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Abstract

Ensemble-based data assimilation of radar observations across inner-core regions of tropical cyclones (TCs) in tandem with

satellite all-sky infrared radiances across the TC domain improves TC track and intensity forecasts. This study further investi-

gates potential enhancements in TC track, intensity, and rainfall forecasts via assimilation of all-sky microwave radiances using

Hurricane Harvey (2017) as an example. Assimilating GPM constellation all-sky microwave radiances in addition to GOES-16

all-sky infrared radiances reduces the forecast errors in the TC track, rapid intensification, and peak intensity compared to

assimilating all-sky infrared radiances alone, including a 24-hour increase in forecast lead-time for rapid intensification. As-

similating all-sky microwave radiances also improves Harvey’s hydrometeor fields, which leads to improved forecasts of rainfall

after Harvey’s landfall. This study indicates that avenues exist for producing more accurate forecasts for TCs using available

yet underutilized data, leading to better warnings of and preparedness for TC-associated hazards in the future.
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Key Points: 21 

• Satellite all-sky infrared and microwave radiances are assimilated to assess their impacts 22 

on forecasts for Hurricane Harvey. 23 

• Along with infrared radiances, microwave radiances improve the track and intensity 24 

forecasts for Harvey. 25 

• Microwave radiance assimilation leads to better analyses of the hydrometeor fields and 26 

more accurate rainfall forecasts.  27 
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Abstract 28 

Ensemble-based data assimilation of radar observations across inner-core regions of tropical 29 

cyclones (TCs) in tandem with satellite all-sky infrared radiances across the TC domain improves 30 

TC track and intensity forecasts. This study further investigates potential enhancements in TC 31 

track, intensity, and rainfall forecasts via assimilation of all-sky microwave radiances using 32 

Hurricane Harvey (2017) as an example. Assimilating GPM constellation all-sky microwave 33 

radiances in addition to GOES-16 all-sky infrared radiances reduces the forecast errors in the TC 34 

track, rapid intensification, and peak intensity compared to assimilating all-sky infrared radiances 35 

alone, including a 24-hour increase in forecast lead-time for rapid intensification. Assimilating all-36 

sky microwave radiances also improves Harvey’s hydrometeor fields, which leads to improved 37 

forecasts of rainfall after Harvey’s landfall. This study indicates that avenues exist for producing 38 

more accurate forecasts for TCs using available yet underutilized data, leading to better warnings 39 

of and preparedness for TC-associated hazards in the future. 40 

Plain Language Summary 41 

Track, intensity, and rainfall are fundamental elements of all forecasts and warnings associated 42 

with tropical cyclones (TCs). Over the last few decades, the forecast community has significantly 43 

improved TC track forecasts. Notable improvements in TC intensity forecasts have recently been 44 

achieved using high-resolution models and remote-sensing observations over the inner-core region 45 

of TCs. This study builds on these earlier efforts by investigating the impacts of utilizing 46 

microwave observations on the forecast accuracy of TC track, intensity, and rainfall. Because 47 

microwave radiances are sensitive to water vapor, liquid water, and ice, using these observations 48 

in TC computer forecasts is expected to improve estimates of the liquid water and ice within TCs, 49 

which can then lead to better rainfall forecasts. These expectations are borne out in our study’s 50 

tests with Hurricane Harvey. These results indicate that incorporating currently available yet 51 

underutilized observations into TC computer forecasts can further improve warnings of, and 52 

preparedness for, TC-associated hazards in the future. 53 

1 Introduction 54 

Tropical cyclones (TCs; see Appendix A for a complete list of acronyms) are among the 55 

most devastating natural disasters in the tropics and mid-latitudes. They make for a triple-threat of 56 

wind damage, surge inundation, and inland/freshwater flooding, the last of which is a leading cause 57 

of fatalities in the United States from TCs (Rappaport 2014). Accurate predictions of TCs are 58 

valuable to society because these predictions facilitate targeted and efficient preparations for 59 

mitigating the loss of life and property. 60 

While forecasts of TC track and intensity have been continually improving over recent 61 

decades (e.g., DeMaria et al. 2014, Cangialosi et al. 2020), one important remaining challenge is 62 

the accurate prediction of hazardous TC precipitation (Kidder et al. 2005). Hazardous TC 63 

precipitation events are difficult to predict because such events often result from the hard-to-64 

predict TC rain bands [e.g., Hurricane Harvey (2017); Blake and Zelinsky, 2018] and long-distance 65 

interactions (Galarneau et al. 2010, Meng and Zhang 2012). The forecast challenges associated 66 

with the inner (e.g., Montgomery and Kallenbach 1997, Wang 2002) and outer (e.g., Diercks and 67 

Anthes 1976, Chow et al. 2002) spiral rain bands are multi-faceted: spiral rain bands’ existence, 68 

intensity, storm-relative location, and small-scale structures are difficult to forecast accurately. 69 

Consequently, rainfall forecasts, such as from the Weather Prediction Center (WPC), often cover 70 



 

a broad area and come with an expected range of rain accumulations tagged with footnotes of 71 

possible localized extreme values. 72 

 Some of the most important observations of TCs over the ocean are satellite infrared (IR) 73 

and microwave (MW) brightness temperatures (BTs; used interchangeably with radiance 74 

hereafter). IR sensors onboard geostationary satellites provide seamless, high-spatiotemporal-75 

resolution BTs of the tropics and the subtropics. They are sensitive to the absorption and emission 76 

of IR radiation associated with water vapor and hydrometeors, hence provide information on cloud 77 

locations, cloud-top heights, and atmospheric moisture in cloud-free regions. IR BTs are also one 78 

of the critical components of the Dvorak technique for estimating TC intensity (Dvorak 1975; 79 

Velden et al. 2006). While MW BTs are much less sensitive to cloud particles, they are sensitive 80 

to the absorption and scattering of MW radiation associated with larger precipitation-related 81 

hydrometeors. Therefore, passive MW BTs are often used in assessing TC structure and intensity 82 

and contributing to operational products from the National Hurricane Center (NHC) that include 83 

information on low- and mid-level circulations of pre-TC disturbances that would otherwise be 84 

obscured by the outflow anvil clouds of deep convection, and secondary eyewalls and potential 85 

eyewall replacement cycles for mature TCs. 86 

While IR and MW BTs are heavily used in the qualitative assessment of TCs, they are still 87 

underutilized in operational global and regional models for TC prediction (Geer et al. 2018, 88 

Gustafsson et al. 2018). Recently, studies examining the ensemble-based assimilation of all-sky 89 

(i.e., both clear-sky and cloud-affected) IR BTs into regional models have demonstrated its 90 

potential in improving TC forecasts (Minamide and Zhang 2018, Honda et al. 2018, Zhang et al. 91 

2019, Hartman et al. 2021). However, IR BTs contain little direct information on precipitation that 92 

may exist below opaque cloud tops. For these conditions, techniques like the ensemble Kalman 93 

filter (EnKF) rely on ensemble covariances to update the model state underneath the cloud tops. 94 

Unfortunately, these covariances are sometimes erroneous because of the limited ensemble size 95 

(Zhang et al. 2021a, b). 96 

On the other hand, MW BTs are able to reflect the distributions of hydrometeors 97 

underneath the cloud tops, providing information in regions that are unobservable for the IR BTs. 98 

Recent demonstrations of realistic correlations between all-sky MW BTs and TC intensity and 99 

structure (Zhang et al. 2021c) motivate studying the potential benefits of simultaneously 100 

assimilating all-sky MW BTs and all-sky IR BTs for the analysis and prediction of TCs. In this 101 

work, we employ Hurricane Harvey (2017) as a case study. This study expands upon recent efforts 102 

in employing ensemble-based assimilation of all-sky MW BTs for TCs (e.g., Wu et al. 2019; 103 

Sieron 2020; Kim et al. 2020; Christophersen et al. 2021; Xu et al. 2021) by examining the impacts 104 

of all-sky MW BTs on TC’s track, intensity, and rainfall forecasts. 105 

2 Methodology 106 

For this study, we utilized the PSU WRF-EnKF data assimilation and forecast system 107 

(Zhang and Weng 2015; Weng and Zhang 2012, 2016; Zhang et al. 2009, 2011, 2016; Chen and 108 

Zhang 2019; Chan et al. 2020). The system configuration largely follows previous studies by 109 

Zhang et al. (2019) and Minamide et al. (2020), except that we adopted the Thompson (2008) 110 

microphysics scheme. Following Sieron et al. (2017, 2018), non-spherical ice-hydrometeor 111 

scattering properties consistent with the microphysics are included to realistically simulate the 112 



 

MW BTs. AOEI (Minamide and Zhang 2017; for both IR and MW BTs) and ABEI (Minamide 113 

and Zhang 2019; for IR BTs only) are applied to mitigate the deleterious impacts of strong 114 

nonlinearities in the assimilation of all-sky BTs. 115 

Because multiple studies have demonstrated that all-sky IR BT assimilation improves 116 

forecasts of TC track and intensity (e.g., Zhang et al. 2016, 2019; Honda et al. 2018; Minamide 117 

and Zhang 2018; Minamide et al. 2020; Hartman et al. 2021), the baseline experiment for this 118 

study assimilates conventional surface and upper-air observations from the GTS, TC center 119 

pressure information from TCVitals, and hourly all-sky IR BTs from channel 8 (6.2-µm) of the 120 

GOES-16 ABI. This experiment is called “IR-only” hereafter. BTs from ABI’s channel 8 are 121 

mostly sensitive to moisture in the upper-troposphere in clear-sky regions, and our group has had 122 

success assimilating them in many previous TC studies (Minamide and Zhang 2017, 2018, 2019; 123 

Zhang et al. 2019; Minamide et al. 2020; Hartman et al. 2021). 124 

The benefits of assimilating all-sky MW BTs are evaluated through an experiment that 125 

assimilates all-sky MW BTs from the GPM constellation sensors (Hou et al. 2014; Skofronick-126 

Jackson et al. 2017;  see Appendix B for a complete list of assimilated channels) in addition to all 127 

observations assimilated in the IR-only experiment. This second experiment is called “IR+MW” 128 

hereafter. We used GPM constellation sensors’ BTs in this study because they underwent extensive 129 

quality control and cross-calibration. MW BTs from two channels are assimilated: the ~19 GHz 130 

vertically polarized low-frequency channel (“the LF channel” hereafter; only assimilated over the 131 

ocean because of uncertainties in modeled land emissivity) and the 183.31±6.6 GHz high-132 

frequency channel (“the HF channel” hereafter; assimilated everywhere because surface 133 

contributions at this frequency are negligible for our purposes). These two channels were selected 134 

for a litany of reasons (Sieron 2020): they are sensitive to liquid (the LF channel) and ice (the HF 135 

channel) water contents, have the best one-to-one correspondence between water content and 136 

changes against clear-sky BTs, have less sensitivity to non-water-content atmospheric/surface 137 

properties, have high climatological agreements between observed and simulated BTs for 138 

precipitating regions in the EnKF priors, and have the highest frequency of occurrence across all 139 

sensors in the observing system. Of the channels in the 183-GHz family, the ±6.6-GHz channel is 140 

chosen because its clear-sky weighting function peaks in the lower troposphere, making it 141 

complementary with the ABI channel 8 IR BT whose weighting function peaks at higher altitudes 142 

(Zhang et al. 2021c). Channels around 89 GHz are used for those sensors that do not have a channel 143 

near 183 GHz. 144 

We initialize both IR-only and IR+MW experiments at 0000 UTC 22 August with 60 145 

ensemble members that contain random perturbations generated by WRFDA and performe cycling 146 

EnKF data assimilation from 1200 UTC 22 August to 0000 UTC 25 August. Deterministic 147 

forecasts out to 0000 UTC 27 August are produced from the EnKF analysis mean every 6 hours, 148 

starting from 1800 UTC 22 August. 23 out of the 61 EnKF cycles assimilates all-sky MW 149 

radiances, 17 of which include MW BTs from both LF and HF channels and the remaining 6 cycles 150 

include only HF channel BTs. 151 

3 Results 152 

We first examine how the analysis-to-observation fits change from the IR-only experiment 153 

to the IR+MW experiment. We then compare the forecast performances of the two experiments in 154 

terms of their forecasts of TC Harvey’s track, intensity, and rainfall amount after landfall. 155 



 

 156 

Figure 1. (first column) Observed and (second and third columns) simulated BTs from the EnKF 157 

analysis ensemble mean at (a)–(i) 1200 UTC 22 August and (j)–(r) 0900 UTC 24 August for (a–c, 158 

j–l) ABI channel 8, (d–f, m–o) the MW LF channel, and (g–i, p–r) the MW HF channel. 159 



 

3.1 Comparison of EnKF analyses 160 

We first compare simulated IR and MW BTs from the analyses from the first EnKF cycle 161 

(1200 UTC 22 August) against the assimilated observations (Figs. 1a-i), which qualitatively reveal 162 

the changes with the assimilation of these observations. Both IR-only and IR+MW experiments 163 

show simulated IR BTs that are qualitatively similar to the observations (Figs. 1a–c). More 164 

importantly, while both experiments overestimate the coverage of the cold cloud tops within the 165 

domain, the overestimation is milder for the IR+MW experiment (Fig. 1c). Furthermore, near the 166 

tip of the Yucatan Peninsula, the IR+MW analysis better captured the warm LF MW BTs (Figs. 167 

1d,f) and the cold HF MW BTs values (Figs. 1g,i) than the IR-only analysis (Figs 1e, h). These 168 

differences in MW BTs suggest that the IR+MW analysis better captured the abundant liquid and 169 

ice hydrometeors in that region. Since both experiments have identical priors at this first cycle, the 170 

differences in their analyses at this time are solely associated with the assimilation of the MW BTs. 171 

The first cycle’s results thus indicate that the inclusion of MW observations can improve the 172 

analyzed hydrometeor fields. It is also worth noting that the match between the IR+MW analysis 173 

and the observations is noticeably better than found in the previous studies of Wu et al. (2019). 174 

We attribute this improvement to the microphysics-consistent non-spherical ice-particle scattering 175 

tables developed for CRTM by Sieron et al. (2017, 2018) and the use of AOEI (Minamide and 176 

Zhang 2017). 177 

We also compared the two experiments’ analyses against the IR and MW observations 178 

shortly after the onset of Harvey’s rapid intensification (RI). Figures 1j–r show the observed and 179 

simulated BTs at 0900 UTC 24 August, which is the first EnKF cycle with available MW BTs 180 

after the onset of Harvey’s RI, and 8 hours after the most recent cycle that included MW BT 181 

assimilation. At this point, clouds and rainband structures that are typical of TCs are apparent in 182 

both the IR and MW observations (Figs. 1j,m,p). The cumulative effects of the cycling EnKF 183 

resulted in close matches between both experiments’ simulated IR BTs (Figs. 1k,l) and the 184 

observations (Fig. 1j). However, both experiments’ analyses noticeably underestimated the 185 

amount and areal extent of the liquid hydrometeors, indicated by the cooler-than-observed warm 186 

LF MW BTs. Systematic cold biases in both experiments for the LF MW channel is beyond the 187 

scope of this study but needs further investigation, and may be related to biases in the microphysics 188 

scheme, as the Thompson et al. (2008) microphysics scheme is known to underpredict rainwater 189 

(e.g., Conrick and Mass 2019). 190 

 The inclusion of the MW observations also improved the analysis in terms of the HF MW 191 

channel. According to Figure 1q, the IR-only analysis exhibits a cold center that matches 192 

reasonably with the observations but fails to capture the secondary cold centers to the northeast 193 

and southeast of the TC center. These missing two features are associated with intense outer 194 

rainbands (Fig. 1q). With the assimilation of all-sky MW radiances, these missing rainbands are 195 

better captured (Fig. 1r). The primary rainband that extends southward from the TC center is 196 

particularly well-represented in IR+MW. This implies that the addition of MW observations to 197 

data assimilation improves the analyzed rainbands. 198 

In summary, the addition of MW observations resulted in analysis improvements for both 199 

the IR and MW observations. These BT improvements indicate improvements to the analyzed 200 

structure and distribution of hydrometeors of Harvey. Next, we examine how these improvements 201 

impact Harvey’s track, intensity, and rainfall forecasts. 202 

 203 



 

 204 

Figure 2. Analyses and forecasts of (first column) track, (second column) minimum sea-level 205 

pressure, and (third column) maximum surface wind speed for the (first row) IR-only and (second 206 

row) IR+MW experiments. (third row) Errors in the forecasts verified against NHC’s best-track 207 

analysis.  208 

3.2 Comparison of deterministic forecasts 209 

Figure 2 shows the analyses and forecasts of Hurricane Harvey’s track and intensity for the 210 

IR-only and IR+MW experiments, as well as associated forecast errors with respect to the forecast 211 

lead time. Both the IR-only and IR+MW experiments predict the track with reasonable accuracy, 212 

especially for forecasts that are initialized relatively late. Additionally, the westward biases in the 213 

1800 UTC August 22 forecast and the eastward biases in the three forecasts from 0000 UTC to 214 

1200 UTC August 23 of the IR-only experiment (Fig. 2a) are noticeably reduced in the IR+MW 215 

forecasts (Fig. 2d). Although reduced errors in these forecasts are diluted after averaging across 216 

all 10 forecasts, the track forecast errors in the IR+MW experiment are slightly smaller, overall, 217 

than in the IR-only forecasts beyond 72 h (Fig. 2g), although it is not statistically significant at 218 

95% confidence level using a Wilcoxon signed-rank test (Wilks 2011). 219 



 

 220 

Figure 3. (a, c) 700-hPa and (b, d) 850-hPa horizontal winds (barbs) and wind speeds (shading) 221 

from the EnKF analyses of the (a, b) IR-only and (c, d) IR+MW experiment averaged every 6 222 

hours from 1800 UTC 22 August through 1200 UTC 23 August. (e) Track of the reconnaissance 223 

flight (grey) with the colored section showing SFMR surface wind speeds from 1045 UTC to 1115 224 

UTC 23 August; the red star marks Harvey’s center using NHC best track data. (f) Comparisons 225 

of SFMR-retrieved wind speeds from 1045 UTC to 1115 UTC 23 August with those from the IR-226 

only and IR+MW experiment EnKF analyses at 1100 UTC 23 August. (The numbers within the 227 

legend represent RMSEs between the SFMR-retrieved wind speeds and those from the EnKF 228 

analysis.) 229 



 

The forecast errors for intensity, in terms of either minimum sea-level pressure or 230 

maximum surface wind speed, are also reduced when MW BTs are assimilated. There is a clear 231 

bifurcation in the IR-only forecasts (Figs. 2b,c): forecasts initialized before 0000 UTC 24 August 232 

are not able to capture the RI of Harvey, whereas the forecasts initialized after 0600 UTC 24 233 

August do. The period from 0000 UTC to 0600 UTC 24 August is when the convection starts to 234 

become more organized (figure not shown), contributing to the RI of Harvey shortly thereafter. 235 

For the IR-only experiment, the lack of direct information on TC organization within the IR BTs 236 

may have hindered or delayed the RI of Harvey in the IR-only forecasts originating from times 237 

before 0000 UTC 24 August. 238 

The addition of MW observations resulted in forecasts that captured the RI of Harvey, even 239 

those forecasts that are initialized within 24 hours of the start of the cycling EnKF (Figs. 2e,f). 240 

Furthermore, the assimilation of MW observations also resulted in forecasts with smaller mean 241 

absolute errors in intensity, with the largest error reductions around 40% at 60-h forecast lead times 242 

(Figs. 2h,i; statistically significant at 95% confidence level between 42 to 78 hours for minimum 243 

sea-level pressure and 48 to 60 hours for maximum surface wind speed). These forecast intensity 244 

improvements, especially in the early forecasts initialized before the observed RI of Harvey, likely 245 

result from changes in the TC’s structures introduced by all-sky MW BT assimilation. The initial 246 

conditions for the first four forecasts from the IR+MW experiment have higher wind speeds 247 

associated with stronger cyclonic circulation in the lower troposphere (Figs. 3c,d) compared with 248 

those of the IR-only experiment (Figs. 3a,b). The higher wind speeds in the IR+MW experiment 249 

better match SFMR-retrieved surface wind speed (not assimilated) from a reconnaissance flight 250 

that covered the northeast quadrant of Harvey (Figs. 3e,f). A stronger cyclonic circulation in the 251 

IR+MW experiment likely enabled this experiment to produce more accurate forecasts of the onset 252 

of Harvey’s RI than the IR-only experiment.  253 

The assimilation of all-sky MW BTs also improves Harvey’s rainfall forecasts. Figure 4 254 

shows the accumulated rainfall forecasts from both experiments for the period from 0000 UTC 26 255 

August through 0000 UTC 27 August, along with Stage-IV rainfall estimates (Lin and Mitchell 256 

2005). The Stage-IV estimates reveal intense rainfall near Harvey’s center as well as in the 257 

rainband to the northeast of the center (Fig. 4a). Both intense rainfall regions contributed to 258 

widespread flash flooding. To compare the performance of the two experiments, Equitable Threat 259 

Scores (ETS; Wilks 2011) were calculated for a range of verification rainfall thresholds and 260 

aggregated across all 10 forecasts. The ETS values (Fig. 4b) reveal that the IR+MW experiment 261 

forecasts have more accurate rainfall predictions than the IR-only experiment forecasts at all 262 

verification rainfall thresholds, ranging from almost +0.07 greater for the 5-mm threshold to more 263 

than +0.04 greater for the 100-mm threshold. 264 

Differences between rainfall amount forecasts and Stage-IV estimates for the two 265 

experiments at two different times are also presented in Fig. 4. The 0000 UTC 23 August IR-only 266 

experiment forecasts are characterized by noticeable track forecast errors (Fig. 3a); therefore, a 267 

dipole structure is visible in its differences with the Stage-IV estimates (Fig. 4c). With the track 268 

forecast errors reduced, the dipole structure disappears in the IR+MW experiment forecasts (Fig. 269 

4e). Moreover, the severe underestimation of rainfall outside the core region in the southwest and 270 

northwest quadrants relative to the core in the IR-only experiment forecasts (Fig. 4c) is greatly 271 

reduced in the IR+MW experiment forecasts (Fig. 4e). This is likely the result of better analyses 272 

of the TC rainbands (e.g., Fig. 2), leading to an RMSE reduction from 63.96 mm to 48.77 mm. For 273 



 

the 0000 UTC 25 August forecasts for which both experiments have small track errors, the 274 

IR+MW experiment forecast still outperforms the IR-only experiment forecast with smaller biases, 275 

especially for the outer rainbands to the northeast over Houston. These smaller biases again led to 276 

more accurate rainfall amounts overall (Figs. 4d,f). These results show that assimilating all-sky 277 

MW BTs leads to substantial improvements in the accuracy of rainfall prediction during the 278 

landfall of TC Harvey. 279 

 280 

Figure 4. (a) Stage-IV total rainfall estimates accumulated from 0000 UTC 26 August through 281 

0000 UTC 27 August. (b) Equitable Threat Scores (ETS) with different thresholds on rainfall 282 

amount from 0000 UTC 26 August through 0000 UTC 27 August for the predicted rainfall 283 

averaged over all the forecasts. Forecast minus observed rainfall amount differences from the (c,) 284 

0000 UTC 23 August and (d,f) 0000 UTC 25 August forecasts for the (c,d) IR-only and (e, f) 285 

IR+MW experiments for rainfall amounts accumulated from 0000 UTC 26 August through 0000 286 

UTC 27 August. 287 



 

4 Concluding remarks 288 

This study reveals the value of assimilating all-sky MW BTs from low-Earth-orbiting 289 

satellites for improving the prediction of TC track, intensity, and precipitation through a case study 290 

of Hurricane Harvey (2017). This work builds upon recent successes in improving TC prediction 291 

through ensemble-based assimilation of all-sky IR BTs from geostationary satellites. Cloud-top 292 

information from the IR BTs in combination with information on the hydrometeors beneath the 293 

cloud tops from the MW BTs leads to better estimates of Harvey’s structure. These improvements 294 

from assimilating all-sky MW BT lead to more accurate track and intensity forecasts and earlier 295 

accurate predictions of Harvey’s RI, especially when the TC circulation was not yet well 296 

established. In addition, better representation of Harvey’s structure following MW assimilation 297 

resulted in better rainfall forecasts after Harvey’s landfall. 298 

This is the first study to demonstrate improvements in track, intensity, and rainfall forecasts 299 

for a TC via assimilation of all-sky MW BTs in an ensemble-based convection-permitting data 300 

assimilation system. The influence of MW assimilation on TC prediction also depends upon AOEI, 301 

ABEI, and implementation of microphysics-consistent ice-particle scattering properties based on 302 

non-spherical ice particles. 303 

Many challenges remain in the effective assimilation of all-sky MW BTs in support of 304 

predicting TCs and their associated hazards. Appropriate adaptive bias correction and localization 305 

for all-sky BT assimilation remain unresolved challenges. Comparisons of the low-frequency and 306 

high-frequency MW channel BTs from different analyses suggest that the performance of 307 

assimilating all-sky MW BTs using multiple channels depends on the choice of microphysics 308 

schemes, which will eventually impact the performance of the subsequent forecasts. Therefore, in 309 

order to better assimilate all-sky multi-channel MW BTs, there is a pressing need to develop 310 

microphysics schemes that more realistically simulate hydrometeors and/or observation operators 311 

that account for the uncertainties in microphysical processes. Nevertheless, our study demonstrates 312 

that, despite model, observation, and data assimilation deficiencies, there are benefits from the 313 

assimilation of the currently underutilized all-sky MW BTs for the prediction of TCs and their 314 

associated hazards. 315 
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Appendix 507 

Appendix A. List of acronyms 508 

ABEI  – Adaptive Background Error Inflation 509 

ABI   – Advanced Baseline Imager 510 

AMSR2 – Advanced Microwave Scanning Radiometer 2 511 

AOEI  – Adaptive Observation Error Inflation 512 

ARW  – Advanced Research WRF model 513 

ATMS  – Advanced Technology Microwave Sounder 514 

BT  – Brightness temperature 515 

CRTM  – Community Radiative Transfer Model 516 

DMSP  – Defense Meteorological Satellite Program 517 

EnKF  – Ensemble Kalman filter 518 

ETS  – Equitable Threat Score 519 

GCOM-W1 – Global Change Observation Mission 1st - Water 520 

GMI  – GPM Microwave Imager 521 

GPM  – Global Precipitation Measurement project 522 

GOES  – Geostationary Operational Environmental Satellite 523 

IR  – Infrared 524 

MHS  – Microwave Humidity Sounder 525 

MW  – Microwave 526 

NHC  – National Hurricane Center 527 

NOAA  – National Oceanic and Atmospheric Administration 528 

PBL  – Planetary boundary layer 529 

PSU  – The Pennsylvania State University 530 

RI  – Rapid intensification 531 

RMSE  – Root-mean-square error 532 

RRTMG – Rapid Radiative Transfer Model for Global Circulation Model 533 

TC   – Tropical cyclone 534 

SAPHIR – Sounder for Probing Vertical Profiles of Humidity 535 

SFMR  – Stepped-Frequency Microwave Radiometer 536 

SSM/I  – Special Sensor Microwave/Imager 537 

SSMIS  – Special Sensor Microwave Imager/Sounder 538 

Suomi NPP – Suomi National Polar-orbiting Partnership 539 



 

WPC  – Weather Prediction Center 540 

WRF  – Weather Research and Forecasting model 541 

WRFDA – WRF Data Assimilation system 542 

YSU  – Yonsei University  543 



 

Appendix B. Assimilated channels from the GPM constellation sensors. 544 

Sensor Satellite LF Channel HF Channel 

AMSR2 GCOM-W1 7 (18.7 GHz) 13 (89.0 GHz) 

ATMS Suomi NPP  18 (183.31±7.0 GHz) 

GMI GPM Core Observatory 3 (18.7 GHz) 13 (183.31±7.0 GHz) 

MHS NOAA-18  5 (190.31 GHz) 

SAPHIR Megha-Tropiques  5 (183.31±6.6 GHz) 

SSM/I DMSP-F15 1 (19.35 GHz) 6 (85 GHz) 

SSMIS DMSP-F16, F17, F18 13 (19.35 GHz) 9 (183.31±6.6 GHz) 

 545 
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