or subsystem. While there are some systematics we can avoid104
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using clever analysis techniques (see Kern, Parsons, et al. (2020) for example), we man-105

age most systematics by directly removing the affected antennas from the raw data. This106

requires us to identify and flag any data exhibiting a known malfunction, and develop107

methodologies for catching new or previously unidentified systematic effects. While the108

primary goal of flagging data is to produce the cleanest possible data for analysis, it has109

the added benefit of providing information regarding the scope and character of preva-110

lent issues to the commissioning team, which is essential to our ultimate goal of finding111

and resolving the source of the problem. The purpose of this work is to outline a frame-112

work for identifying and flagging malfunctioning antennas.113

While manual inspection of all HERA data would be an effective approach to an-114

tenna flagging, for a 105 element array it would involve assessing 22,155 baselines, each115

of which has 1024 frequency bins and thousands of time integrations. Therefore, the hands-116

on time involved is neither practical nor reproducible, and so an automated approach117

is preferred. In this paper we present an automated approach to antenna quality assess-118

ment and flagging. Our approach is to design a set of statistical metrics based on com-119

mon failure modes of the instrument. We also optimize the metrics to use a limited frac-120

tion of the data so they are usable in a real time pipeline. We break these metrics into121

two categories: cross-correlation metrics (per-antenna values calculated using all base-122

lines), and auto-correlation metrics (per-antenna values calculated using only the auto-123

correlations). For the duration of this paper we define cross-correlations as correlations124

between two different antennas, and auto-correlations as the correlation of an antenna125

with itself. These two methods have complementary advantages. The cross-correlation126

metrics require a larger data volume, but give us insight into the performance of the whole127

array and all component subsystems, whereas the auto-correlation metrics are optimized128

to use a small amount of data, and help assess functionality of individual array compo-129

nents. We outline how each of our metrics is designed to catch one or more known fail-130

ure modes in the smallest amount of data possible and validate that the automation pro-131

cedure flags these failures effectively. We also use tools such as simulated noise and com-132

parisons with manual flags to aid in validating our procedure. While these metrics were133

designed based on HERA data, it is important to note that both the approach and the134

metrics themselves are applicable to any large interferometric array.135

HERA is currently observing while under construction. When completed, the ar-136

ray will have 350 dual-polarization antennas. The data used in this paper were collected137

on September 29, 2020 (JD 2459122) when there were 105 antennas online, shown graph-138

ically in Figure 1. Note that this data is from the second phase of the HERA array, which139

uses Vivaldi feeds rather than dipoles, along with other changes, and differs significantly140

from the phase one data analyzed in HERA Collaboration et al. (2021). The HERA re-141

ceivers are distributed throughout the array in nodes which contain modules for post-142

amplification, filtering, analog to digital conversion, and a frequency Fourier transform.143

Each node serves up to 12 antennas. Node clocks are synchronized by a White Rabbit144

timing network (Moreira et al., 2009). Figure 1 illustrates the node architecture over-145

lain with antenna cataloging developed in this paper. These flags were produced using146

almost ten hours of data from this night. The high fraction of malfunctioning antennas147

was partly attributable to limited site access due to the COVID-19 pandemic. HERA148

has no moving parts and performs a drift scan observation of ∼10◦ patch around zenith.149

The portion of the sky observed on JD 2459122 is shown overlaid on the radio sky in Fig-150

ure 2.151

This paper is organized as follows. In Section 2 we outline the two cross-correlation152

metrics, providing details of their calculation and a demonstration of their utility. We153

also examine the distribution of the primary cross-correlation metric across the array,154

and investigate whether systematics are affecting its statistics. In Section 3 we introduce155

four auto-correlation metrics, explaining their necessity, describing their precise statis-156
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tical formulation, and giving examples of typical and atypical antennas. Finally, in Sec-157

tion 4 we summarize our methods and results.158
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Figure 1. Array layout and antenna quality statuses on Sept 29, 2020 (JD 2459122) as deter-

mined by the algorithms laid out in Sections 2 and 3. In HERA, each antenna is connected to a

node, which contains amplifiers, digitizers, and the F-engine. Node connections are denoted here

by solid black lines. Most of the elements are in the Southwest sector of the split-hexagonal array

configuration, with a few in the Northwest and East sectors (Dillon & Parsons, 2016; DeBoer et

al., 2017). Only actively instrumented antennas are drawn; many more dishes had been built by

this point.

2 Cross-Correlation Metrics159

Flagging of misbehaving antennas is necessary in preventing them from impact-160

ing calibration, imaging, or power spectrum calculation steps. Here we define a misbe-161

havior to be any feature which makes an antenna unusual when compared to others. In162

practical terms, the pathologies of antenna malfunction are not limited to the signal chain163

at the antenna, but could manifest anywhere in the system up to the output of the cor-164

relator. Depending on where along the signal chain the pathology lies, we might see ev-165

idence of it in the either the auto-correlations, the cross-correlations, or both. For ex-166

ample, if an antenna’s timing was out of sync with another’s, its auto-correlations might167

look fine, but its cross-correlations would highlight this systematic. In particular, as an168

interferometric array grows in size, it is vital to track the health of the entire array, not169

just the auto-correlations or the cross-correlations in isolation.170

In Section 2.1 we define a new cross-correlation metric that is aimed at quantify-171

ing how well each antenna is correlating with the rest of the array, and we validate this172

metric with a simulation. Next, in Section 2.2 we utilize this correlation metric to iden-173

tify cross-polarized antennas. Finally, in Section 2.3 we outline our specific algorithm174
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are those included in the GLEAM 4Jy catalog (White et al., 2020) with a flux greater than

10.9Jy.

for identifying and removing problematic antennas using the cross-correlation metric frame-175

work.176

2.1 Identifying Antennas That Do Not Properly Correlate177

Our most generalized metric for assessing antenna function tests how well anten-178

nas correlate with each other. There are many reasons antennas might not correlate: one179

of the gain stages might be broken, cables might be hooked up incorrectly, or not phase-180

aligned with other functional antennas. Assessment of cross-correlations in uncalibrated181

data is challenging because the correlations can vary widely depending on the baseline182

length and sky configuration. In particular, one must be able to tell the difference be-183

tween baselines that include both the expected sky signal and noise versus baselines that184

include only noise. A metric which is robust against these and other challenges is the185

normalized and averaged correlation matrix.186

Cij ≡

〈
V even
ij V odd*

ij∣∣V even
ij

∣∣ ∣∣V odd
ij

∣∣
〉
t,ν

(1)

where 〈〉t,ν represents an average over time and frequency, and V even
ij and V odd

ij are pairs187

of measurements of the same sky with independent noise. This holds for any correlator188

outputs separated by timescales short enough that the sky will not rotate appreciably,189

so that we can assume that time adjacent visibilities are observing the same sky signal190

but with independent noise realizations.191

Division by the visibility amplitude in Equation 1 minimizes the impact of very bright192

RFI that might differ between even and odd visibilities and dominate the statistics. We193

experimented with alternative statistics like a maximum and a median to compress across194
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time and frequency but found that with the normalized correlation a simple average was195

sufficiently robust.196

In HERA’s case we are able to utilize our specific correlator output to construct197

even and odd visibilities that are interleaved on a 100 ms timescale. To explain this, we198

digress briefly into the output of the HERA correlator. In its last stage of operation, an-199

tenna voltage spectra are cross-multiplied and accumulated over 100 ms intervals. These200

visibilities can be averaged over the full 9.6 second integration before being written to201

disk. However, in order to improve our estimate of noise and to aid in the estimation of202

power spectra without a thermal noise bias, we split these 96 spectra into two interleaved203

groups, even and odd, and sum them independently before writing them to disk. Thus,204

each is essentially 4.8 seconds of integrated sensitivity, spread over 9.6 seconds of obser-205

vation.206

Due to our chosen normalization, the correlation metric measures the phase cor-207

relation between visibilities, and is unaffected by overall amplitudes. If the phases are208

noise-like, the antennas will be uncorrelated and this value will average down to zero.209

If V even
ij and V odd

ij are strongly correlated, we expect this statistic to be near one. The210

normalization in Equation 1 is particularly useful in mitigating the effects of RFI and211

imperfect power equalization between antennas.212

We can visualize the correlation matrix Cij with each baseline pair ij as an indi-213

vidual pixel, such that the auto-correlations fall along the diagonal. A schematic of this214

visualization is shown in Figure 3. To emphasize any patterns related to electronic con-215

nectivity, antennas are organized by their node connection, and within that by their sub-216

node level electronic connections. Node boundaries are denoted by light blue lines. While217

the nodal structure used here is specific to HERA, the principal of organizing by elec-218

tronic connectivity is a generalizable technique for highlighting patterns that may be due219

to systematics in particular parts of the system. Additionally, plotting the matrices in220

this way allows us to assess the system health on an array-wide level and on an individ-221

ual antenna level all in one plot, which is increasingly useful as the size of an array grows.222

To study the performance of any single antenna it is useful to form a per-antenna
cross-correlation metric Ci by averaging over all baselines that include a given antenna:

Ci ≡
1

Nants − 1

∑
j 6=i

Cij . (2)

We calculate this metric separately for all four instrumental visibility polarizations: NN ,223

EE, EN , NE. The panels below each matrix in Figure 3 show this per-antenna aver-224

age correlation metric Cij .225

Next, Figure 4 shows a visualization of Cij for all four polarizations, using data from226

a representative subset of the HERA array for simplicity. Here the values have a bimodal227

distribution (most obvious in the East-East and North-North polarizations), where most228

antennas are either showing a consistently low metric value, or are close to the array av-229

erage. This bimodality is also clear in the lower panels showing the per-antenna met-230

ric Ci. Here we see more clearly that there is a fairly stable array-level average metric231

value for each polarization, with a handful of antennas appearing as outliers. The dashed232

line in the lower panels shows the threshold that is used for antenna flagging, with the233

points below the threshold marked in red - see Section 2.3 for more on this. There are234

two primary features to note in Figure 4. First, we see that antennas 51 and 87 are lower235

than the array average in the North-North and East-East polarizations, but are higher236

than average in the other two polarizations. Thses points are marked in cyan in the lower237

panel. The reason for this pathology is that antennas 51 and 87 are cross-polarized, mean-238

ing that the cables carrying the East and North polarizations are swapped somewhere239

along the cable path - this will be discussed further in Section 2.2. Second, we note that240

there appears to be a slight increase in the average metric power for baselines within the241
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Figure 3. Schematic showing how we visually represent the matrix Cij and the per-antenna

metric Ci. Each pixel in the matrix represents an individual baseline ij, identified by the two

antennas that pixel corresponds to. The light blue lines denote the node boundaries, and anten-

nas within each node are additionally sorted by their sub-node level electronic connections. The

panel below the matrix shows the per-antenna average, calculated as the column mean for each

antenna. (Note that in practice this average is computed iteratively - see Section 2.3.)
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same node compared over baselines to antennas in different nodes. We explore this ef-242

fect in the next section.243

2.1.1 Understanding the Correlation Metric with Simulations244

Figure 4 shows that there is a significant amount of structure in the correlation ma-245

trices, specifically related to node connections. Baselines within a node appear to have246

larger values of Cij than baselines between nodes. We have previously noticed instances247

of severe node-based structure when there are timing mismatches between nodes due to248

a failure of the clock distribution system. Figure 5 is an example from an observation249

when the timing system was known to be broken, and we see clearly that timing mis-250

matches depress the correlation metric. This causes much clearer node structure than251

the more common structure seen in Figure 4. Therefore, one wonders: are the larger Cij252

values on the intra-node baselines due to some milder form of this clock distribution issue—253

perhaps a small error in timing—or is this structure otherwise explicable or even expected?254

Put another way, what is the expectation value of Cij as defined in Equation (1)?
We can make the assumption that 〈V even

ij 〉 = 〈V odd
ij 〉 ≡ V true

ij and that the two only
differ by their noise, nij , with mean 0 and variance σ2

ij . Ignoring time and frequency de-
pendence, then we can use Equation (1) to first order (ignoring correlations between the
numerator and denominator) to find that

〈Cij〉 =

〈
(V true
ij + nevenij )(V true

ij + noddij )∗∣∣V true
ij + nevenij

∣∣ ∣∣V true
ij + noddij

∣∣
〉
≈

∣∣V true
ij

∣∣2∣∣V true
ij

∣∣2 + σ2
ij

. (3)

This approximate expectation value shows us the importance of the signal-to-noise ra-255

tio (SNR). At high SNR, 〈Cij〉 goes to 1, assuming the two even and odd signal terms256

are actually the same—i.e. that the array is correlating. At low SNR, 〈Cij〉 goes to 0.257

It follows then that the apparent node-based structure in Cij might actually be the258

impact of the the relationship between SNR and baseline length. Inspecting the array259

configuration (see Figure 1) we see that baselines within the same node tend to be shorter260

then baselines involving two nodes. Shorter baselines are dominated by diffuse galactic261

synchrotron emission, which means that they tend to have a higher signal than longer262

baselines. Since all baselines have similar noise levels and since higher SNR leads to larger263

values of Cij , this could account for the effect.264

In order to confirm that our node structure is explicable as a baseline length ef-265

fect rather than some other systematic, we can implement a simple simulation with ther-266

mal noise. We calculate V true
ij from our data as (V even

ij +V odd
ij )/2, and take this as a rea-267

sonable stand-in for the sky signal, in lieu of a more sophisticated simulation, since it268

should have approximately the right relative power and should largely average out the269

instrumental noise. To each visibility V true
ij we then add independent Gaussian-distributed270

thermal noise, with variance given by271

σ2
ij =

|ViiVjj |
∆t∆ν

, (4)

where ∆t is the integration time and ∆ν is the channel width. This noise is uncorrelated272

between baselines, times, and frequencies. We then calculate Cij . We compare the Cij273

with simulated noise to the observed Cij in Figure 6. We can see clearly that the node-274

based structure we observed in the original correlation matrices is completely reproduced275

when using a Gaussian noise estimate. This conclusion helps confirm that apparent node-276

based structure in Cij is is driven by sky feature amplitude, which sets the SNR, rather277

than systematics.278

Finally, in Figure 7 we confirm that our metric distribution is representative of the279

sky by plotting Cij versus baseline length for all four polarizations. We color each base-280
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Figure 4. The correlation metric Cij as calculated in Equation 1. Light blue lines denote

the boundaries between nodes. The per-antenna average metric Ci as calculated in Equation 2

plotted below each matrix. This average is clearly bimodal and suggests a useful division into

good and bad antennas using the blue dashed line as a threshold. Note that the points in cyan,

which were were flagged for being cross-polarized, are close to the threshold, but will be flagged

using a different metric and therefore do not pose a concern (see Section 2.2 and Figure 8 for

more details on this). Also note that we do not use the North-East and East-North polarizations

for antenna flagging.
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Figure 5. A correlation matrix for a single polarization of HERA phase II data from October

21, 2019 (JD 2458778), taken at a time when the timing system was malfunctioning and antennas

between different nodes were not correlating, showing a clear block-diagonal along node lines.

This is a sample case where the auto-correlations are nominally acceptable, and investigation of

the cross-correlations is necessary to see this type of failure mode.

Figure 6. Comparison of the correlation metric computed using true noise from the data

(left) and simulated Gaussian thermal noise calculated using the auto-correlations (middle), along

with the residual (right). We see here clearly that the node-related structure observed in Figure

8 is fully reproduced using simulated Gaussian noise in lieu of the measured noise used in the

original calculation.
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Figure 7. The correlation metric Cij plotted versus baseline length for all four polariza-

tions, with red points representing baselines including at least one antenna that was flagged by

this metric, cyan points representing baselines including at least one antenna that was identi-

fied as cross-polarized (see section 2.2), and blue points representing baselines where neither

constituent antenna is flagged. We observe that nominally well-functioning antennas follow an

expected power law shape for galactic emission as a function of baseline length, and we note that

cross-polarized antennas are clearly identifiable as having excess power in the North-East and

East-North polarizations.

line by whether both constituent antennas were unflagged (blue), at least one was flagged281

for having a low correlation metric (red), or at least one was flagged for being cross-polarized282

(cyan). We clearly see the smooth distribution we would expect from sky features, with283

clearly distinguishable sub-groups by flagging categorization. We would expect a power284

law slope for galactic emission with strong variation as a function of baseline azimuthal285

angle, while the point source component should be independent of baseline length or an-286

gle, and noise should be similar to point sources (Byrne et al., 2021). Notably, the nom-287

inally good antennas generally follow this pattern, with a strong increase towards shorter288

baselines. Additionally, cross-polarized baselines show a potential transition between galac-289

tic domination to point source or noise domination around 100 meters. At frequencies290

near the middle of the HERA band this corresponds to 1.5 degrees, which is roughly the291

scale at which point sources are commensurate with galactic emission (Byrne et al., 2021).292

Given the significant agreement between our measured and expected distributions of Cij ,293

we are confident in our conclusion that the observed structure in Figure 4 is driven by294

sky features rather than instrumental systematics.295

2.2 Identifying Cross-Polarized Antennas296

As we have already seen in passing, the correlation metric Cij clearly identifies cross-297

polarized antennas. Here, cross-polarized means that the physical cables carrying the298

East and North polarization measurements got swapped in the field. When things are299

hooked up correctly, we expect to see a stronger correlation between matching polariza-300
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tions (i.e. EE1 and NN), and a weaker correlation between different polarizations. Cross301

polarized antennas have the opposite situation, with stronger correlation in EN and NE.302

We identify this situation automatically with a cross-polarization metric formed
from the difference between four polarization combinations in the per-antenna correla-
tion metric:

C
P‖−P×
i ≡ 1

Nants − 1

∑
j 6=i

(C
P‖
ij − C

P×
ij ). (5)

where P‖ is either the EE or NN polarization, and P× is either the NE or EN polariza-303

tion.304

We then calculate our cross-polarization metric as the maximum of the four com-
binations of same-polarization and opposite-polarization visibilities:

Ri = max
{
CNN−NEi , CNN−ENi , CEE−NEi , CEE−ENi

}
(6)

We take the maximum because it’s possible to get negative values for some of the C
P‖−P×
i305

when one polarization is dead and the other is not. However, when all four values are306

negative (ie a negative maximum), then the antenna is likely cross-polarized. In Figure 8307

we show each of the four differences of Cij . Two antennas, 51 and 87, show negative val-308

ues in all four combinations, indicating swapped cables. Three other antennas—37, 38,309

and 101—show up negative in two polarizations, which indicate a single dead polariza-310

tion, rather than a swap.311

2.3 Identifying and Removing Antennas in Practice312

Using our correlation metric Ci defined in Equation 2 and our cross-polarization313

statistic Ri defined in Equation 6 we can implement an iterative algorithm to flag and314

remove broken and cross-polarized antennas. In Figure 4 we clearly saw that dead an-315

tennas have a value of Ci very near zero. As a result, when we calculate Ci for functional316

antennas by averaging over all constituent baselines, the low correlation between a func-317

tional and a dead antenna will decrease the overall value of Ci for the functional antenna.318

In the case where only a couple of antennas are broken among the whole array this may319

be tolerable, but it is possible for this bias to cause functional antennas to look much320

worse than they are, and to potentially drop below the flagging threshold.321

To prevent the expected value of our metric from being biased by dead antennas,322

we implement an iterative metric calculation and flagging approach, outlined in Algo-323

rithm 1. First, we calculate Ci for all antennas and identify any that are completely dead324

(i.e. Ci=0) and remove them. Then, recalculate Ci and Ri for all antennas, identify and325

remove the worst antenna if it falls below the threshold. We continue with this recalcu-326

lation and reassessment of the metrics until all remaining antennas are above the thresh-327

old in both metrics. Figure 9 shows a comparison between the values of Ci calculated328

by directly averaging Cij for each antenna versus using the iterative algorithm. We see329

clearly from this figure that implementing an iterative approach brings our data into a330

truly bimodal realm where establishing a threshold is straightforward. Based on the ob-331

served values, we set an empirical threshold of Ci = 0.4, such that any antennas be-332

low that value will be flagged and removed. Note that the two antennas marked in cyan333

are both cross-polarized, so their value near the threshold is not worrisome. As noted334

in section 2.2, these points are flagged for having a maximum value of Ri below zero. This335

iterative approach to flagging is robust against varying proportions of broken antennas,336

which is essential for flagging during the commissioning phase of an array.337

1 HERA dipoles, being fixed, are referred to by their cardinal directions. This avoids much confusion.
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Figure 8. The cross-polarization metric defined in Equation 5. Any antenna with an average

metric Ri that is negative in all four polarization combinations is deemed cross-polarized and

marked in the lower panels in cyan. Antennas with a positive antenna mean are marked with

blue dots, and those with a negative mean are marked with red dots. Here antennas 51 and 87

are cross-polarized. Antennas 37, 38, and 101 are negative in two of the four panels each because

they have one dead polarization.
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Figure 9. Comparison of the final value of Ci calculated for each antenna using a direct av-

erage over Cij versus the iterative calculation outlined in Algorithm 1. We see that using the

iterative algorithm helps create a clearer boundary between functional and nonfunctional anten-

nas. Antennas marked in cyan are those that were flagged for being cross-polarized. This plot

uses the same representative subset of antennas used in Figures 4 and 6.

3 Auto-Correlation Metrics338

While the correlation metrics provide an absolute check on data quality of a par-339

ticular antenna, not all effects will be caught by this approach. For example, if one an-340

tenna has a bandpass structure completely unlike the rest—an effect that might be calibratable—341

it is useful to identify it and flag it as a symptom of some deeper malfunction in the ar-342

ray. It is useful, therefore, to assess antennas for ways in which they deviate from oth-343

ers, assuming that the plurality of antennas will be well-behaved.2344

Identification of misbehavior is more difficult with a new system. A newly-built tele-345

scope system with novel combinations of technologies means that we lack an a-priori model346

for how signal chains might malfunction. In early commissioning we observed broadband347

temporal and spectral instabilities in visibilities which motivated a metric that exam-348

ines whole nights of data.349

We choose to focus on auto-correlations Vii for two reasons. The first is data vol-350

ume. The number of auto-correlations scales with Nant while the number of visibilities351

scales with N2
ant—far too big to load into memory at once for a whole night of data. Sec-352

ond, because our goal is to identify malfunctioning antennas before calibration, we fo-353

cus on auto-correlations because they are easier to compare without calibration. Com-354

parison between visibilities measuring the same baseline separation requires at minimum355

a per-antenna delay calibration to flatten phases. That term in autocorrelations cancels356

out, leaving each V obs
ii = |gi|2V true

auto . Since most bandpass gains should be similar, auto-357

correlations can be sensibly compared to one other to look for outliers before calibrat-358

ing. Even if |gi|2 differs between antennas, that is something we would like to know and359

perhaps rectify in the field.360

2 Even when the majority of antennas are malfunctioning, our iterative techniques for outlier detec-

tion can still be robust when the malfunctions are multi-causal. To crib from Anna Karenina, all happy

antennas are alike, but every unhappy antenna is unhappy in its own way.
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Historically, auto-correlations from radio interferometers are seldom used. For ex-361

ample, at the VLA the autos are usually discarded (Taylor & Rupen, 1999). The usual362

reasons given for this are that auto-correlations have a noise bias and that gain varia-363

tions are assumed to not correlate between antennas. However, given HERA’s sensitiv-364

ity to calibration stability, this assumption is worth re-considering.365

Each antenna’s auto-correlation stream can be reduced statistically across an en-366

tire observation to a single metric spectrum which can then be quickly compared to all367

other spectra to search for outliers. For HERA, a drift-scan telescope which operates con-368

tinuously each night for months at a time, one full night’s observation time is a useful369

averaging time range. We focus on four factors motivated by antenna failure modes noted370

in manual inspection of hundreds of antenna-nights of autocorrelation data: bandpass371

shape (Section 3.1), overall power level (Section 3.2), temporal variability (Section 3.3),372

and temporal discontinuities (Section 3.4). The purpose of this section is to develop quan-373

titative metrics that capture these qualitative concerns in a rigorous way, attempting to374

reduce antenna “badness” along each of these dimensions to a single number. In Section 3.5375

we show how these four statistics together produce a useful summary of per-antenna per-376

formance (see Figure 15).377

Each of these four statistics comes in two flavors. The first is a median-based statis-378

tic which is more robust against transient or narrow-band outliers in each time vs. fre-379

quency plot or “waterfall”, like RFI. The second is a more sensitive mean-based statis-380

tic. Our basic approach, outlined in pseudocode in Algorithm 2, is to remove the worst381

antennas with the robust statistics, then flag RFI, then flag the more subtly bad anten-382

nas with the mean-based statistics. In the following sections, we offer a more precise def-383

inition of the calculations and the algorithmic application.384

3.1 Outliers in Bandpass Shape385

Our first metric is designed to identify and flag antennas with discrepant bandpass
structures. This often indicates a problem in the analog signal chain. As we mention in
Algorithm 2, we first reduce the auto-correlation for antenna i, polarization p to a sin-
gle spectrum S(ν) as follows.

Smed
i,p (ν) ≡

med {Vii,pp(t, ν)}t
med {Vii,pp(t, ν)}t,ν

(7)

where med {}t indicates a median over time while med {}t,ν indicates a median over both386

time and frequency. This gives us a notion of the average bandpass shape while normal-387

izing the result to remove differences between antennas due to overall power. The reduc-388

tion from waterfall to spectrum only needs to be computed once per antenna.389

We can now compute the median difference between each antenna’s spectrum and
the median spectrum with the same polarization p according to the following formula:

Dmed
i,p ≡ med

{∣∣∣Smed
i,p (ν)−med

{
Smed
j,p (ν)

}
j

∣∣∣}
ν
, (8)

where j indexes over all unflagged antennas. To determine which antenna to flag, if any,
we convert each Dmed

i,p into a modified z-score by comparing it to the overall distribu-
tion of distances. These modified z-scores are defined as

zmod
i,p ≡

√
2erf−1(0.5)

(
Di,p −med {Dj,p}j

)
MAD {Dj,p}j

≈ 0.67449

(
Di,p −med {Dj,p}j

MAD {Dj,p}j

)
, (9)

where MAD {}j is the median absolute deviation over antennas and erf−1(x) is the in-390

verse error function. The factor of
√

2erf−1(0.5) normalizes the modified z-score so that391

–15–



manuscript submitted to Radio Science

the expectation value of a zmod of a sample drawn from a Gaussian distribution is the392

same as its standard z-score.3393

Having computed modified z-scores for every antenna and every polarization, we394

iteratively remove the antenna with the worst modified z over all metrics and both po-395

larizations. When one polarization is flagged, we flag the whole antenna. We then re-396

compute Dmed
i,p and zmod

i,p and continue flagging antennas until none have a modified z397

over a chosen threshold, in our case 8.0.398

Next we perform a simple RFI flagging, analogous to the algorithm used in HERA399

Collaboration et al. (2021), but performed on a single auto-correlation waterfall aver-400

aged over all remaining antennas. This process includes a search for local outliers after401

median filtering and then mean filtering, which are flagged as RFI. Finally, a threshold-402

ing algorithm is performed that throws out entire channels or entire integrations which403

are themselves significant outliers after analogous 1D filtering. The results of this pro-404

cess are shown in Figure 10. This process flags 12.6% of the data, excluding band-edges,405

and leaves 11.3% of channels and 1.0% of all times completely flagged. This is likely an406

under-count of RFI; the algorithm is to designed to flag the most egregious outliers that407

might skew the statistics described below, rather than to find and remove RFI for the408

purpose of making sensitive 21 cm power spectrum measurements.409

Figure 10. Auto-correlation averaged over good antennas, before and after RFI flags. RFI

is excised using local median and mean filters to search for outliers, followed by 1D threshold-

ing. This is a simplified version of the algorithm used in HERA Collaboration et al. (2021) with

the exception that it is sped up by performing it on a single waterfall averaged over unflagged

antennas.

After RFI flagging, we next compute shape metric spectra with mean-based statis-
tics. Analogously to Equation 7 this case,

Smean
i,p (ν) ≡

〈Vii,pp(t, ν)〉t
〈Vii,pp(t, ν)〉t,ν

, (10)

where 〈〉t indicates a weighted-mean over the time dimension, giving zero weight to times
and frequencies flagged for RFI. Likewise, these spectra are reduced to scalar distance

3 Were the distribution of distance metrics Gaussian (it is generally not), then one could think of mod-

ified z-score of 8 as an “8σ outlier.” This kind of language is imprecise, but often useful for building

intuition.
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metrics as

Dmean
i,p ≡

〈∣∣∣Smean
i,p (ν)−

〈
Smean
j,p (ν)

〉
j

∣∣∣〉
ν
, (11)

where again averages are performed over unflagged antennas, times, and frequencies. Just410

as before, we compute modified z-scores to iteratively flag the worst antenna outlier, re-411

calculating Dmean
i,p after each antenna is flagged. This proceeds until no antennas exceed412

a z-score of 4; half that used during the first round median cut.413
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Figure 11. Here we show the shape metric spectra, defined in Equation 10, for all

North/South-polarized antennas in the array (center panel). Outliers (red lines) are defined

as has having a modified z-score greater than 4.0 in their scalar distance metric (Equation 11)

compared compared to the average good antenna (black dashed line) and the distribution of

good antennas (light green lines). Note that this figure includes flagging by three other metrics

causing some antennas to be flagged even though they look ok here. We highlight two example

antennas and show their full auto-correlation waterfalls, one flagged (161; left panel and dark red

dashed line) and one functioning normally (85; right panel and dark green dashed line). Antenna

161’s bandpass is notably low at low frequency, making it a clear outlier in the distribution of

bandpasses in the center panel.

In Figure 11 we show the the results of this operation with example waterfalls and414

metric spectra for antennas that were and were not flagged by our modified z-score cut415

of 4.0. In general, we find that the metric robustly identifies antennas with metric spec-416

tra discrepant from the main group of antennas. Almost everything in red in Figure 11417

is a pretty clear outlier. Where exactly to draw the line is tricky, and likely requires some418

manual inspection of metric spectra and waterfalls for antennas near the cutoff. Note419

that this figure includes flagging by all four metrics. Some moderate outliers in shape420

were not flagged for shape but were flagged for other reasons, indicating that this met-421

ric and the other three discussed below are not completely independent.422

3.2 Outliers in Bandpass Power423

We next turn to looking for outliers in bandpass power. High power might indi-424

cate incorrect amplifier settings while a signal chain malfunction might cause anomalously425

low power. Our approach for finding outliers is very similar to the one for finding out-426

liers in bandpass shape in power laid out in Section 3.1. Here we lay out the mathemat-427

ical approach, highlighting and motivating differences between the two.428
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Once again, we begin by defining median-based metric spectra which collapse each
antenna’s waterfall down to a single number per frequency. For bandpass power, that
is simply

Smed
i,p (ν) ≡ med {Vii,pp(t, ν)}t . (12)

This is simply an unnormalized version of Equation 7. However, instead of directly com-
paring each antenna’s spectrum with the median spectrum, we instead compare their log-
arithms:

Dmed
i,p ≡ med

{∣∣∣ log
(
Smed
i,p (ν)

)
−

log
(

med
{
Smed
j,p (ν)

}
j

) ∣∣∣}
ν
, (13)

This logarithmic distance measure reflects the fact that gains are multiplicative and that429

the optimal ranges for amplifier and digitization are themselves defined in decibels. We430

take the absolute value of the difference of the logs because we want to penalize both431

antennas with too little power, which may indicate a malfunction, and antennas with too432

much power, which may cause a nonlinear response to the sky signal.433

After RFI flagging as described in the previous section, we next proceed with out-
lier detection using modified mean-based statistics, which are straightforward adapta-
tions of Equations 12 and 13:

Smean
i,p (ν) ≡ 〈Vii,pp(t, ν)〉t , (14)

Dmean
i,p ≡

〈∣∣∣log
(
Smean
i,p (ν)

)
− log

(〈
Smean
j,p (ν)

〉
j

)∣∣∣〉
ν
. (15)

Once again, as we can see in Figure 12, this metric picks a number of antennas that434

are clearly behaving differently than the main group. As we saw in the previous section
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Figure 12. Here we show bandpass power metric spectra, defined in Equation 14, for all

North/South-polarized antennas in the array (center panel). Just as in Figure 11 we show flagged

and unflagged antennas, highlighting example auto-correlation waterfalls of good (85; right panel)

and bad (75; left panel) antennas, as defined by the modified z-score of their distance metric

(Equation 15). While antenna 75’s bandpass structure is similar to the normal antennas, its au-

tocorrelation has roughly an order of magnitude less power. This makes us suspicious that the

amplifiers in the signal chain are not operating properly.

435

we see there are some antenna which appear to be “in family” according to this metric436
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but are flagged for other reasons. But now we can start to see why this might be. A few437

of the flagged antennas appear to be fine according to their bandpass shape but are sig-438

nificantly lower or higher in power than the rest.439

3.3 Outliers in Temporal Variability440

We now turn to the the question of searching for outliers in the temporal structure441

of the antenna response. While the metrics follow a similar pattern—median-based spec-442

tra and distances, followed by mean-based spectra and distances—they are mathemat-443

ically quite different from those in Sections 3.1 and 3.2.444

During observing and subsequent inspection analysis sharp discontinuities were ob-445

served in the auto-correlations. Often, though not always, these are rapid changes oc-446

curring within a single integration. Sometimes they are accompanied with apparent changes447

in the bandpass shape or power. Sometimes the effects are relatively localized in frequency;448

sometimes they are broadband. Sometimes they are frequent jumps; sometimes there are449

just a handful of discontinuities followed by minutes or hours of stability. Developing a450

physical understanding of the origin of these effects is an ongoing research effort outside451

the scope of this paper. Absent that understanding—and a hardware fix to prevent the452

effects—we have to consider this behavior suspicious and therefore meriting flagging.453

Here and in Section 3.4 we present two metrics for automatically identifying tem-
poral effects. In general, we are looking for forms of temporal structure of the auto-correlations
that cannot be explained by the sky transiting overhead. The first looks for high levels
of temporal variability throughout the night. To distinguish temporal variability due to
sky-rotation from anomalous temporal structure, our metrics are based on a compari-
son of each antenna’s auto-correlation waterfall with an average waterfall over all anten-
nas. For our first round of median statistics, we use the median absolute deviation of the
waterfall along the time axis after dividing out the median waterfall over antennas. Thus,

Smed
i,p (ν) ≡ MAD

{
Vii,pp(t, ν)

med {Vjj,pp(t, ν)}j

}
t

. (16)

to produce a single spectrum for each antenna that can be reasonably interpreted as the454

standard deviation over time of each channel with respect to the mean over time.455

The significance of each spectrum we estimate as the median over frequency of the
extent to which any antenna’s temporal variability metric spectrum exceeds the median
metric spectrum over all antennas:

Dmed
i,p ≡ med

{
Smed
i,p (ν)−med

{
Smed
j,p (ν)

}
j

}
ν
. (17)

Note that we do not take the absolute value of the difference; while shape and power mis-456

matches are penalized both for being too low and for being too high, we do not penal-457

ize antennas for varying less that the median. These simply become negative z-scores458

–indicating that an antenna has less temporal variation than the median signal– and do459

not result in flags.460

Our mean-based metrics are a straightforward adaptation of Equations 16 and 17:

Smean
i,p (ν) ≡

[〈(
Vii,pp(t, ν)

〈Vjj,pp(t, ν)〉j

)2〉
t

−

〈
Vii,pp(t, ν)

〈Vjj,pp(t, ν)〉j

〉2

t

]1/2
, (18)

Dmean
i,p ≡

〈
Smean
i,p (ν)−

〈
Smean
j,p (ν)

〉
j

〉
ν
. (19)
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In theory, the denominator of Equations 16 and 18 should change each time an an-461

tenna is thrown out and the distance measures and modified z-scores are recomputed.462

This can be computationally expensive when a large fraction of the array needs flagging,463

as has sometimes been the case during HERA commissioning. In practice, we take a short-464

cut. During the median-statistics round, we simply neglect this effect, relying on the fact465

that the median statistics are relatively insensitive to the set of antennas that are flagged.466

During the next round using mean-based statistics, we iteratively remove antennas un-467

til no antennas remain above our modified z-score cut. Only then do we recompute the468

metric spectra in Equation 18. In general, this has the effect of making the metric spec-469

tra more sensitive to temporal variability, since the mean spectrum will include fewer470

anomalously variable antennas. The standard procedure of removing antennas and re-471

calculating each Dmean
i,p (but not each Smean

i,p (ν)) is repeated. This loop continues until472

no more more antennas are flagged after recalculating Smean
i,p (ν) one final time.473

In Figure 13 we show the the resulting mean-based metric spectra after iteratively474

removing outliers. While there are some very clear outliers that are successfully iden-
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Figure 13. Here we show temporal variability metric spectra, defined in Equation 18, for all

North/South-polarized antennas in the array (center panel). Just as in Figure 11 we show flagged

and unflagged antennas, highlighting example auto-correlation waterfalls of good (85; right panel)

and bad (110; left panel) antennas, as defined by the modified z-score of their distance metric

(Equation 19). The malfunction in antenna 110—chunks of time where the waterfall shape and

amplitude varies discontinuously—is subtle. It is easiest to see in the waterfall at low frequencies

during the first half of the night. These sorts of effects are often more visible in metric spectra

and in renormalized waterfalls, as demonstrated in Figure 15.

475

tified, the precise line between what should be considered good and what should be con-476

sidered bad is ambiguous. Clearly the pathology seen in Antenna 110 is worthy of flag-477

ging and the metric successfully identifies it as having high variability relative to the av-478

erage waterfall. Likewise, most of what is identified as good appears to be behaving like479

most of the other antennas. Just as with the previous metrics, some level of inspection480

of antennas near the cutoff is warranted.481

3.4 Outliers in Temporal Discontinuities482

Though a range of temporal variation pathologies were noted during the observ-483

ing and data inspection phase one that stood out was abrupt changes occurring faster484

than the integration time and lasting minutes to hours. Our second metric for anoma-485
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lous temporal structure looks for such sharp discontinuities, which also cannot be explained486

by sky rotation. As with our metric for overall temporal variability (see Section 3.3), our487

metric is based on examining each antenna’s waterfall after dividing out the average wa-488

terfall of unflagged antennas. Instead of using the median absolute deviation or the stan-489

dard deviation, which are measures of variability on any timescale, we instead want to490

detect variability on the shortest timescale—which is the hardest to explain with antenna-491

to-antenna primary beam variations (Dillon et al., 2020).492

Beginning with the auto-correlation scaled by the median over antennas, we com-
pute the discrete difference along the time axis, and then collapse that waterfall (which
is only one integration shorter than the original) along the time axis to a metric spec-
trum. In our first round of flagging using median statistics, this becomes:

Smed
i,p (ν) ≡ med

{∣∣∣∣∣ Vii,pp(t+ ∆t, ν)

med {Vjj,pp(t+ ∆t, ν)}j
−

Vii,pp(t, ν)

med {Vjj,pp(t, ν)}j

∣∣∣∣∣
}
t

, (20)

where ∆t is our integration time (9.6 s in this data set). Our distance measure, designed
to penalize only excessive levels of temporal discontinuities, is the same as in Equation
17:

Dmed
i,p ≡ med

{
Smed
i,p (ν)−med

{
Smed
j,p (ν)

}
j

}
ν
. (21)

The adaption to mean-based statistics is straightforward:

Smean
i,p (ν) ≡

〈∣∣∣∣∣ Vii,pp(t+ ∆t, ν)

〈Vjj,pp(t+ ∆t, ν)〉j
−

Vii,pp(t, ν)

〈Vjj,pp(t, ν)〉j

∣∣∣∣∣
〉
t

, (22)

Dmean
i,p ≡

〈
Smean
i,p (ν)−

〈
Smean
j,p (ν)

〉
j

〉
ν
. (23)

In Figure 14, we show metric spectra for all antennas for a single polarization and493

examples of nominal and abnormal waterfalls. Antennas flagged as bad show a wide va-494

riety of strange behavior: some show broadband effects, others are more localized. An-495

tenna 89 and one other even shows spectrally oscillatory levels of temporal discontinu-496

ities; we currently have no explanation for this effect. Perhaps these features provide fur-497

ther clues to the ongoing system integration and debugging efforts.498

The good antennas are fairly tightly clustered around the average, which is spec-499

trally flat. That behavior is expected if the integration-to-integration differences are purely500

attributable to thermal noise. Normalizing each waterfall by the average good waterfall501

should cancel out the spectral and temporal dependence of the noise. Given that the-502

oretical expectation this might be the easiest of all the metrics to set an absolute cut,503

rather than a relative one based on the modified z-score. However, the wide variety of504

poorly-understood malfunctions combined with the possibility that low-level RFI might505

still contaminate these metrics complicates that picture.506

3.5 Assessing Individual Antenna Quality in Practice507

One advantage of the auto metrics framework is that it is straightforwardly ap-508

plicable to new combinations of metric spectra and distance measures. For example, it509

should be noted that the anomalous temporal structure metrics in Sections 3.3 and 3.4510

are not exhaustive. By averaging over the whole night, they privilege frequent or per-511

sistent effects over infrequent ones. For example, a strong jump in the waterfall like we512
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Figure 14. Here we show temporal discontinuity metric spectra, defined in Equation 22, for

all North/South-polarized antennas in the array (center panel). Just as in Figure 11 we show

flagged and unflagged antennas, highlighting example auto-correlation waterfalls of good (85;

right panel) and bad (89; left panel) antennas, as defined by the modified z-score of their dis-

tance metric (Equation 23). The discontinuities are often hard to perceive without a very careful

inspection of the waterfall. Once again, these sorts of effects are often more visible in metric

spectra and in renormalized waterfalls, as demonstrated in Figure 15.

see in Antenna 110 in Figure 13 that then quickly reverts to “standard” behavior and513

does not repeat might not be caught by either metric. One could imagine other ways of514

computing S(ν) or D that up-weight rare excursions from normality. While we continue515

to assess antenna malfunctions and develop other metrics, it is worthwhile to continue516

the visual inspection of auto-correlation waterfalls normalized by the average of nom-517

inally good antennas to identify other modalities of malfunction.518

In particular, we find it useful to produce a suite of per-antenna visualizations of519

the different metric spectra and the corresponding auto-correlation waterfalls. In Fig-520

ure 15 we show three such examples: one clearly malfunctioning (Antenna 0), one nom-521

inal (Antenna 85), and one borderline case that we ultimately flagged (Antenna 24). For522

each, we show their metric spectra compared to all unflagged antennas, along with the523

z-scores, highlighting which antennas were automatically flagged. These plots synthe-524

size the information about how discrepant each antenna is along the four axes consid-525

ered here and help clarify why.526

In Figure 15 we also show both the waterfalls and the normalized waterfalls, which527

are divided by the average good waterfall (Figure 10) and then normalized to average528

to 1. We find it particularly useful to look closely at these normalized waterfalls, espe-529

cially in borderline cases like Antenna 24. Antenna 24’s bandpass shape is sufficiently530

discrepant with the others to merit an automatic flag, though this does not necessarily531

mean that it is uncalibratable. More concerning are the abrupt discontinuities at high532

frequency around 2459122.3 and around 2459122.5. This is precisely the kind of issue533

we worried about: a strong but rare temporal feature that just barely misses the thresh-534

old. Examples like this motivate by-eye inspect of borderline antennas. This is what we535

have done with recent HERA data. The automatic pipeline produces jupyter notebooks536

with plots like Figure 15 for all antennas, sorting them by the single highest z-score met-537

ric. This makes it easy to find the borderline antennas and decide whether to flag them538

on a case-by-case basis.539
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4 Summary540

Construction and commissioning of HERA is currently under way with hundreds541

of antennas aiming to reach the extreme dynamic range necessary to detect and char-542

acterize the neutral hydrogen signal from the epoch of reionization. Separating that sig-543

nal from foregrounds four to five orders of magnitude stronger requires both large vol-544

umes of data and the swift and reliable identification of malfunctions that adversely af-545

fect data quality. In this work, we report on new metrics which sensitively detect var-546

ious pathologies reported anecdotally during manual data inspection and reliably clas-547

sify them. In some cases, the precise underlying mechanism (e.g. an antenna with swapped548

cables for its two polarizations) is known. In others, a physical explanation requires lab549

and field tests that are beyond the scope of this paper. Armed with per-antenna clas-550

sifications the instrument teams can more effectively triage issues according to their oc-551

currence rate. By inspecting the nightly analysis and dashboard reports the team can552

quickly assess the impact of hardware changes. Meanwhile, the definition of metric spec-553

tra provides a physically meaningful signature which can be exploited by instrument en-554

gineers to identify characteristics like reflections, clipping, interference, and more.555

The definition of metrics which isolate features of interest and standard ways of556

displaying them routinely is crucial to managing a large array with a small team. As dig-557

ital and analog systems grow in capability, arrays will continue to grow in antenna count.558

Arrays like OVRO-LWA-III, DSA-2000 (Hallinan et al., 2021), HIRAX (Saliwanchik et559

al., 2021), CHORD (Vanderlinde et al., 2019), PUMA (Castorina et al., 2020), SKA-Low560

(Mellema et al., 2013) and more will use hundreds to thousands of elements. Ultimately561

the maintenance time per-antenna imposes a significant design pressure on large arrays.562

This kind of pressure can also affect arrays with fewer antennas but with more elabo-563

rate receivers or wider geographic distributions. A prime example of this regime is the564

proposed ngVLA. With 244 antennas distributed across New Mexico, Arizona, and Mex-565

ico, along with outriggers extending to VLBA sites across north America and six cryo-566

genic receivers, operation will require careful minimization of maintenance time.4. Quick567

identification of subtle systematic errors using semi-automatic systems like we describe568

here are expected to be essential.569

In 21 cm cosmology experiments, the reliability and precision of arrays will continue570

to be the dominant factor affecting sensitivity. Identifying, flagging, and ultimately fix-571

ing subtle instrument issues will continue to be the first line of defense. Further work572

in this area is needed, for example, using simulations to replace the detection of relative573

outliers with absolute thresholds or to replace iterative flagging with a single analysis574

step. That said, a system like the one presented here will be necessary for triaging mal-575

functions and extracting science-quality data to form the basis for future cosmology re-576

sults.577
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Appendix A Algorithms759

Algorithm 1 provides pseudocode for the iterative antenna flagging algorithm de-760

scribed in Section 2.3. Algorithm 2 provides pseudocode for the auto-correlation based761

flagging algorithm described in Section 3.762

Algorithm 1: corr metrics pseudocode.

// Compute the correlation metric as defined in Equation 1 for every

baseline.

// Identify completely dead antennas

for ant ∈ ants do
if per-ant median corr metric == 0 then

Flag and remove ant.
else

Continue.
end

end
// Iteratively flag and recalculate metric

for iteration do
Recalculate corr and cross metrics using only unflagged antennas.
if Worst dead ant is worse than worst crossed ant and below flag threshold
then

Flag ant as dead and remove
else if Worse crossed ant is worse than worst dead ant and below flag
threshold then

Flag ant as crossed and remove
else

break
end

end
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Figure 15. An example of the summary dashboard used to inspect antenna metrics showing

three cases –one for a clearly malfunctioning antenna, one for a borderline flagged antenna, and

one for a good antenna. In each we show the metric spectra of the individual antenna compared

to all good antennas in light green, helping us to easily see whether the antenna is an outlier. We

also show the full auto-correlation waterfalls, both raw and fractional deviation from the antenna

average (Figure 10). The effects detected by our metrics can generally be seen in either the raw

or normalized waterfall.
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Algorithm 2: Pseudocode for auto metrics, our method for identifying
outliers in antenna auto-correlations.

// First look for outliers with median-based statistics.

for Vii ∈ auto-correlation waterfalls do
for metric ∈ all auto metrics do

Compute median-based statistical metric spectrum from Vii.
end

end
while True do

for metric ∈ all auto metrics do
Compute median metric spectrum over all Vii for each polarization.
for spectrum ∈ all spectra do

Compute a median-based distance between each spectrum and the
median over antennas.

end
for distance metric ∈ all distance metrics do

Compute a modified z-score from the distribution of distances metrics
of unflagged antennas.

end

end
if ∃ modified z-scores above a given threshold then

Flag the antenna with the largest single z-score over all metrics.
else

Break.
end

end
// Next excise RFI.

Average all unflagged antennas into a single auto-correlation waterfall.
Flag all outlier pixels, channels, or integrations with the XRFI algorithm.
// Now look for outliers with mean-based statistics.

for Vii ∈ auto-correlation waterfalls do
for metric ∈ all auto metrics do

Compute mean-based statistical metric spectrum from Vii, excluding RFI
flags.

end

end
while True do

for metric ∈ all auto metrics do
Compute mean metric spectrum over all Vii for each polarization.
for spectrum ∈ all spectra do

Compute a mean-based distance between each spectrum and the mean
over antennas.

end
for distance metric ∈ all distance metrics do

Compute a modified z-score from the distribution of distances metrics
of unflagged antennas.

end

end
if ∃ modified z-scores above a given threshold then

Flag the antenna with the largest single z-score over all metrics.
else

Break.
end

end
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