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Abstract

Key Points: 8 * The change in electron kinetic entropy per particle is calculated for 22 shock cross-9 ings having wide range of

shock conditions 10 * The entropy change displays a strong dependence on the electron beta parame-11 ter 12 * The entropy

change corresponds to an adiabatic index γ e = 1.595 ± 0.036 13 Corresponding author: Martin Lindberg, mli6@kth.se-

1-Abstract 14 We use Magnetospheric Multiscale (MMS) data to study electron kinetic entropy across 15 Earth’s quasi-

perpendicular bow shock. We have selected 22 shock crossings covering a 16 wide range of shock conditions. Measured distribution

functions are calibrated and cor-17 rected for spacecraft potential, secondary electron contamination, lack of measurements 18

at the lowest energies and electron density measurements based on the plasma frequency 19 measurements. The change in

electron kinetic entropy per particle is calculated for 22 20 shock crossings. 20 out of 22 crossings display an increase in the

electron kinetic entropy 21 per particle ranging between 0.1-1.4 k B while two crossings display a slight decrease of 22-0.06 k

B. We observe that the change in electron kinetic entropy, [?]S e , displays a strong 23 dependence on the change in electron

temperature, [?]T e , and the upstream electron plasma 24 beta, β e. Shocks with high [?]T e are found to have high [?]S e.

Shocks with low upstream 25 electron plasma betas are associated to higher [?]S e than shocks with large electron plasma 26

beta. We show that the calculated entropy per particle is strictly less than the maximum 27 state of entropy obtained using

a Maxwellian distribution function. The resulting change 28 in electron kinetic entropy per particle [?]S e , density [?]n e and

temperature [?]T e is used 29 to determine a value for the adiabatic index of electrons. We find that an adiabatic in-30 dex of

γ e = 1.595 ± 0.036 describes the observations best.
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Abstract14

We use Magnetospheric Multiscale (MMS) data to study electron kinetic entropy across15

Earth’s quasi-perpendicular bow shock. We have selected 22 shock crossings covering a16

wide range of shock conditions. Measured distribution functions are calibrated and cor-17

rected for spacecraft potential, secondary electron contamination, lack of measurements18

at the lowest energies and electron density measurements based on the plasma frequency19

measurements. The change in electron kinetic entropy per particle is calculated for 2220

shock crossings. 20 out of 22 crossings display an increase in the electron kinetic entropy21

per particle ranging between 0.1-1.4 kB while two crossings display a slight decrease of22

-0.06 kB. We observe that the change in electron kinetic entropy, ∆Se, displays a strong23

dependence on the change in electron temperature, ∆Te, and the upstream electron plasma24

beta, βe. Shocks with high ∆Te are found to have high ∆Se. Shocks with low upstream25

electron plasma betas are associated to higher ∆Se than shocks with large electron plasma26

beta. We show that the calculated entropy per particle is strictly less than the maximum27

state of entropy obtained using a Maxwellian distribution function. The resulting change28

in electron kinetic entropy per particle ∆Se, density ∆ne and temperature ∆Te is used29

to determine a value for the adiabatic index of electrons. We find that an adiabatic in-30

dex of γe = 1.595± 0.036 describes the observations best.31

1 Introduction32

Collisionless shock waves are ubiquitous throughout our universe. However, many33

questions remain about the physical mechanism behind electron heating (Schwartz et34

al., 2011; See et al., 2013; Chen et al., 2018) and entropy generation (Parks et al., 2012)35

at collisionless shocks. In the absence of collisions, dissipation of the solar wind bulk flow36

energy must be sustained via other processes. The physics behind dissipative processes37

and entropy generation in collisionless plasmas is an ongoing research topic and numer-38

ous studies have been performed observationally, experimentally, theoretically and nu-39

merically (Liang et al., 2019, 2020; Cassak, 2016; Howes, 2018).40

Entropy generation is linked to irreversible dissipation in closed thermodynamic41

systems (Anderson, 2004; Blundell & Blundell, 2010). However, whether entropy can be42

used as a measure of dissipation in open thermodynamic systems is currently under de-43

bate (Liang et al., 2020). Liang et al. (2019) describe the development of using local ki-44

netic entropy density as a diagnostic to indicate dissipation in magnetic reconnection events45

–2–



manuscript submitted to JGR: Space Physics

as seen in numerical simulations. Another study uses the Cluster spacecraft ion and elec-46

tron data to measure the entropy development across Earth’s quasi-perpendicular bow47

shock (Parks et al., 2012). Both magnetic reconnection events and bow shock crossings48

are not closed systems. However, the concept of entropy has been successfully used to49

study the irreversible processes within those systems. In the case of the bow shock, this50

can be an important tool to distinguish the relative contribution of irreversible heating51

and adiabatic heating during the plasma compression across the shock. There has been52

few experimental studies of such an entropy development, one of the reasons being that53

this requires very accurate distribution function calibrations. Therefore, with the launch54

of the Magnetospheric Multiscale spacecraft (MMS) and it’s high resolution particle in-55

strumentation, it is of high importance to address this topic.56

In this study, we use data from the Magnetospheric Multiscale (MMS) mission to57

investigate the change in electron kinetic entropy across quasi-perpendicular shocks. We58

provide a theoretical calculation (Appendix A) of the change in total entropy per par-59

ticle across a collisionless shock and show its dependence on the upstream Alfvénic Mach60

number, MA, shock angle, θBn, and total plasma beta, β. The calculation assumes a one61

fluid MHD approximation considering both ions and electrons. No analytical expression62

is known considering electrons alone and hence comparing to the one fluid-model is of63

interest. Of particular importance is to study how the amount of generated kinetic en-64

tropy relates to the shock parameters, such as Alfvénic Mach number MA, plasma beta65

βe, shock angle θBn and change in density ∆ne and temperature ∆Te. Earlier studies have66

shown that there are two critical Whistler Mach numbers, discussed in Krasnoselskikh67

et al. (2002) and Lalti et al. (2020). Whistler waves can scatter electrons via the cyclotron68

resonance (Amano et al., 2020) and could possibly contribute to entropy generation, thus69

it is of importance to understand if these two different critical Mach numbers affect the70

electron entropy development across the shock.71

To calculate the kinetic entropy across Earth’s collisionless bow shock, we use the

formulation defined within kinetic theory where the entropy density is calculated directly

from the distribution function f according to Liang et al. (2019),

s = −kB
∫
f ln fd3v. (1)

–3–
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We normalize eq. (1) with the number density n =
∫
fd3v such that we obtain the en-

tropy per particle

S =
s

n
= −

kB
∫
f ln fd3v∫
fd3v

. (2)

In the rest of the article when referring to ”entropy” we mean S, i.e. entropy per par-72

ticle that in our case only consider electrons.73

2 Method74

2.1 Data75

We use data from 22 shock crossings observed by the MMS spacecraft. All the se-76

lected events are during time periods when the burst data are available. The shock cross-77

ings are chosen such as to have a wide range of different shock conditions. Some of the78

crossings have been selected from the databases used in Raptis et al. (2020) and Lalti79

et al. (2020). Magnetic field data are taken from the fluxgate magnetometer (FGM), the80

measurement cadence is 7.8 ms. All plasma moments and the measured 3D distribution81

functions are obtained from the fast plasma investigation (FPI) measuring at a cadence82

30 ms. Additional calibration of electron distribution functions is necessary as described83

later. The electric field spectra and spacecraft potential are obtained from the spin plane84

double probe (SDP) and the axial double probe (ADP) instruments. The solar wind ion-85

temperature is not resolved properly by MMS, therefore ion-temperature data is taken86

from the 1-min resolution OMNI database (King & Papitashvili, 2005).87

2.2 Shock parameter calculations88

2.2.1 Shock Normal89

The shock normal direction is determined using upstream and downstream mea-90

surements of the magnetic field and ion velocity at MMS1. The normal vector is calcu-91

lated and compared using five different methods:92

The magnetic coplanarity method, using only magnetic field data,

n̂MC = ± (Bd ×Bu)×∆B

|(Bd ×Bu)×∆B|
(3)

The velocity coplanarity method, using only ion velocity data,

n̂VC = ± Vd −Vu

|Vd −Vu|
(4)

–4–
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and three mixed methods using both magnetic field and ion velocity data,

n̂MX1 = ± (Bu ×∆V)×∆B

|(Bu ×∆V)×∆B|
(5)

n̂MX2 = ± (Bd ×∆V)×∆B

|(Bd ×∆V)×∆B|
(6)

n̂MX3 = ± (∆B×∆V)×∆B

|(∆B×∆V)×∆B|
(7)

where ∆ represents the downstream to upstream difference, ∆A ≡ Ad−Au where A93

is any quantity, and the sign of the normal vector is taken such that the normal points94

from downstream towards upstream.95

The magnetic coplanarity method, in (3), fails for θBn → 90◦ (and 0◦) while the96

velocity coplanarity method, in (4), is an approximation only valid for high mach num-97

bers and a θBn close to 90◦ (or 0◦) (Paschmann & Daly, 1998). The shock normals tab-98

ulated in Table 1 is calculated using the average of the three mixed methods in (5)-(7).99

However, one crossing exhibited an inconsistency between observation and calculated θBn.100

This inconsistency, was the case for all methods except the Velocity coplanarity method.101

Hence, the Velocity coplanarity method was used for this crossing.102

2.2.2 Shock velocity103

Calculating the Mach numbers associated with a shock wave, the normal compo-

nent of the upstream flow velocity relative to the shock (shock velocity), needs to be known.

In order to determine the shock velocity, two methods are used: the mass flux method

and the Smith and Burton method, for detailed descriptions of these methods see Pollock

et al. (2016). The mass flux method gives the shock velocity as

Vsh =
∆(nV)

∆n
· n̂. (8)

This method requires good density (n) determination both upstream and downstream

of the shock and information about the shock normal direction. The Smith and Burton

method yields a shock velocity according to

Vsh =
|∆V×Bd|
|∆B|

. (9)

This method does not require an explicit determination of the shock normal but rather104

a good velocity vector determination. The shock velocity used in the calculations is taken105

–5–
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as the average between the two methods. However, if one of the methods yields an un-106

physical velocity, such as shock velocity having a sign inconsistent with observations, then107

shock velocity from only one method is used.108

2.2.3 Upstream shock parameters109

The shock normal angle θBn is the angle between the upstream magnetic field Bu

and n̂,

θBn = arccos

(
Bu · n̂
|Bu|

)
. (10)

From the data, θBn is estimated as the average using eq. (10) for the three different shock110

normals obtained via eqs. (5)-(7).111

In the theory of astrophysical collisionless shocks, there are different Mach num-

bers governing the physics. The Alfvén Mach number MA is the ratio of the normal com-

ponent of the upstream flow velocity in the shock frame, Vn,u, to the upstream Alfvén

speed, VA. The fast magnetosonic Mach number can be calculated from the Alfvén Mach

number and the total plasma beta using

Mms =
Vn,u√
V 2
A + C2

s

=
MA√

1 + 5β/6
(11)

where Cs is the sound speed and β is the total upstream plasma beta.112

In this study, we will also consider two critical whistler Mach numbers. The lin-

ear whistler Mach number as defined in Balogh and Treumann (2013)

Mwh =
1

2

√
mi

me
| cos θBn| (12)

depends only on the shock normal angle. For MA < Mwh, whistler wave phase veloc-

ity can be going upstream away from the shock and thus allow the formation of stand-

ing wave fronts in front of quasi-perpendicular shocks. Eq. (12) is defined with respect

to the whistler phase velocity. A similar expression for the linear whistler Mach num-

ber can be defined with respect to the group velocity instead, see e.g. Oka et al. (2017).

Krasnoselskikh et al. (2002) also introduces a non-linear whistler Mach number (Mwhn),

satisfying the equation

M2
whn(2M2

wh −M2
whn)3 = βe(2M

2
whn −M2

wh)3, (13)

that allows to find Mwhn numerically. Unlike the linear one in (12), the nonlinear whistler113

Mach number not only depends on the shock angle but also has a weak dependence on114
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the electron plasma beta, βe. For MA > Mwhn, all whistlers in front of the shock have115

group velocity downstream and are thus not able to stand in front of the quasi-perpendicular116

shock (Lalti et al., 2020).117

2.3 Distribution function corrections118

To make reliable estimates of the entropy and electron moments, the electron dis-119

tribution functions that are downloaded from the MMS data archive have to be addi-120

tionally calibrated. There are four corrections performed, all of them described below.121

2.3.1 Spacecraft potential122

Spacecraft has a potential Φ with respect to the ambient plasma environment, it

is called spacecraft potential. Hence, a charged particle with energy E will be measured

by MMS at a shifted energy

E′ = E − qΦ

where q is the charge of the particle. For a positive spacecraft potential, electrons will123

be accelerated by the spacecraft and measured at higher energies while protons (posi-124

tive ions) will be decelerated and measured at lower energies. We correct the measured125

distribution functions by using the spacecraft potential estimates from the electric field126

instrument.127

2.3.2 Secondary electrons128

Secondary electron emissions contaminate the lower energy channels of the elec-129

tron distribution functions measured by MMS, (Gershman et al., 2017). This contam-130

ination is illustrated in panel (a) of Figure 1. Figure 1 shows the electron distribution131

function average over all angles. The secondary electrons can be seen at low energies,132

E < 20 eV as a fast increase in the distribution function when going to lower energies.133

The secondary electron number density increases with increasing background plasma den-134

sity. This is attributed to secondary electron emissions due to background plasma elec-135

trons hitting the spacecraft and instrument surfaces.136

In order to resolve the distribution function of the ambient background plasma, the

low energy secondary electron population needs to be removed. This is done by mod-

elling the secondary electron population as consisting of two components, one sun an-

–7–
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gle dependent due to photoelectrons and one isotropic due to the ambient plasma. The

sun angle dependent component is independent of the background ambient plasma den-

sity and is set according to Gershman et al. (2017), corresponding to a photoelectron den-

sity of nph = 0.35 cm−3. For the isotropic component, we construct a model described

in more detail in Appendix B. This model is set to capture the secondary electron pop-

ulation’s dependence on the ambient background plasma density. The secondary elec-

tron model distribution function is subtracted from the measured one of MMS accord-

ing to

fe = fe,MMS − fph.

The model distribution function, fph, is adjusted (see Appendix B) to yield a Maxwellian-137

like shape at the low energies for distributions (fe) in the solar wind. For distributions138

(fe) in the magnetosheath, the model distribution function, fph, is adjusted to resem-139

ble a flat top distribution. In panel (a) and (b) of Figure 1, the measured distribution140

functions and the corrected distribution functions are shown at five different shock cross-141

ing locations indicated in panel (c) of Figure 1.142
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Figure 1. Distribution cuts showing the secondary electron contamination at the lower en-

ergies. Plot (a) and (b) shows the uncorrected resp. corrected distribution function cuts at five

different times. These times are indicated by the colored vertical lines in plot (c) that shows the

measured (MMS1) electron number density crossing the shock. The distributions in panel (a)

and (b) have been averaged over a full solid angle. The calibration factors for this shock were

a = b = 1 and the secondary electron models used for this shock were n1,j in solar wind and n2,j

in the magnetosheath (see Appendix B and Table B1).

2.3.3 Extrapolation to zero energy143

The part of the distributions ranging from the lowest energy bin value down to zero144

energy, while not measured by the spacecraft, it gives an important contribution to the145

entropy estimates. Therefore, it is important to use good approximations for the distri-146

bution function values in that interval. We assume that in the low energy range, the dis-147

tribution of electrons is isotropic and the electron drift velocity is small compared to the148

thermal velocity. Based on this assumption we extrapolate the distribution functions down149

to zero as illustrated in Figure 2.150
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Figure 2. Distribution functions in upstream solar wind (blue) and downstream magne-

tosheath (red). The dashed lines indicate the extrapolated part of the distributions.

2.3.4 Density and Temperature151

As a final step, the distribution function is calibrated such that it corresponds to152

the same density as obtained based on the measurements of plasma frequency fp by the153

electric field instrument. We introduce a scale factor η such as fnew = ηfold where fnew154

is the corrected distribution function and fold is the original distribution function.155

As an example, Figure 3 shows the electric field spectra of one shock crossing. The156

plasma frequency peak is seen in the upstream solar wind at roughly 30 kHz, correspond-157

ing to a plasma density of nfp ≈ 11.3 cm−3. In this case all the corrections above pro-158

vide a distribution function corresponding to a density of about 9.44 cm−3 and thus the159

scaling factor η = 11.3/9.44 = 1.2.160

Figure 4 displays the difference between the measured and calculated electron den-161

sity and temperature.162
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Figure 3. Electric field spectrogram for one shock crossing. The plasma frequency emission at

f ≈ 30.1 kHz corresponds to a density of 11.3 cm−3.
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Figure 4. Comparison of the measured electron density (black) and electron temperature

(blue) to the calculated ones (red). The red lines are calculated using the correction methods

described in the method section.

2.4 Electron entropy calculation163

The entropy density is calculated as

s = −kB
∫
f ln (f)d3v = s0 − kB

∑
i,j,k

fijk ln (fijk)∆vijk (14)

where ∆vijk samples the phase space density volume element given in spherical coordi-

nates as

∆vijk ∝
√

(Ei − eΦ)∆Ei sin θj∆θj∆ϕk. (15)

s0 is the extrapolated part of the distribution function (illustrated by the dashed lines

in Figure 2). Assuming the distribution function is approximately constant at these en-

–12–
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ergies, we obtain

s0 = −kB〈f ln f〉
E0∫
0

d3v = −kB〈f ln f〉8πE
3/2
0

3
(16)

where E0 denotes the lower edge of the lowest electron energy bin and 〈f ln f〉 is the mean164

of the (solid angle averaged) distribution function values at the two lowest energies. The165

entropy per particle, defined in eq. (2), is then obtained by dividing the entropy den-166

sity by the calculated number density, n =
∫
fd3v, obtained using the corrected dis-167

tribution function.168

3 Results169

Figure 5 displays the shock event henceforth referred to as crossing 5. The first four170

top panels, (a)-(d), shows the magnetic field, ion velocity, ion differential energy flux and171

electron differential flux as measured by MMS1. Panels (e)-(g) shows the electron num-172

ber density, electron temperature and electron kinetic entropy per particle calculated us-173

ing the calibrated distribution function described in the previous section. The last panel,174

(h), shows the kinetic entropy of ions calculated directly from the measured ion distri-175

bution function from MMS1.176

The data displayed in Figure 5 shows the characteristic signs of a quasi-perpendicular177

shock crossing. At the start of the interval, spacecraft are in the upstream solar wind.178

Around 07:35:27 UTC ion velocity starts to decrease and the spacecraft enter the foot179

region of the shock. The ion spectrogram shows a high energy ion population, associ-180

ated to the shock, to be present already at 07:35:21 UTC. Hence, the solar wind upstream181

parameters are taken as averaged values before this time. At around 07:35:36 UTC, the182

MMS1 spacecraft measures a sharp increase in density and temperature. This increase183

coincides with a sharp transition in the ion and electron differential energy flux and is184

interpreted as the shock ramp. The sharp peak seen in the magnetic field, density and185

temperature at around 07:35:38 UTC is identified as the overshoot which is followed by186

the downstream magnetosheath. The calculated entropy (panels (g) and (h)) of the two187

species is observed to increase across the shock. We define upstream and downstream188

parameters by taking a 6 second average, 07:35:15-07:35:21 UTC upstream and 07:35:54-189

07:36:00 UTC downstream. The Alfvén Mach number of this shock is MA ≈ 10.9 and190

the shock angle is θBn ≈ 61◦. The change in electron entropy is 0.39kB and the change191

in ion entropy 2.9kB. All the other shocks have been analyzed in a similar manner.192

–13–
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Tables 1, 2 and 3 show the shock parameters for the 22 analyzed crossings. The

number, date and time of each shock is shown in Table 1 and referencing to a specific

shock crossing will hereafter be done using their number. Also shown in Table 1 include,

the averaged upstream values of the magnetic field, ion velocity, electron density, elec-

tron temperature and the shock normal in GSE-coordinates for each crossing.. Tables

2 and 3 show the change in electron entropy, ∆Se, along with 10 other shock parame-

ters including the fast magnetosonic Mach number, Alfvén Mach number, upstream elec-

tron plasma beta, shock angle, change in density, change in electron temperature, adi-

abatic index, linear and non-linear whistler Mach numbers and maximal electric field strength

measured at the shock. The adiabatic index for electrons is calculated based on an an-

alytical expression. Under the assumption of a calorically perfect gas (constant heat ca-

pacities), the change in entropy can be expressed as (Balogh & Treumann, 2013; Ander-

son, 2004)

∆S = kB ln

[
Nu

Nd

(
Td
Tu

) 1
γ−1
]

(17)

where u denotes upstream and d downstream. Assuming (17) applies for the different193

plasma species separately, the adiabatic index γe for electrons can be decided for each194

shock crossing (see last column in Table 2). With 22 shock crossings analyzed, we per-195

form a statistical study. In Figure 6, we present the ∆Se plotted against the parame-196

ters listed above.197

–14–



manuscript submitted to JGR: Space Physics

Figure 5. MMS1 measurements of shock crossing nr 5. It shows, (a) measured Magnetic field,

(b) ion velocity, (c) ion spectrogram, (d) electron spectrogram, (e) calculated electron density,

(f) calculated electron temperature, (g) electron kinetic entropy per particle and (h) ion kinetic

entropy per particle.
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Crossing Bu[nT] Vu[km/s] ne,u[1/cc] Te,u[eV] n̂ (GSE)

1. 2016-11-10 17:10 12.4 379 24.1 19.2 0.88 0.44 0.18

2. 2016-11-10 16:59 7.0 373 43.8 17.3 0.81 0.58 0.07

3. 2016-12-06 10:55 8.0 343 24.8 11.6 0.97 0.24 0.02

4. 2016-12-09 10:29 7.9 617 6.9 13.0 0.99 0.15 -0.06

5. 2016-12-18 07:36 6.2 439 11.3 21.0 0.99 -0.09 0.03

6. 2017-01-01 09:11 3.9 486 9.2 16.5 0.99 -0.13 0.07

7. 2017-01-15 06:43 5.0 324 19.1 10.4 0.88 0.26 0.39

8. 2017-01-18 05:39 17.1 374 21.7 17.8 0.95 -0.32 0.003

9. 2017-01-31 10:07 9.1 645 11.0 16.4 0.94 -0.24 0.24

10. 2017-10-18 04:34 3.3 404 4.7 15.8 0.80 0.55 0.25

11. 2017-11-02 04:27 9.9 317 17.0 13.2 0.73 0.66 0.15

12. 2017-11-24 23:20 9.1 396 7.3 12.0 0.86 0.48 0.20

13. 2017-11-28 18:01 5.2 405 11.3 11.8 0.99 0.03 0.05

14. 2017-12-26 22:10 3.2 460 7.1 14.9 0.94 -0.07 0.33

15. 2018-01-24 04:05 2.4 369 5.9 9.8 0.92 -0.35 0.16

16. 2018-11-16 00:11 4.3 361 7.5 9.5 0.80 0.57 0.18

17. 2018-11-18 17:47 5.6 310 17.6 7.5 0.84 0.43 0.32

18. 2018-11-27 04:18 3.4 299 16.3 11.7 0.95 0.22 0.24

19. 2018-12-16 20:16 4.0 325 11.5 12.4 0.96 0.14 0.25

20. 2018-12-25 07:56 4.6 325 9.9 12.3 0.98 0.16 0.11

21. 2019-12-17 21:44 3.5 327 9.6 12.0 0.89 0.15 0.42

22. 2020-04-17 18:19 3.4 297 8.8 8.2 0.63 -0.78 -0.04

Table 1. The studied shock crossings along with the upstream parameters and calculated

shock normal vectors. The upstream parameters are obtained taking a 6 second average. The

shock normals are obtained as the average of the three mixed methods in (5)-(7) except for

crossing 10 where the velocity coplanarity method was used.–16–
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Crossing Mms MA βe θBn ∆n/nSW ∆Te/Te,SW ∆Se/kB γe

1 4.8 7.1 1.2 63 2.6 2.2 0.59 1.53

2 4.9 13.6 6.2 89 2.4 1.0 -0.06 1.65

3 4.4 7.9 1.8 79 3.0 2.2 0.51 1.62

4 6.0 9.9 0.6 89 3.7 5.3 1.44 1.62

5 5.4 10.9 2.5 61 2.7 1.8 0.39 1.64

6 5.1 14.7 4.0 64 2.5 1.4 0.31 1.63

7 5.0 10.5 3.3 89 2.4 1.3 0.10 1.63

8 3.8 4.8 0.5 59 2.3 2.5 0.75 1.61

9 5.4 10.8 0.9 77 3.3 4.4 1.27 1.62

10 3.6 7.1 2.8 59 2.5 1.2 0.10 1.63

11 3.1 4.4 0.9 64 2.4 1.6 0.27 1.61

12 3.8 4.6 0.4 84 3.9 3.6 1.30 1.60

13 6.2 11.3 2.0 75 3.5 3.0 0.71 1.57

14 5.8 15.5 4.1 84 2.8 1.8 0.62 1.57

15 8.1 18.2 4.1 79 3.9 2.0 0.50 1.62

16 5.1 8.2 1.5 83 3.2 2.8 0.90 1.60

17 4.5 7.8 1.7 70 4.7 2.1 0.12 1.60

18 5.0 13.7 6.7 67 2.0 0.83 -0.06 1.55

19 5.3 11.3 3.6 72 1.9 1.3 0.32 1.53

20 5.7 10.3 2.3 87 2.8 2.5 0.72 1.53

21 5.3 11.7 3.8 52 2.9 1.4 0.11 1.60

22 5.4 10.2 2.5 65 3.7 2.1 0.41 1.59

Table 2. The studied shock crossings along with the calculated fast magnetosonic Mach num-

ber, Mms, Alfvénic Mach number, MA, upstream electron plasma beta, βe, shock angle, θBn,

change in density, ∆n/nSW, change in temperature, ∆Te/Te,SW, change in electron entropy, ∆Se

and adiabatic index, γe. –17–
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Crossing MA/Mwh MA/Mwhn |E|max[mV/m] ∆Se/kB

1 0.74 0.56 739 0.59

2 1.2 1.01 224 -0.06

3 1.9 1.6 178 0.51

4 44 29 121 1.44

5 1.05 0.85 271 0.39

6 1.5 1.2 121 0.31

7 28 34 130 0.10

8 0.44 0.34 716 0.75

9 2.2 2.3 192 1.27

10 0.42 0.33 117 0.10

11 0.47 0.37 143 0.27

12 2.0 2.7 482 1.30

13 2.1 1.8 294 0.71

14 7.2 7.2 82 0.62

15 4.4 4.1 261 0.50

16 3.4 2.6 203 0.90

17 1.06 0.82 293 0.12

18 1.6 1.4 194 -0.06

19 1.7 1.5 441 0.32

20 8.6 8.8 302 0.72

21 0.88 0.72 171 0.11

22 1.12 0.93 231 0.41

Table 3. The studied shock crossings with Alfvénic to whistler mach number ratio(s) (linear

and non-linear), maximum electric field strength measured across the shock and electron kinetic

entropy change.
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Figure 6. The change in kinetic electron entropy per particle (∆Se) plotted against (a) solar

wind electron temperature, (b) difference in electron number density, (c) difference in electron

temperature, (d) Alfvénic Mach number, (e) electron plasma beta, (f) shock normal angle, (g)

Alfvénic to linear whistler Mach number ratio, (h) Alfvénic to non-linear whistler Mach number

ratio and (i) maximum electric field strength measured crossing the shocks.
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Figure 7. The average adiabatic index for electrons of all 22 shock crossings is calculated to

be γe = 1.595 ± 0.036. Panel (a) shows how this value fit our data better than the γ = 5/3, which

is that for an ideal gas. Panel (b) displays the change in entropy vs change in temperature (blue

asterisks) and the analytical expression in (17) for the same at four different density ratios with

γe = 1.595. Here index 1 stands for solar wind and 2 for magnetosheath.

4 Discussion198

Studying Table 2, crossing the shock from upstream to downstream, the kinetic en-199

tropy increases in nearly all of the crossings, except two that are discussed in the next200

paragraph. With energy being dissipated at the shock, an increase of entropy is expected201

(Balogh & Treumann, 2013). Collisionless shocks generating entropy has been reported202

by Cluster in Parks et al. (2012). However, we find that the ∆Se ≈ 2kB stated by Parks203

et al. (2012) is not observed in this study. Instead, the change in electron entropy is find204

to vary between −0.06kB and 1.4kB with an average of 〈∆Se〉 = 0.51kB.205

Crossing 2 and 18 display a ∆Se ≈ −0.06 < 0, i.e. the entropy seems to decrease206

across the shock. Note that the change is rather close to zero so this might be due to207

numerical effects and/or left over photoelectrons. That is, if the real change in entropy208

is positive but close to zero, any small left over part of photoelectrons could make the209

calculated ∆S negative.210

–20–
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Studying Figure 6, we note a clear trend in panel (c) between the ∆Se and the ∆Te.211

This is expected due to energy dissipating processes occurring at the shock (Balogh &212

Treumann, 2013). Irreversible processes always increase entropy and temperature (Blundell213

& Blundell, 2010), hence we expect an increase in entropy to yield an increase in tem-214

perature. We also observe a trend in panel (e), between the ∆Se and the electron plasma215

beta, βe. A high ∆Se is associated with a low solar wind electron plasma beta, βe < 1.216

While a low ∆Se is associated with a high solar wind electron plasma beta, βe > 1. This217

inverse electron beta-dependence is qualitatively similar to what is theoretically predicted218

for the total entropy per particle change vs the total plasma beta across a collisionless219

shock assuming a one fluid MHD approximation, see Appendix A and Figure A2.220

For the other parameters in Figure 6 (not panel (c) or (e)), no clear trend is ob-221

served and more crossings need to be analyzed. Due to the strong ∆Se-dependence on222

the electron plasma βe, we suggest the other parameters to be analyzed using a limited223

range of electron plasma βe.224

We find the average adiabatic index for all shocks to be 〈γe〉 ≈ 1.595 with a stan-225

dard deviation of 0.036. This is compared to the value for a monoatomic gas with 3 de-226

grees of freedom , γ = 5/3 (Anderson, 2004), in Figure 7. Comparing the (b) panels227

of Figure 6 and 7, states that the change in electron entropy follow the expression in (17)228

quite well for an adiabatic index of γe ≈ 1.595± 0.036.229

The Maxwellian distribution represents the maximum state of entropy and using

the definition of kinetic entropy density in (1), an analytical expression can be found for

a given plasma density, n, and temperature, T , (Liang et al., 2020)

sM =
3

2
kBn

[
1 + ln

(
2πkBT

mn2/3

)]
. (18)

Figure 8 depicts a comparison between the entropy per particle (eq. (18) divided by n)230

of a Maxwellian distribution and the entropy calculated using MMS. As expected, the231

calculated entropy is strictly less then the maximum state (Maxwellian) throughout the232

interval. Studying the difference between the two in Figure 8, we note that the plasma233

is not completely thermalized in the magnetosheath. However, the calculated entropy234

in the magnetosheath is closer to the maximum entropy state (Maxwellian) compared235

to the entropy measured in the solar wind. This comparison was made for crossing 1-236

9, 12 and 22 and similar behavior was observed for all.237
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Figure 8. Comparison of the calculated entropy (blue) to the entropy of a Maxwellian distri-

bution (red).

5 Conclusion238

We use MMS-data to calculate the kinetic entropy per particle across Earth’s quasi-239

perpendicular bow shock. 22 quasi-perpendicular shock crossings have been analyzed.240

The kinetic entropy per particle is calculated using the kinetic definition of entropy via241

the measured distribution function of MMS1. It is shown that the measured electron dis-242

tribution function needs further calibrations when calculating the entropy and plasma243

moments such as density and temperature. The calibrations are presented and described244

in the method section. Our main findings are:245

• 20 out of 22 crossings display an increase in the electron kinetic entropy ranging246

between ∆Se ≈ 0.1− 1.4kB.247

• Two crossings display a slight decrease ∆Se ≈ −0.06kB.248

• The measured/calculated electron entropy per particle of 11 crossings are com-249

pared to the entropy per particle of a Maxwellian distribution. We find the mea-250

sured entropy to be strictly less than the Maxwellian’s for all 11 shocks. We note251

that the plasma is not completely thermalized in the magnetosheath. However,252

–22–
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the calculated entropy in the magnetosheath is closer to the maximum entropy253

state (Maxwellian) compared to the entropy measured in the solar wind.254

• We observe that the ∆Se displays a strong dependence on the change in electron255

temperature across the shock, ∆Te, and the upstream electron plasma beta, βe.256

Shocks with high ∆Te are found to have high ∆Se. Shocks with low upstream elec-257

tron plasma betas are found to generate more entropy than shocks with large elec-258

tron plasma beta.259

• For the parameters, MA, Mwh, Mwhn, TSW, ∆ne and Emax no clear trend is ob-260

served and more crossings need to be analyzed.261

• The adiabatic index of electrons is calculated for each shock using the analytical262

expression in eq. (17). The index best describing our data is determined to be γe =263

1.595 with a standard deviation of 0.036.264
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Appendix A Analytical calculation of total entropy change across col-273

lisionless shock274

This section provides a theoretical prediction of the change in total entropy per par-275

ticle as a function of the upstream parameters of a shock in a single fluid approximation.276

Starting from the Rankine-Hugoniot equations, the density and temperature ratios can277

be determined solely by the upstream Alfvénic Mach number MA, shock angle θBn and278

upstream total plasma beta β1.279
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Figure A1. The 1D shock geometry assumed. Picture taken from Balogh and Treumann

(2013).

The Rankine-Hugoniot equations are given by Kivelson and Russel (1995):

n̂ · {B} = 0

n̂ · {NV} = 0

{n̂× (V×B)} = 0

n̂ · {mNVV}+ n̂

{
P +

B2

2µ0

}
− 1

µ0
n̂ · {BB} = 0{

mN n̂ ·V
[
V 2

2
+ w +

1

mN

(
P +

B2

µ0

)]
− 1

µ0
(V ·B)n̂ ·B

}
= 0

For an ideal gas we have

P = NkBT

and enthalpy per mass

h = w +
P

ρ
=
CpT

m
.
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This gives280

n̂ · {B} = 0 (A1)

n̂ · {NV} = 0 (A2)

{n̂× (V×B)} = 0 (A3)

n̂ · {mNVV}+ n̂

{
NkBT +

B2

2µ0

}
− 1

µ0
n̂ · {BB} = 0 (A4){

mN n̂ ·V
(
V 2

2
+
CpT

m
+

B2

µ0mN

)
− 1

µ0
(V ·B)n̂ ·B

}
= 0 (A5)

From Figure A1, we get

V1 = V1n̂

B1 = (Bn, 0, Bz1)

V2 = (Vn2, 0, Vz2)

B2 = (Bn, 0, Bz2)

where (A1) above yields Bn1 = Bn2 = Bn and have been used.281

Using the above assumptions, (A2) above yields

N2Vn2 = N1V1

⇒
N2Vn2
N1V1

= 1 (A6)

Using the vector identity, A× (B×C) = B(A ·C)−C(A ·B), on (A3) yields

V2(n̂ ·B2)−B2(n̂ ·V2) = V1(n̂ ·B1)−B1(n̂ ·V1)

which then gives

V2Bn −B2Vn2 = n̂V1Bn −B1V1.

The normal component gives nothing of value while the z-component yields:

Bz2Vn2 − Vz2Bn = Bz1V1.

This gives

Bz2
Vn2
V1
− Vz2

V1
Bn = Bz1 (A7)

Consider now the z-component of (A4)

mN2Vn2Vz2 −
1

µ0
BnBz2 = − 1

µ0
BnBz1

–25–
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using (A6) gives

1

µ0
BnBz2 −mN1V1Vz2 =

1

µ0
BnBz1

and divide through with mN1V
2
1 yields:

BnBz2
µ0mN1V 2

1

− Vz2
V1

=
BnBz1

µ0mN1V 2
1

(A8)

Consider now the normal component of (A4)

mN2V
2
n2 +N2kBT2 +

B2
n +B2

z2

2µ0
− 1

µ0
B2
n = mN1V

2
1 +N1kBT1 +

B2
n +B2

z1

2µ0
− 1

µ0
B2
n

using (A6) again and canceling some terms gives

mN1V1Vn2 +N2kBT2 +
B2
z2

2µ0
= mN1V

2
1 +N1kBT1 +

B2
z1

2µ0

Divide through by mN1V
2
1 /2

2
Vn2
V1

+ 2
N2kBT2
mN1V 2

1

+
B2
z2

µ0mN1V 2
1

= 2 + 2
kBT1
mV 2

1

+
B2
z1

µ0mN1V 2
1

(A9)

Finally, eq. (A5) becomes:

mN2Vn2

(
V 2
n2 + V 2

z2

2
+
CpT2
m

+
B2
n +B2

z2

µ0mN2

)
− 1

µ0
(Vn2Bn + Vz2Bz2)Bn =

= mN1V1

(
V 2
1

2
+
CpT1
m

+
B2
n +B2

z1

µ0mN1

)
− V1B

2
n

µ0

Divide through by mN1V1 and make use of (A6)

V 2
n2 + V 2

z2

2
+
CpT2
m

+
B2
n +B2

z2

µ0mN2
− Bn
µ0mN1V1

(Vn2Bn + Vz2Bz2) =

=
V 2
1

2
+
CpT1
m

+
B2
n +B2

z1

µ0mN1
− B2

n

µ0mN1

now divide through by V 2
1 /2

V 2
n2 + V 2

z2

V 2
1

+ 2
CpT2
mV 2

1

+ 2
N1

N2

B2
n +B2

z2

µ0mN1V 2
1

− 2Bn
µ0mN1V 3

1

(Vn2Bn + Vz2Bz2) =

= 1 + 2
CpT1
mV 2

1

+
2B2

z1

µ0mN1V 2
1

(A10)

Introducing the normalized parameters

N2

N1
→ N2 ,

V2

V1
→ V2 ,

Bi

V1
√
µ0mN1

→ Bi ,
kBTi
mV 2

1

→ Ti (A11)
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equations (A6)-(A10) can be written as

N2Vn2 = 1

Bz2Vn2 − Vz2Bn = Bz1

BnBz2 − Vz2 = BnBz1

2Vn2 + 2N2T2 +B2
z2 = 2(1 + T1) +B2

z1

V 2
n2 + V 2

z2 +
2γT2
γ − 1

+ 2Vn2B
2
z2 − 2Vz2BnBz2︸ ︷︷ ︸
2Bz1Bz2

= 1 +
2γT1
γ − 1

+ 2B2
z1

where (A6) have been used on the third term in (A10) to yield the last equation and then282

eq. (A13) in the underbrace.283

We end up with284

N2Vn2 = 1 (A12)

Bz2Vn2 − Vz2Bn = Bz1 (A13)

BnBz2 − Vz2 = BnBz1 (A14)

2N2(V 2
n2 + T2) +B2

z2 = 2(1 + T1) +B2
z1 (A15)

V 2
n2 + V 2

z2 +
2γT2
γ − 1

+ 2Bz1Bz2 = 1 +
2γT1
γ − 1

+ 2B2
z1 (A16)

A1 Solve for Vn2285

Using the adiabatic index, γ, equal to 5/3 (Anderson, 2004) and performing the286

following operations:287

• Solve for Vz2 in (A14).288

• Solve for Bz2 in (A13).289

• Mult. (A15) with 5Vn2/2 and make use of (A12).290

• Add 4V 2
n2 to (A16)291

and we end up with:292

Vz2 = Bn(Bz2 −Bz1) (A17)

Bz2 =
Bz1(B2

n − 1)

B2
n − Vn2

(A18)

5(V 2
n2 + T2) +

5

2
Vn2B

2
z2 = 5Vn2(1 + T1) +

5

2
Vn2B

2
z1 (A19)

5(V 2
n2 + T2) + V 2

z2 + 2Bz1Bz2 = 1 + 5T1 + 2B2
z1 + 4V 2

n2 (A20)
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Subtract (A20) to (A19) in order to eliminate T2

V 2
z2 + 2Bz1Bz2 −

5

2
Vn2B

2
z2 = 1 + 5T1 + 2B2

z1 + 4V 2
n2 − 5Vn2(1 + T1)− 5

2
Vn2B

2
z1

and perform the following steps:293

• Insert expression (A17), eliminating Vz2.294

• Insert expression (A18), eliminating Bz2.295

• Multiply the whole equation with (B2
n − Vn2)2.296

The above steps yields the following equation for Vn2

a4V
4
n2 + a3V

3
n2 + a2V

2
n2 + a1Vn2 + a0 = 0 (A21)

where the coefficients are given by297

a0 = B2
n[B2

1 + 5B2
nT1] (A22)

a1 =
1

2
B2
z1 −B2

n[2 + 5B2
1 + 5T1(2 +B2

n)] (A23)

a2 = 1 + 5T1 + 2B2
z1 + 2B2

n[5 + 2B2
1 + 5T1] (A24)

−a3 = 5 + 8B2
n +

5

2
B2
z1 + 5T1 (A25)

a4 = 4 (A26)

We see that the solution for Vn2 in (A21) will depend on the upstream parameters298

Bn, Bz1 and T1. Using the Normalization in (A11), these parameters can be expressed299

as300

B2
1 = 1

M2
A

(A27)

Bn = cos θBn
MA

(A28)

Bz1 = sin θBn
MA

(A29)

T1 = β1

2M2
A

(A30)

and (A22)-(A26) can be expressed as301

a0 =
(2M2

A + 5β1 cos2 θBn) cos2 θBn
2M6

A

(A31)

a1 =
M4
A − 5β1 cos4 θBn − 5M2

A(2 + 2β1 +M2
A)

2M6
A

(A32)

a2 =
(8 + 10β1 + 16M2

A) cos2 θBn +M2
A(4 + 5β1 + 2M2

A)

2M4
A

(A33)

−a3 =
5 + 5β1 + 10M2

A + 11 cos2 θBn
2M2

A

(A34)

a4 = 4 (A35)
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A2 Temperature Ratio302

Divide (A16) with 2cpT1, where cp = γ/(γ − 1):

V 2
n2

2cpT1
+

V 2
z2

2cpT1
+
T2
T1

+
2Bz1Bz2

2cpT1
=

1

2cpT1
+ 1 +

2B2
z1

2cpT1

Solve for T2/T1:

T2
T1

= 1 +
1

2cpT1

[
1− V 2

n2 + 2B2
z1 − 2Bz1Bz2︸ ︷︷ ︸
−2Bz1Vz2/Bn

−V 2
z2

]

Insert

Vz2 =
Bz1Bn(Vn2 − 1)

(B2
n − Vn2)

which is obtained through (A18) in (A17). We obtain

T2
T1

= 1 +
γ − 1

2γT1

[
1− V 2

n2 −
2B2

z1(Vn2 − 1)

(B2
n − Vn2)

− B2
z1B

2
n(Vn2 − 1)2

(B2
n − Vn2)2

]
(A36)

where Bn, Bz1 and T1 is given by the upstream parameters θBn, MA and β1 in (A28),303

(A29) and (A30). Hence, using eq. (17), the total entropy change can be calculated via304

the upstream parameters θBn, MA and β1 by deciding Vn2 = N1/N2 numerically from305

(A21) and T2/T1 from (A36). The result is illustrated in Figure A2.306
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Figure A2. Theoretical prediction of total entropy change across collisionless shock in a one

fluid plasma approximation.

Appendix B Secondary electron model across shock307

In order to resolve the distribution function of the ambient background plasma, the308

low energy secondary electron population needs to be removed. This is done by mod-309

elling the secondary electron population as consisting of two components, one sun an-310

gle dependent due to the photoelectrons and one isotropic due to the ambient plasma.311

The sun angle dependent component is independent of the background ambient plasma312

density and is set according to Gershman et al. (2017), corresponding to a photoelec-313

tron density of nph = 0.35 cm−3. The isotropic component is estimated by examining314

partial densities associated with the shock crossings. We define the partial density n(E)315

to be the number of electrons per cubic centimeter with energy E. Figure B1 shows par-316

tial densities, n(E), at four different locations during a shock transition. This figure nicely317

illustrates the ambient plasma population (large peak) and the photoelectron popula-318

tion (portion of a small peak) at the low energies. In order to capture the density de-319
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pendence of the isotropic component, the total secondary electron density (photo and320

secondary electrons) is estimated using five simple models using the low energy region321

of the partial densities.322

For each measured data point, j, in the shock time interval, let:323

• n0,j = nph324

• n1,j = Partial density value at the lowest energy325

• n2,j = Sum of the two partial density values at the two lowest energies326

• n01,j = Average between 0 cm−3 and n1,j327

• n12,j = Average between n1,j and n2,j328

where n0,j is set equal to the photoelectron density to represent a case with zero secondary329

electron density (see eq. (B1) below).330

As an example, consider the data point (time) given by the red vertical line in panel

(e) of Figure B1. The partial density corresponding to this line is seen in panel (d) of

Figure B1 and evaluating the five models above yields:

n0 = 0.35 cm−3

n1 ≈ 3 cm−3

n2 ≈ 3 cm−3 + 1.9 cm−3 = 4.9 cm−3

n01 =
0 cm−3 + 3 cm−3

2
= 1.5 cm−3

n12 =
3 cm−3 + 4.9 cm−3

2
= 3.95 cm−3

This is done for all data points in the shock time interval. To pin point which two of the

five options above to use (one in solar wind and one in magnetosheath) for each cross-

ing, the flat top condition is used in the magnetosheath region and a Maxwellian con-

dition for the solar wind region. To further improve the model, we introduce calibration

factors a and b. In this way, the secondary electron density is expressed as

NSW,j = anSW,j − nph (B1)

and

NMSh,j = bnMSh,j − nph (B2)

where nSW,j and nMSh,j is one of (not necessary the same) [n0,j , n01,j , n1,j , n12,j , n2,j ]331

defined above , a and b are numbers close to 1 and the sun angle dependent photoelec-332

tron density have been subtracted.333
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We take crossing 5 as an example. Distributions in the solar wind were compared334

to a Maxwellian distribution with 6 second upstream temperature average and density335

obtained from plasma frequency electric field measurements. The secondary electron den-336

sity in (B1) giving the best resemblance of the Maxwellian at the lower energies was found337

using nSW,j = n1,j and a = 1.0. Distributions in the magnetosheath were assumed to338

be of flat top kind. The secondary electron density in (B2) best resembling flat top dis-339

tributions was found using nMSh,j = n2,j and b = 1.0.340

B1 Transition region341

Equation (B1) estimates the secondary electron number density needed to give a

Maxwellian-like shape at the lower energies in the solar wind. (B2) estimates the sec-

ondary electron number density needed to give a flat top distribution in the magnetosheath.

The shock being the boundary region between the solar wind and magnetosheath, we

propose a gradual transition between the two models in (B1) and (B2) by using the fol-

lowing expression

Nramp,j =
(N − j)NSW,j + (j − 1)NMSh,j

N − 1
(B3)

for each data point j. The concept is illustrated in Figure B2 below.342

The transition region interval is decided manually by eye for each shock crossing.343

The resulting distribution functions, using the above described method for remov-344

ing contaminating secondary electrons, can be seen in panel (b) of Figure 1. The result-345

ing partial densities (removing the photo-electrons) are seen in panel (a)-(d) in Figure346

B1.347
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Figure B1. Partial densities at four different locations crossing the shock. In panel (a)-(d)

the black curves (and black squares) are calculated using the measured distribution function at

MMS1. The colored curves are the same but corrected for secondary electron contamination.

Panel (e) shows the measured electron density of MMS1. The colored vertical lines indicate the

location of the distribution cuts.

–33–



manuscript submitted to JGR: Space Physics

Figure B2. The secondary electron density at the shock is modelled as a gradual transition

(shaded yellow area) between the solar wind (NSW ) and magnetosheath (NMSh) models using

the expression in (B3).
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Crossing SW-model MSh-model a b η

1 n01 n12 1.0 1.05 1.10

2 n01 n1 1.0 0.90 1.13

3 n01 n1 1.0 0.90 1.35

4 n0 n2 1.0 1.10 1.31

5 n1 n2 1.0 1.00 1.19

6 n1 n2 1.0 0.925 1.39

7 n01 n1 1.0 0.90 1.40

8 n01 n2 1.0 0.95 1.29

9 n1 n2 0.9 1.05 1.38

10 n01 n1 1.0 0.95 1.04

11 n01 n1 1.0 1.10 1.24

12 n1 n2 1.0 1.10 1.60

13 n01 n1 1.0 1.25 1.05

14 n1 n12 1.0 1.00 1.20

15 n1 n1 1.0 1.20 1.37

16 n01 n12 1.0 1.00 1.28

17 n01 n1 1.0 0.75 1.60

18 n01 n1 1.0 0.75 0.91

19 n01 n1 1.0 0.90 0.92

20 n01 n12 1.0 1.00 1.05

21 n01 n1 1.0 1.00 1.10

22 n01 n1 1.0 1.00 1.44

Table B1. Table showing the secondary electron density models and coefficients used for the

22 shock crossings.
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