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Abstract

The Krafla area in north Iceland hosts a high-temperature geothermal system within a volcanic caldera. Temperature measure-

ments from boreholes drilled for power generation reveal enigmatic contrasts throughout the drilled area. While wells in the

western part of the production field indicate a 0.5-1 km thick near-isothermal (˜210 °C) liquid-dominated reservoir underlain by

a deeper boiling reservoir, wells in the east indicate boiling conditions extending from the surface to the maximum depth of dril-

led wells (˜2 km). Understanding these systematic temperature contrasts in terms of the subsurface permeability structure and

overall dynamics of fluid flow has remained challenging. Here, we present a new numerical model of the natural, pre-exploitation

state of the Krafla system, incorporating a new geologic/conceptual model and a version of TOUGH2 extending to supercritical

conditions. The model shows how the characteristic temperature distribution results from structural partitioning of the system

by a rift-parallel eruptive fissure and an aquitard at the transition between deeper basement intrusions and high-permeability

extrusive volcanic rocks. As model calibration is performed using a Bayesian framework, the posterior results reveal significant

uncertainty in the inferred permeability values for the different rock types, often exceeding two orders of magnitude. While

the model shows how zones of single-phase vapor develop above the deep intrusive heat source, more data from deep wells is

needed to better constrain the extent and temperature of the deep vapor zones. However, the model suggests the presence of a

significant untapped resource at Krafla.
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Abstract15

The Krafla area in north Iceland hosts a high-temperature geothermal system within16

a volcanic caldera. Temperature measurements from boreholes drilled for power genera-17

tion reveal enigmatic contrasts throughout the drilled area. While wells in the western18

part of the production field indicate a 0.5-1 km thick near-isothermal (∼210 °C) liquid-19

dominated reservoir underlain by a deeper boiling reservoir, wells in the east indicate boil-20

ing conditions extending from the surface to the maximum depth of drilled wells (∼2 km).21

Understanding these systematic temperature contrasts in terms of the subsurface per-22

meability structure has remained challenging. Here, we present a new numerical model23

of the natural, pre-exploitation state of the Krafla system, incorporating a new geologic/conceptual24

model and a version of TOUGH2 extending to supercritical conditions. The model shows25

how the characteristic temperature distribution results from structural partitioning of26

the system by a rift-parallel eruptive fissure and an aquitard at the transition between27

deeper basement intrusions and high-permeability extrusive volcanic rocks. As model28

calibration is performed using a Bayesian framework, the posterior results reveal significant29

uncertainty in the inferred permeability values for the different rock types, often exceed-30

ing two orders of magnitude. While the model shows how zones of single-phase super-31

critical vapor develop above the deep intrusive heat source, more data from deep wells32

is needed to better constrain the extent and temperature of the deep supercritical zones.33

However, the model suggests the presence of a significant untapped resource at Krafla.34

1 Introduction35

Geothermal systems develop in response to elevated heat fluxes in areas of active36

magmatism and volcanism (Stimac et al., 2015; Jolie et al., 2021). Hydrothermal con-37

vection in permeable rocks results in cooling of subsurface intrusions and the develop-38

ment of boiling zones (Hayba & Ingebritsen, 1997; Scott et al., 2016). Natural state geo-39

thermal reservoir models describe the subsurface temperature/pressure distribution, the40

location and depth of boiling zones, and the rates of heat and mass transport prior to41

the onset of exploitation (M. O’Sullivan et al., 2001; M. O’Sullivan & O’Sullivan, 2016).42

The sustainable level of power generation that a geothermal system can support is inti-43

mately linked to the subsurface dynamics of fluid flow and heat transfer, which are elucida-44

ted by the natural state model (Gunnarsson et al., 2010; M. O’Sullivan & O’Sullivan,45

2016). Even in geothermal systems such as Krafla that have been exploited for sever-46

al decades, there is a paucity of data needed to constrain the system structure, and the47

uncertainty of natural state models is significant. As consideration of this uncertainty48

can help generate more realistic predictions of the impact of production on the system49

behavior, it is thus essential to ensuring that reservoir models effectively contribute to50

sustainable management of geothermal resources.51

The foundation of the natural state model is the conceptual model describing the52

structure of a geothermal system based on an integration of available geologic, geophysical,53

hydrologic and geochemical data (Cumming, 2016a). The calibration of natural state geo-54

thermal reservoir models involves finding geologically-reasonable model parameters con-55

sistent with the conceptual model as well as field observations prior to exploitation, including56

measured temperatures/pressures, the locations of discharge zones, and rates of surface57

heat transport. Modern software tools such as Leapfrog Geothermal facilitate the develop-58

ment of a three-dimensional geologic model based on surface mapping and downhole data,59

and the design and export of numerical grids populated with rock types according to the60

geologic model (Newson et al., 2012; Milicich et al., 2018; Popineau et al., 2018). This61

ensures a close coupling between the conceptual/geologic model and the reservoir model.62

One of the key parameters requiring calibration in natural state geothermal reser-63

voir models is the anisotropic permeability of the different rock types and their spatial64

distribution. The other key parameter involved in natural state model calibration cons-65
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ists of the heat and mass sources applied at the base of the computational model, which66

control the strength and location of fluid upflow zones. The inherent uncertainty of these67

parameters makes calibration of natural state geothermal reservoir models challenging68

(M. O’Sullivan & O’Sullivan, 2016). While manual adjustment of input parameters remains69

the dominant approach to model calibration (M. O’Sullivan & O’Sullivan, 2016), a variety70

of inverse modeling tools are available to automate the calibration process, including iTOUGH271

(Finsterle, 2007) and PEST (Doherty, 2015). These methods use gradient-based met-72

hods to find the minimum of a sum-of-squares type objective function based on matching73

the measured and simulated temperatures. Uncertainty metrics for model parameters74

can be constructed from the derivatives of the local cost function (Aster et al., 2018).75

However, the objective function may have many local minima (Plasencia et al., 2014),76

and the global minimum may reside in a part of the parameter space that is inconsistent77

with field and/or laboratory measurements.78

The Bayesian approach to inverse modeling naturally allows for specification of prior79

uncertainty of input parameters and quantification of uncertainty in the estimated para-80

meters (Mosegaard & Sambridge, 2002; Tarantola, 2005; Kaipio & Somersalo, 2006; Gelm-81

an et al., 2013). In the Bayesian framework, the solution to the inverse problem is a poster-82

ior probability density over the model parameters, the statistics of which are usually obtained83

using Markov chain Monte Carlo (MCMC) sampling methods (Andrieu et al., 2003). One84

major drawback of the MCMC approach for inverse modeling of geothermal systems is85

the intensive computational cost required to repeatedly evaluate the forward model descri-86

bing multi-phase fluid flow in a porous medium. This is particularly true for natural state87

models, which are run to long times (ca. 106 years) in order to achieve a steady-state88

configuration. Presently, MCMC sampling for geothermal reservoir model calibration is89

only feasible through the use of a coarsened, less computationally-expensive model for90

MCMC sampling instead of a finer, more computationally-expensive models (Cui et al.,91

2011; Cui, Fox, & O’Sullivan, 2019; Cui, Fox, Nicholls, & O’Sullivan, 2019; Maclaren et92

al., 2020). Different strategies have been developed to deal with the additional error introduced93

by using the coarsened model in place of the finer model. Cui et al. (2011) developed a94

sophisticated delayed acceptance algorithm that adaptively builds a stochastic model of95

this error. Maclaren et al. (2020) present an alternative approach that incorporates the96

posterior-informed approximation errors into a hierarchical framework. One advantage97

of the latter approach is its relative simplicity, as only a relatively small number of realizati-98

ons of the fine model are required to enable sampling from the target posterior. Furthermore,99

the approach of Maclaren et al. (2020) is essentially independent of the specific MCMC100

sampling algorithm used.101

In this study, we present a new natural state reservoir model of the Krafla geothermal102

system in northeast Iceland. Although the Krafla system has been under exploitation103

for more than 4 decades, the last published natural state reservoir model of the area dates104

back to the 1980s and was a 2-dimensional model (Bödvarsson et al., 1984). Since that105

time, the drilling of additional boreholes has provided significantly more geologic and106

hydrologic data, and computational abilities have increased tremendously. For example,107

recent enhancements to TOUGH2 extend the applicability of the numerical simulation108

software to the deep, supercritical (>375 ℃) roots (Magnusdóttir & Finsterle, 2015; J. O’Sullivan109

et al., 2015; M. O’Sullivan & O’Sullivan, 2016; J. O’Sullivan et al., 2020). Such conditi-110

ons are present at depth in Krafla, as evidenced by the drilling of the Iceland Deep Drill-111

ing Project (IDDP) well IDDP-1, which encountered a shallow magmatic intrusion at112

∼2 km depth and discharged a 440 ℃ single-phase vapor (Ármannsson et al., 2014). We113

adapt the Bayesian hierarchical approach of Maclaren et al. (2020) to perform the model114

calibration and quantify the uncertainty in the inferred permeability structure. This stu-115

dy highlights the potential for Bayesian approaches to enable better consideration of geologic116

uncertainty during natural state model calibration.117
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2 The Krafla Geothermal System118

2.1 Geologic background119

The Krafla area hosts a central volcano approximately 20 km in diameter sitting120

astride a 90 km long NNE-SSW trending fissure swarm (Sæmundsson, 1991; Hjartardótt-121

ir et al., 2012) (Figure 1). Krafla is one of five active volcanic centers arranged in en-echelon122

fashion within the northern volcanic zone (NVZ) in northeast Iceland along with Kverk-123

fjöll, Askja, Fremrinámur and Theistareykir (P. Einarsson, 2008; Hjartardóttir et al., 2016).124

The central volcano has developed an 8-10 km diameter caldera structure that formed125

around 110 ky ago (Sæmundsson, 1991). Volcanism in the caldera dominantly occurs as126

basaltic fissure eruptions and dike injections, along with intermittent eruptions of more127

silicic magmas (Jónasson, 1994). About 20 eruptions have taken place within the Krafla128

caldera during the postglacial era (Sæmundsson, 1991), most recently in 1975-1984 C.E.129

(A. Björnsson et al., 1977; P. Einarsson, 1991). During this eruption sequence (often refer-130

red to as the ‘Krafla fires’), seismic studies delineated volumes between 3-7 km depth131

in the subsurface with S-wave shadows, which were interpreted to represent a network132

of basaltic sills and intrusions underlying the central part of the caldera (P. Einarsson,133

1978). More recently, rhyolitic magma bodies were encountered around 2 km depth dur-134

ing the drilling of the wells KJ-39 and IDDP-1 (Mortensen et al., 2010; Elders et al., 2011).135

Petrologic data suggest a link between the IDDP-1 rhyolite and the rhyolite erupted in136

1724 C.E. during the formation of Víti, a small (∼300-m-diameter) maar located 0.5 km137

to northeast of IDDP-1, suggesting the subsurface rhyolite may extend throughout the138

center of the caldera (Rooyakkers et al., 2021).139

The geologic structure of the Krafla area has been intensively studied (Stefánsson,140

1981; Sæmundsson, 1991; Ármannsson et al., 1987; Sæmundsson, 2008; Mortensen et al.,141

2009; Weisenberger et al., 2015). Above 0.4-1 km b.s.l., the subsurface lithology in the142

central part of the caldera mainly consists of extrusive igneous rocks, including sub- or143

intraglacially-erupted basaltic hyaloclastite (Jakobsson & Guðmundsson, 2008) and sub-144

aerially erupted basaltic lava flows. Doleritic and gabbroic intrusions dominate at great-145

er depths, along with minor granophyre and other silicic intrusions (Mortensen et al.,146

2015). The depth to the intrusive basement varies from about 0.8-1.1 km in the central147

part of the caldera to about 1.5-1.6 km in the southern part (Weisenberger et al., 2015).148

The rocks at Krafla undergo alteration as a result of high-temperature fluid-rock interac-149

tion, with the alteration mineralogy following the typical depth- and temperature-dependent150

zonation characteristic of Icelandic geothermal systems (Kristmannsdóttir, 1979; Á. Svein-151

björnsdóttir, 1992). With increasing depth and temperature, these alteration zones are152

the smectite-zeolite zone, the mixed-layer clay zone, the chlorite-epidote zone, the ep-153

idote zone, and the epidote-actinolite zone. The intensity of alteration is very variable154

but often increases with depth (Mortensen et al., 2014). Alteration and compaction reduces155

the high primary porosity and permeability of the extrusive volcanic rocks (Weisenberger156

& Selbekk, 2009; Thien et al., 2015; Heap et al., 2020; Eggertsson, Lavallée, et al., 2020).157

A total of 43 deep geothermal wells have been drilled in the central part of the Krafla158

caldera to provide steam to a geothermal power plant that currently generates 60 MWe159

(Figure 2). A smaller geothermal power plant currently generating 3 MWe is located in160

Bjarnarflag (Fig. 1), approximately 11 km to the south of Krafla. Bjarnarflag is loca-161

ted close to Námafjall, an area with abundant fumarole degassing (Oskarsson, 1984), and162

was the site of an explosive eruption of a basaltic tephra through a geothermal borehole163

during the Krafla fires (Larsen et al., 1979). While the Krafla and Bjarnarflag systems164

may be hydraulically connected via the high permeability NNW-SSE trending fissure swarm,165

a separate dyke complex is believed to be the heat source for Námafjall (Gylfadóttir, 2013;166

Drouin et al., 2017).167
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Figure 1. Topographic map of the Krafla area, showing the locations of drilled wells (blue
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(hatchured black lines), the caldera rim (pink toothed line), streams and water bodies (light
blue), and roads (dashed black lines). The inset shows the location of the Krafla area in north-
east Iceland and the locations of other volcanic areas and fissure swarms. Coordinates are shown
in ISNET16 (same as Lambert 95).
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Figure 2. Topographic map of the main production area in the center of the Krafla caldera.
Locations of wellheads used to calibrate the numerical model in this study are shown as col-
ored triangles. The wells are grouped according to the the characteristic measured temperature
profiles: 1) Yellow triangles indicate wells with temperatures following the boiling point with
depth (BPD) to ≥1.5-2 km depth. 2) Purple triangles indicate wells that feature an isothermal
zone with temperatures 210-225 ℃ (Step hot). 3) Light blue triangles indicate wells with an
isothermal zone at temperatures ≤210 ℃ (Step cold). 4) Green triangles indicate wells that show
temperature inversions, i.e. decreasing temperatures with increasing depth below a certain depth.
5) Orange triangles indicate wells with other characteristics. The traces of directional wells are
shown as dark blue lines. The surface traces of the cross-sections shown in Figure 4 are shown
with dashed black lines. The numbers indicate the well numbers, with red numbers corresponding
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2.2 Conceptual model of the Krafla geothermal system168

Several conceptual models of the geothermal resource in the Krafla area have been169

published (Stefánsson, 1981; Ármannsson et al., 1989; Mortensen et al., 2015; Weisen-170

berger et al., 2015; Árnason, 2020). The conceptual model below synthesizes insights from171

these previous studies and others. On the basis of differing production characteristics172

and temperature-depth relations, the drilled area at Krafla can be divided into five sub-173

fields: (1) Leirbotnar, located to the west of the Hveragil eruptive fissure, (2) Suðurhlíðar,174

located to the east of Hveragil, (3) Hvíthólar, located on the southern rim of the caldera,175

(4) Vestursvæði, located to the north of Suðurhlíðar and (5) Sandabotnaskarð, located176

to the south of Suðurhlíðar. The natural state temperatures from 40 deep geothermal177

wells grouped by subfield are shown in Figure 3.178

Downhole temperature measurements in Leirbotnar reveal two distinct reservoirs:179

an upper sub-boiling reservoir extending from -0.5 to -1 km a.s.l. with a remarkably con-180

stant temperature between 190-220 ℃, and a deeper boiling reservoir that reaches tem-181

peratures up to 350 ℃ (Fig. 3a). In this study, we distinguish between wells in the Leirbot-182

nar subfield with temperatures 210-225 ℃ (Step hot in Fig. 2) or ≤210 ℃ (Step cold)183

within the isothermal zone. Wells with a hotter isothermal zone tend to cluster around184

the southwest of the Hveragil eruptive fissure, while the wells with the cold isothermal185

zone are spread further to the northwest, suggesting a gradient with increased mixing186

of cooler recharging fluids to the northwest. The steep, near-linear temperature gradient187

at the base of the isothermal zone suggests the presence of a low permeability aquitard188

separating the upper liquid reservoir from the deeper boiling reservoir (Stefánsson, 1981;189

Bödvarsson et al., 1984). Comparison of the temperature measurements with the geologic190

data (Mortensen et al., 2015; Weisenberger et al., 2015) suggests that the transition between191

the upper sub-boiling reservoir and the deeper boiling reservoir coincides with a transi-192

tion between shallower extrusive volcanics and deeper crystalline basement intrusions.193

In contrast to the characteristic step-increase seen in Leirbotnar, wells in the Suður-194

hlíðar subfield show downhole temperatures indicating boiling conditions from the surface195

to depths of at least -1.5 km a.s.l. (Fig. 3b). The lack of the step increase in temper-196

ature for the wells in Suðurhlíðar suggests that the inferred aquitard underlying Leirbot-197

nar does not extend across the Hveragil eruptive fissure (Stefánsson, 1981; Bödvarsson198

et al., 1984), or that higher subsurface fluid pressures in areas beneath Krafla mountain199

prevents cold recharge from the north (Arnórsson, 1995). The Suðurhlíðar subfield is believed200

to be bounded to the east by a sub-vertical, rift-parallel fracture system (Stefánsson, 1981;201

Bödvarsson et al., 1984) and to the south by a WNW-ESE oriented transform structure,202

which has been inferred along the on the basis of structural, gravity and resistivity data203

(Árnason, 2020; Liotta et al., 2021). The intersection of such transform structures with204

the rift is believed to enhance permeability and localize fluid upflow at depth (Khodayar205

et al., 2018; Liotta et al., 2021). The Vesturhlíðar subfield is located to the north of Suð-206

urhlídar and to the east of the Víti maar, and shows wells that follow the BPD over the207

entire depth range with the characteristic “step” increase.208

Several wells throughout Krafla have encountered high acidity fluids in the deeper209

boiling reservoir (K. Einarsson et al., 2010; Ármannsson et al., 2015) that are believed210

to originate from condensation of liquid from HCl-bearing vapor during ascent, depress-211

urization, and mixing with cooler fluids (Heřmanská et al., 2019). The relatively wide212

geographic distribution of acid wells (labeled with red text in Figs. 2 and 4) suggests that213

HCl-bearing superheated/supercritical vapor is present at depths > 2 km b.s.l. over a214

wide area in the center of the Krafla caldera (K. Einarsson et al., 2010; Ármannsson et215

al., 2015).216

Wells drilled in the Hvítholar area show temperature inversions, with a boiling reser-217

voir reaching 250–260 ℃ extending to approximately -0.5 km a.sl. underlain by sharply218

decreasing temperatures to 170–190 ℃. Such temperature inversions are often associa-219
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ted with lateral outflow of hot fluid below the clay cap, accompanied by recharge of cooler220

waters at greater depths (Grant et al., 2011). However, Arnórsson (1995) suggested that221

the temperature reversals represent ascending fluid along the rims of the caldera, and222

Árnason (2020) argued that the temperature inversions represent the waning stages of223

a geothermal system after the deep heat source has been extinguished by hydrothermal224

convection. Well KS-1 (Fig. 3e) drilled in the Sandabotnaskarð area, east of Hvítholar,225

shows temperatures following the BPD between -0.5 and -1.5 km a.s.l. but lower tem-226

peratures at shallower depths. These high temperatures suggest the potential that the227

high-temperature system may extend to the south of Suðurhlíðar. In contrast, well KV-228

1 in Vestursvæði, to the west of Hvíthólar, shows temperatures up to 150 ℃ above 0 km229

a.s.l. and lower temperatures at greater depths, suggesting shallow outflow of hot fluid230

and circulation of cooler surface-derived waters at depth.231

The conceptual model for the Krafla system is summarized in Figure 4. The mag-232

matic heat source is a complex of basaltic sills and dykes located at ≥2.5-3 km b.s.l., cor-233

responding to the attenuating body identified during the volcano-tectonic episode between234

1977-1984 (P. Einarsson, 1978). The rhyolitic magma encountered during drilling of IDDP-235

1 in the northern part of Leirbotnar and KJ-39 along the southern rim of Suðurhlíðar236

corresponds to local magma pockets with thickness ≤0.2 km, an interpretation consistent237

with evidence from seismic (Kim et al., 2017, 2018; Schuler et al., 2016) and resistivity238

(Lee et al., 2020) studies. At depths ≥2 km b.s.l., this fluid ascending above the heat239

source is a single-phase vapor, which depressurizes, cools, and condenses to form an acidic240

liquid condensate (Heřmanská et al., 2019), representing the deep reservoir fluids produced241

by the ’acid’ wells (labeled in red in Fig. 4). The main location of fluid upflow is along242

and west of the Hveragil eruptive fissure, which features the high vertical and rift-parallel243

permeability but relatively low cross-rift permeability. A low permeability aquitard situa-244

ted at the transition between the underlying basement intrusions and shallower volcanics245

that effectively separates the upper sub-boiling reservoir from the deeper boiling reser-246

voir in Leirbotnar (Stefánsson, 1981; Bödvarsson et al., 1984). To the west of the Hveragil,247

this aquitard is not present or not as tight, allowing the formation of a vertically-extensive248

boiling zone in the Sudurhlíðar area. Variable mixing of fluid ascending along Hveragil249

with cold water from the north (blue + sign in Fig. 4a) controls the spatial distribution250

of temperature in the upper sub-boiling aquifer. We interpret the temperature inversions251

measured in the Hvíthólar area as the result of southward outflow of hot water originating252

from the main production field along the axis of the rift. The deuterium and oxygen-18253

composition of the geothermal fluid at Krafla (A. E. Sveinbjörnsdóttir et al., 1986; Darling254

& Ármannsson, 1989; Pope et al., 2015) indicate that the main recharge area for the geo-255

thermal system comes from the highlands to the north of the main production field. However,256

further deep recharge from the south and west, as suggested by the relatively cold tem-257

peratures measured in Vestursvæði indicating cold cross-flow.258

3 Methodology259

The model developed in this study incorporates several components:260

1. Fine-scale and coarse-scale reservoir models based on the conceptual model of the261

system (Figure 5)262

2. A numerical method that accurately models flow of multi-phase, variably miscible263

fluids, with a range of applicability extending to >375 ℃264

3. A hierarchical Bayesian approach incorporating a posterior-informed approxima-265

tion error model266

Here, we briefly describe the numerical method and hierarchical Bayesian approach, which267

have been published previously (Pruess et al., 2012; Maclaren et al., 2020), and focus on268

description of the model setup.269
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Figure 4. Geologic-conceptual model of the Krafla system. The geologic and alteration model
is based on Weisenberger et al. (2015). The surface traces of the cross sections are shown in Fig-
ure 2. a. An ESE-WNW cross-section across Leirbotnar and Suðurhlíðar. b. A NW-SW cross-
section across the northern part of Leirbotnar and Suðurhlíðar. c. A N-S cross-section across the
Víti caldera to Hvíthólar. The lithologic model describes a succession of hyaloclastite (yellow)
and lava flows (blue) underlain by basement intrusions (brown). The cap rock (hatching) is based
on the mapped distribution of smectite-zeolite and mixed-layer clay alteration facies. The deep
aquitard (cross-hatching) is inferred to correlate with the basal lava flow west of Hveragil. Cross
sections also show well traces (green lines), temperature isotherms derived from natural state
temperature measurements (solid black lines), as well as select structural features (dashed black
lines). Red/blue arrows indicate the schematic direction of flow of hot or cold water, respectively.
Plus/minus sign enclosed in a circle indicates flow of hot or cold into or out of the section, re-
spectively. Zones of single-phase vapor and deep acid fluids (see text) are shown with crosses and
dark blue color, respectively.
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3.1 Model Structure270

Figure 5 shows the discretization and layer structure of the fine and coarse scale271

models developed in this study. The numerical grid extends ∼14 km in the N-S direc-272

tion, ∼12.5 km in the E-W direction, and from the surface to -2.5 km a.s.l. The grid is273

rotated 11◦ along the main axis of rifting. The coarse- and fine-scale models consist of274

2551 and 17193 grid blocks in 17 and 22 layers, respectively, with increasing resolution275

towards the surface. The maximum horizontal resolution of the grid blocks in the fine-276

and coarse-scale model is 0.15 km2 and 0.5 km2, respectively.277

The numerical grid was first designed in Leapfrog Geothermal ®, refined using PyTOUGH278

(Croucher, 2011; J. O’Sullivan et al., 2015), and then imported back into Leapfrog Geo-279

thermal in order to populate rock types in the model based on the geologic model (Mortensen280

et al., 2015; Weisenberger et al., 2015; Scott et al., 2019). The numerical model consi-281

ders 14 different rock types (Table 1). The extrusive volcanic rocks in the upper 1-1.5282

km of the system consist of 4 lava flow units (LV001-LV004) and 3 hyaloclastite units283

(HY001-HY003). Two different basement intrusion rock types were defined for the geo-284

thermal system in the center of the caldera: BASE1, which comprises the majority of285

the basement, and BASE2, which was defined locally at the base of wells IDDP-1 and286

KJ-39 where magmatic intrusions were encountered. Two different fault rock types were287

defined: 1) TVFLT with relatively high cross-rift permeability, and low rift-parallel per-288

meability, and 2) BARFT with relatively high rift-parallel permeability and low cross-289

rift permeability. A clay cap rock type (CLAYC) with relatively low permeability was290

defined and the geometry of the clay cap was constrained based on the alteration model291

and resistivity data. Two rock types were defined for the area outside of the main area292

of the geologic model: 1) OUTBS, defining the outer basement below 1 km b.s.l., and293

2) OUTER, defining the upper volcanic sequence above 1 km b.s.l. As described in the294

conceptual model, the basal lava flow overlying the basement rocks (LV001) was modeled295

as an aquitard.296

Both the fine and coarse scale models were manually calibrated prior to MCMC297

sampling in order to achieve a relatively close fit between the model predictions and the298

measured natural state temperature data. This mainly involved manual adjustment of299

–11–



manuscript submitted to Water Resources Research

Table 1. Assumed density and porosity (fixed) and prior means for permeability for the 14
rock units included in the numerical model.

Rock type Density
(g cm−2)

Porosity
(-)

Cross-rift
permeability
(kx, m2)

Rift-parallel
permeability
(ky, m2)

Vertical
permeability
(kz, m2)

BASE1 2.75 0.05 7.5E-16 1.5E-15 1E-15

BASE2 2.75 0.03 7.5E-16 7.5E-16 5E-16

HY001 2.5 0.1 5E-14 1.5E-13 5E-14

HY002 2.5 0.15 5E-14 1.5E-13 1.5E-13

HY003 2.4 0.2 5E-14 1.5E-13 1E-13

LV001 2.6 0.05 1E-16 2.5E-16 5E-17

LV002 2.6 0.1 1E-13 2.25E-13 1.25E-13

LV003 2.6 0.1 1E-13 2E-13 1E-13

LV004 2.6 0.1 1E-13 2E-13 1.5E-13

OUTER 2.6 0.1 1E-15 1.5E-14 2E-15

OUTBS 2.75 0.05 5E-16 1E-15 7.5E-15

BARFT 2.6 0.1 2.5E-16 1E-15 1E-15

TVFLT 2.6 0.05 1.5E-15 7.5E-16 5E-15

CLAYC 2.6 0.2 2E-15 5E-15 5E-15

rock permeabilities and the distribution of heat and mass input at the base of the model,300

along with minor modifications made to the spatial configuration of the rock types. The301

anisotropic permeability of each rock unit along with other rock properties (density, porosity,302

thermal conductivity) achieved during the initial calibration are shown in Table 1. These303

values serve as the means of the prior probability distributions (assumed to be Gauss-304

ian with a fixed standard deviation of 0.75 log units) specified for the MCMC sampling.305

The distribution of heat and mass input at the base of the model is shown in Figure306

6. Heat flow was adjusted from 0.3 W m−2 in the center of the caldera to 0.1 W m−3
307

on the perimeter of the model, in accordance with estimates of regional heat flow val-308

ues in Icelandic volcanic systems (Flóvenz & Saemundsson, 1993). The specific enthalpy309

of the input fluid is set to 3.2 MJ kg−1, in accordance with measurements of the discharge310

enthalpy of the IDDP-1 well (Ingason et al., 2014). Temperature and pressure were not311

fixed at the base of the model. The total mass of high-enthalpy fluid added into the base312

of the system is 65.35 kg s−1.313

The inferred natural state temperature profiles used to calibrate the simulations314

were provided by Landsvirkjun in accordance with Iceland GeoSurvey (Mortensen et al.,315

2009; Weisenberger et al., 2015). Figure 7 shows an example of an inferred natural state316

temperature profile from measured downhole temperatures for well IDDP-1 (Mortensen317

et al., 2015). With increasing time subsequent to drilling, the measured temperatures318

more closely correspond to the inferred natural state temperature (black) as the well heats319

up. After the IDDP-1 well began to discharge, fluid with a temperature of 450 ℃ was320

eventually produced at the surface (Elders et al., 2011). This is not recorded in the down-321

hole temperature data, due to the likelihood that the permeable zone in the near vic-322
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Figure 6. (a) Heat and (b) mass input into the base of the fine-scale model. The black lines
show the boundaries of the zone with S-wave shadows detected by P. Einarsson (1978).

Figure 7. Measured temperatures between 2009-2011 during heating up of well IDDP-1 and
comparison with inferred natural state temperature (black line).
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inity of the intrusion was not finished heating up before a restriction in the casing of the323

well prevented downhole temperature logging (Axelsson et al., 2014).324

3.2 Numerical Method325

The simulations are carried out using AUTOUGH2 (Yeh et al., 2012), a version of326

TOUGH2 (Pruess et al., 2012) developed at the University of Auckland. The EOS3sc327

equation of state (EOS) (J. O’Sullivan et al., 2016, 2020), a modified version of the EOS1sc328

EOS (Croucher & O’Sullivan, 2008; Magnusdóttir & Finsterle, 2015), was used in order329

to extend the applicability of the model to the supercritical roots of the system. Although330

this EOS includes air and could in principle also model the vadose zone, the top of the331

model is set to the depth of the water table.332

TOUGH2 solves the governing equations of mass and energy balance using a finite333

volume approach. For quantity κ (e.g. energy u, mass m) within a finite volume Vi, bounded334

by a surface Ωi, conservation is represented in integral form as335

d

dt

∫
Vi

MκdV = −
∫

Ωi

Fκ · ndΩ +

∫
Vi

qκdV (1)336

where t is time, Mκ is mass or energy per unit volume (kg m−3 or J m−3, respectively),337

Fκ is the flux of mass or energy, qκ represents sink and source terms (e.g. deep inflows),338

and n denotes an outward-pointing unit normal vector to the surface Ωi. The amount339

of mass (Mm) and energy (Mu) per unit control volume are given by340

Mm = Φ(ρlSl + ρvSv) (2)341

342

Mu = (1− Φ)ρrurT + Φ(ρlurSl + ρvuvSv) (3)343

where Φ is porosity, Sβ is the volumetric saturation of fluid phase β (liquid l or vapor344

v), ρβ and ρr the density of the fluid phase or rock (denoted by subscript r), uβ fluid345

phase internal energy, ur rock specific heat, and T temperature. Fluid mass fluxes are346

described by a two-phase version of Darcy’s law:347

Fβ = −kkr,β
νβ

(∇P − ρβg) (4)348

where k is the permeability tensor (assumed to be diagonal), g the vector of gravitational349

acceleration, P is pressure, and kβ and νβ are the relative permeability and kinematic350

viscosity of fluid phase β. Energy flux includes the contribution of heat conduction and351

advection of each fluid phase:352

Fu = −K∇T +
∑
β

hβFβ (5)353

where K is the effective thermal conductivity of the fluid-rock medium and hβ is the specific354

enthalpy of fluid phase β.355

TOUGH2 implements the integral finite difference method (Narasimhan & Wit-356

herspoon, 1976) for spatial discretization of the mass and energy conservation equati-357

ons. A fully implicit scheme with adaptive time stepping is used for numerical integra-358

tion in time, and upstream weighting of fluid properties is used for calculating flows between359

adjacent blocks. TOUGH2 uses the Newton-Raphson method and a preconditioned conju-360

gate gradient sparse matrix solver to solve the system of equations (Pruess, 1991). Newton-361

Raphson iteration continues until the residual of the discretized version of the conserva-362

tion equations are reduced to a small fraction of the mass accumulation terms, with the363

convergence criterion set to 1 × 10−5. If convergence is not achieved within 9 iterati-364

ons, the timestep is reduced by a factor of 5 and solution re-attempted; if convergence365

is achieved within 5 iterations, the next time-step is doubled. Once a steady-state natural366
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state configuration is reached, time-steps increase up to a large value and the simulation367

runs to completion rapidly. We observed that convergence was not attained in some of368

the simulations, potentially as a result of convective instabilities in the upper high per-369

meability rocks or grid blocks that change between phase regions in response to very small370

changes in pressure and temperature. Therefore, it was necessary to prematurely term-371

inate simulations that take longer than 5 minutes to converge and not use them for calculati-372

on of the posterior statistics. However, this affected less than 5% of the simulations.373

3.3 Bayesian Hierarchical Framework374

According to the Bayesian framework, the solution to the inverse problem involving375

identification of geologically reasonable model parameters k consistent with measured376

data yobs is a probability distribution calculated using Bayes’ theorem, written schematically377

as:378

p(k | yobs) ∝ p(yobs | k)p(k) (6)379

Following standard terminology, p(k | yobs) refers to the posterior, p(yobs | k) the likeli-380

hood and p(k) the prior. Bayes’ theorem is written above as a proportionality relation-381

ship, omitting a normalization factor that is not required by most sampling algorithms382

(Gelman et al., 2013). For natural state geothermal reservoir models, the main adjust-383

able model parameters include the spatial configuration of rock types, the anisotropic384

permeability of each rock type, and the locations and magnitudes of deep hot inflows.385

In this study, we limit the parameters of interest for uncertainty quantification to the386

anisotropic permeability of each rock type; the model geologic structure (Figure 4) as387

well as the locations and magnitudes of heat and mass input (Figure 6) are fixed. The388

observed data consist of inferred natural state temperatures from 40 deep geothermal389

wells (Figure 3), which were interpolated to layer centers in the coarse model, leading390

to 261 total observation points.391

The main challenge associated with the application of Bayes’ theorem to geothermal392

systems is the computational cost involved in the repeated evaluation of the forward model.393

While a significant speed-up can be achieved by using a coarsened version of the forward394

model in place of a finer, more accurate model, this introduces approximation errors that395

can lead to incorrect estimation of model parameters and their associated uncertainties396

(Kaipio & Somersalo, 2007). As described by Maclaren et al. (2020), the Bayesian hier-397

archichal framework allows the resulting model approximation error to enter into the calculati-398

on of the likelihood as a probabilistic process error via decomposition of a full joint proba-399

bility distribution over all quantities of interest into a measurement model, process model,400

and parameter model:401

p(yobs,yprocess,k) = p(yobs | yprocess)p(yprocess | k)p(k) (7)402

where the distribution parameters and distribution subscripts are suppressed for simplicity.403

The latent process vector is assumed to be generated by the fine-scale model404

yprocess = f(k) (8)405

The use of the coarsened model g(k) in place of a finer, more accurate model f(k) introduces406

additional approximation errors, which are defined as407

ε = yprocess − g(k) = f(k)− g(k) (9)408

Assuming additive error models (Maclaren et al., 2020), the measurement and process409

model components correspond to a two-stage decomposition of the form410

yobs = yprocess + e (10)411

412

yprocess = g(k) + ε (11)413
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where e is the measurement error (which may include correlations). Combining the ap-414

proximation errors with the measurement errors to give the total error (ν = e + ε),415

the measurement model can be written as:416

yobs = g(k) + ε+ e = g(k) + ν (12)417

Obtaining the likelihood p(yprocess | k) using these functional relationships is done by418

marginalizing over the total error, assuming that the measurement and approximation419

errors are independent of the parameter vector (Maclaren et al., 2020), so that:420

pY0|K(yobs | k) = pν(yobs − g(k)) (13)421

Then, the posterior can be written as422

pK|Y0
(k | yobs) ∝ pY0|K(yobs | k)pK(k)

= pν(yobs − g(k))pK(k)
(14)423

where the process error is absorbed into the likelihood.424

Absorbing the process error into the likelihood in this manner requires the distribu-425

tion of the total error, pν(·), to be known. In standard Bayesian approximation error ap-426

proaches, the statistics of the model approximation errors are precomputed empirically427

by drawing samples from the prior distribution. However, sampling from an insufficiently428

informative prior and running the fine-scale geothermal reservoir model leads to a high429

probability of practical issues such as model run failures, long model run times, and/or430

extreme model inputs. Therefore, Maclaren et al. (2020) developed the posterior-informed431

composite approximation error approach, where the statistics of the model approxima-432

tion error are obtained via direct sampling from a naïve posterior computed by separ-433

ate MCMC sampling using the coarse model without consideration of any approxima-434

tion errors. Thus, the model approximation error is made using a posterior plug-in estima-435

tion where the coarse model posterior is used to estimate the error distribution marg-436

inalized over the parameter:437

pε(ε)← p̂ε|Yo
(ε | yobs) =

∫
pε|K(ε | k)p̂K|Yo

(k | yobs)dk (15)438

where the likelihood function in p̂K|Yo
is based on the coarse-scale model g(k) without439

accounting for approximation errors. Once the error distribution has been estimated, the440

composite model of the joint distribution along with the original prior is used:441

pε,K(ε,k)← pε(ε)pk(k) (16)442

Although the use of the naïve posterior for calculating of the model approximation error443

may narrow the error distribution when compared to the distribution that results from444

the prior, it has the benefit of providing more relevant estimates of the model error when445

the posterior based on the coarse model is not too far from the true posterior, which is446

the case for our models.447

In this study, the statistics of the approximation error were calculated by drawing448

an ensemble of q = 150 samples from the naive posterior density p̂(k | yobs) with k`449

for ` = 1, 2, ..., q. Assuming the the approximation error is Gaussian, its distribution450

can be calculated from the ensemble mean and covariance:451

ε∗ =
1

q

q∑
`=1

ε(`), Γε =
1

q − 1

q∑
`=1

(ε(`) − ε∗)(ε(`) − ε∗)T (17)452

As the total error ν is the sum of both the noise and the approximation error, given the453

normality assumption, the distribution of the total error is given by:454

ν ∼ N (ν∗,Γν) = N (e∗ + ε∗,Γe + Γε) (18)455
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This enters into the likelihood as follows:456

pν(yobs − g(k)) ∝ exp

−1

2

N∑
i=1

(gN (k)− νN∗ − yNobs)
TΓ−1

ν (gN (k)− νN∗ − yNobs)

 (19)457

In our simulations, we observe that the covariance of the approximation errors differs greatly458

for different measurements; namely, the approximation errors for temperature measurements459

in the liquid isothermal zone show a high covariance, and the approximation errors for460

temperature measurements in the boiling zones show low covariance. This influences the461

relative weight of the residual of these measurements on the likelihood, increasing the462

importance of the temperature measurements where a larger covariance is calculated by463

the approximation error model. Therefore, to avoid this, we also perform MCMC sampling464

using a likelihood function that only considers the means of the approximation errors465

(i.e. offset or bias term) and a constant noise term:466

pν(yobs − g(k)) ∝ exp

−1

2

N∑
i=1

[gN (k)− νN∗ − yNobs]
2

σ2

 (20)467

where the covariance of the temperature measurements is fixed (i.e. σ2 = 10 ℃).468

3.4 MCMC Sampling469

Markov chain Monte Carlo (MCMC) sampling is carried out using the Python Pack-470

age emcee (Foreman-Mackey et al., 2013), which implements an affine invariant ensemble471

sampler (Goodman & Weare, 2010). The emcee package implements the Stretch Move472

algorithm (Goodman & Weare, 2010), which is similar in principle to the standard Metropolis-473

Hastings algorithm (Metropolis et al., 1953), with a proposal and an accept/reject step.474

However, this method involves simultaneously evolving an ensemble of walkers, where475

the proposal distribution for one walker is based on the current positions of the other476

walkers in the complementary ensemble. Used in the context of our models, “position”477

refers to a vector in the 42-dimensional parameter space (the x, y, and z permeabilities478

for the 14 different rock types). The property of affine invariance implies that the per-479

formance of the algorithm is independent of the aspect ratio in highly anisotropic distri-480

butions and is well-suited for skewed posterior distributions (Goodman & Weare, 2010).481

The PyTOUGH library (Croucher, 2011; J. O’Sullivan et al., 2015) is used to in-482

terface the emcee sampler with the AUTOUGH2 simulator. For determination of both483

the ’naive’ posterior and the discrepancy-informed posterior, 80,000 samples were compu-484

ted (10 ensembles of 100 walkers taking 80 samples each). A total of 40,000 samples (4000485

for each ensemble, 40 for each walker) were discarded as burn-in based on when the sam-486

ples began to converge around a posterior certain probability (Fig 8a). The statistics of487

the model error were computed by running 150 iterations of the fine and coarse model488

using the statistics of the ’naive’ posterior; this required approximately 15 days of compu-489

ting time. All computations were carried out on a standard desktop computer with an490

Intel Xeon E5-1620 3.50 GHz 8-core processor. Each simulation using the coarse model491

took anywhere from 10 seconds to one hour to run; as noted above, in order to limit the492

computing time, coarse models that took longer than 5 minutes to run (less than 5% of493

all simulations) were terminated and not used for the calculation of posterior statistics.494

Each ensemble of 100 walkers took approximately 1.3×106 seconds (15 days) to run to495

completion. Since each simulation using the fine model took up 30 minutes - 1 day to496

run or more to run, MCMC sampling with an equivalently long chain and using the fine497

model would take more than year. Thus, this represents a significant speed-up and em-498

phasizes the fact that the MCMC computations are only feasible using the coarse model.499

The evolution of the posterior probability of the computed models is shown in Fig500

8a, with the position of each walker at each iteration shown as a marker. Each walker501
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permeability of LV001 (blue lines) and the vertical permeability of the clay cap (red lines).

was initialized at a point in the parameter space in the near vicinity of the prior means502

for each parameter (Table 1). The example parameter trace for the vertical permeability503

of LV001 (blue line in Fig 8b) show that the walkers tend to cluster around the prior mean,504

which is the case for many of parameters. However, the trace of the vertical permeability505

of the clay cap (red line in Fig. 8b) shows that the inversion process results in walkers506

tending towards lower permeability values. The acceptance fraction varied between the507

chains from ≤0.05 to 0.5, with an average of 0.26, close to the optimal range (Gelman508

et al., 1996).509

The correspondence between the prior and posterior means could be the result of510

a highly informative prior model, but could also result from autocorrelation. Convergence511

tests such as the autocorrelation time indicate that the chain is not long enough (Foreman-512

Mackey et al., 2013), and an insufficient number of independent samples were obtained513

to ensure representative sampling of the target density. However, due to practical lim-514

itations imposed by the relatively long amount of time required to run the AUTOUGH2515

forward models, which were run in serial and sequentially, it is not presently feasible to516

run a chain long enough to ensure convergence to the target posterior. Despite this obvi-517

ous shortcoming, we simply note that this approach allows for practical uncertainty quantifica-518

tion of inferred rock permeabilities, assuming that the prior model is highly informative,519

a necessary assumption when applying inverse modeling tools for natural state geothermal520

reservoir model calibration (M. O’Sullivan & O’Sullivan, 2016).521

4 Results522

The Bayesian calibration scheme improves the fit between the model results and523

the inferred natural state temperature profiles. Systematically different posterior results524

are achieved if the MCMC sampling is carried out using the coarse model without any525

approximation error model (the naïve posterior), or with an approximation error cor-526

rected model. The approximation error model can account for the bias of approxima-527

tion errors (the mean offset between the fine and coarse models) (Eqn. 20) or both the528

bias and covariance of the approximation errors (Eqn. 19). Posterior predictive checks529
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compare the data generated using the fitted model with the observed data (Gelman &530

Hill, 2006), show the ability of the stochastic model to match the inferred natural state531

temperature distribution. Although MCMC sampling is performed using the coarse model,532

all posterior predictive checks are computed using the fine model with parameter sets533

from the respective posterior (naive, bias-only, or bias/covariance). The posterior proba-534

bility distribution functions (pdfs) of the anisotropic permeability of the 14 different rock535

types quantify the uncertainty underlying their estimation.536

4.1 Posterior predictive checks537

The modeled natural state temperature distribution generally corresponds well to538

the inferred natural state temperature field. Figure 9 compares model predictions with539

measured data (posterior predictive checks) for 8 wells located in the Leirbotnar sub-540

field. Compared to the fine model assuming prior means for all parameters (dashed blue541

lines in Figs. 9-11), posterior results achieve a closer fit to the inferred natural state temp-542

erature data (black lines). These temperature profiles reproduce the characteristic temperature-543

depth relationship in Leirbotnar, with the upper isothermal zone at temperatures ∼180-544

220 ℃ underlain by a deeper boiling reservoir.545

Several of the wells (Figure 9a-d) show a good correspondence between the mean546

temperature of the isothermal zone computed by the set of posterior predictive samples547

and the inferred natural state temperatures. However, the models predict 20-40 ℃ higher548

temperatures in the isothermal zone than measured for several wells. Only considering549

the bias in the approximation error model (orange lines in Fig. 9-11) results in a closer550

approach to the inferred temperature of the isothermal zone than if both the bias/covariance551

of the approximation errors are considered (blue lines in Fig. 9-11). Posterior samples552

from the latter tend to systematically show temperatures 20-40 ℃ higher than inferred.553

The model clearly reproduces the transition between the upper near-isothermal liquid554

aquifer and deeper boiling aquifer, but the model results for wells KG-08, KG-24 and KW-555

02 show this transition occurring at shallower depths than measured. The uncertainty556

in posterior temperature is larger in the isothermal zone and at depths ≤-2 km a.s.l. than557

in the near surface (≥ 0 km a.s.l.) or between 1-2 km b.s.l. This is at least partially a558

result of the fact that temperatures in boiling zones following the boiling point with depth,559

and are dependent mainly on the hydrostatic pressure.560

Figure 10 shows posterior predictive checks for selected wells located in the Suður-561

hlíðar subfield, The model clearly reproduces the vertically-extensive boiling zone between562

the surface and -2 km a.s.l. in Suðurhlíðar. Due to the thermodynamic constraint imposed563

by the co-dependence of temperature and pressure at boiling conditions, the uncertainty564

in in temperatures in model predictions in boiling zones is low. The greatest uncertainty565

in model predictions is at depths ≤ -1.5 km a.s.l., below the maximum depth of the drilled566

wells, where the posterior predictive samples shows temperatures ranging between 200-567

400 ≥ ℃ (e.g. Fig. 10e). Temperatures in excess of the critical temperature of pure water568

(≥374 ℃) are predicted below -2 km a.s.l. in several wells (KJ-31, KJ-37). However, in569

other wells (KJ-19, KJ-39, KJ-36) the model suggests the potential for significant deep570

temperature inversions below -1.5 km a.s.l. A temperature inversion below -0.5 km asl571

measured in well KJ-17 is generally reproduced by the model (Fig. 10g), but there is significant572

uncertainty in the depth and magnitude of the temperature reversal. The model does573

not reproduce the lower temperatures closer to the surface in well KJ-14 (Fig 10f).574

Figure 11 shows posterior predictive checks for 3 wells located in the Hvíthólar sub-575

field as well some other wells on the margin or away from the main production field. The576

model clearly reproduces the temperature inversion between -0.5 km a.s.l. as well as the577

slight increase in temperature beneath -1 km a.s.l. in wells KJ-22 and KJ-23, although578

the model tends to suggest a more rapid decrease in temperature with increasing depth579

below 0 km a.s.l. There are certain wells that the model does poorly at reproducing mea-580
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Figure 9. Posterior predictive checks for Leirbotnar wells a) KG-08, b) KG-11, c) KJ-35, d)
KW-01, e) IDDP-1, f) KG-12, g)KG-24, h) KW-02. Posterior predictive samples generated using
the bias-only correction in the approximation error model are shown in blue (with the mean of
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generated with an approximation error model considering both the bias and covariance are shown
in orange, (with the mean as an orange dashed line). The inferred natural state temperatures are
shown in black. Temperatures calculated assuming prior means for all parameters are shown with
the dashed blue line.
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Figure 10. Posterior predictive checks for Suðurhlíðar wells a) KJ-19, b) KJ-30, c) KJ-30, d)
KJ-37, e) KJ-39, f) KJ-14, g) KJ-17, and h) KJ-36 in Vesturhlíðar. Symbology same as in Fig. 9.
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Figure 11. Posterior predictive checks for Hvíthólar wells a) KJ-21, b) KJ-22, c) KJ-23, as
well as d) KJ-06, e) KS-01, f) KV-01. Symbology same as in Fig. 9.

sured temperatures. For example, the model fails to reproduce the strong temperature581

decrease above -1 km a.s.l. in KJ-06, located at the southern margin of Leirbotnar (Fig.582

11d). Similarly, the model does not reproduce the near linear temperature gradient in583

the upper 1 km in well KS-01 (Fig. 11e). The model closely matches the measured tem-584
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peratures in well KV-01 (Fig. 11f), which is located at the periphery of the producti-585

on area and shows low temperatures ≤ 200 ℃ to 2 km depth, suggests that the model586

is broadly capturing the temperature distribution of the groundwater system outside of587

the main production field.588

4.2 Posterior Parameter Distributions589

The uncertain parameters in this model consist of anisotropic permeabilities for 14590

different rock types. Figure 12 shows the marginal posterior densities for 4 different rock591

types (BASE1, OUTER, HY001, CLAYC) for each direction (x = cross-rift, y = rift-parallel,592

z = vertical). This figure compares posterior pdfs corresponding to the naive (blue line)593

and the discrepancy-informed models, either considering both the bias and covariance594

terms in the approximation error (orange) or the bias-only (red lines).595

Compared to the prior uncertainty (dashed blue lines), which extends over four or-596

ders of magnitude, Figure 12 indicates that the MCMC process reduces uncertainty in597

the inferred permeability values. The naïve and discrepancy-informed models reach fair-598

ly consistent results, with a Gaussian-looking pdf often centered on or near the prior me-599

ans. Generally, many of the parameters show substantial uncertainty, with posterior densities600

extending over 1-2 orders of magnitude or more. The uncertainty in parameter values601

is higher in the discrepancy-informed model compared to the naïve model, particular-602

ly if both the bias and covariance of the approximation errors are considered. In the latter603

case, the boundaries of the prior seem to exercise some control on the limits of the poster-604

ior uncertainty (e.g. Figure 12e,f).605

Although there is a clear correspondence between the mode of the posterior and606

the prior means, the high posterior uncertainty of many of the parameters suggests lim-607

ited identiability. However, certain parameters show narrower posterior distributions cen-608

tered at an offset from the prior mean, This includes the particularly the vertical per-609

meability of the clay cap (Fig. 12l). Thus, this appears to be one of the most strongly610

identifiable parameters, with a maximum a posteriori value narrowly focused around ∼10−15
611

m2.612

The posterior pdfs indicate significant permeability anisotropy, particularly for the613

upper extrusive rock types (hyaloclastites and lava flows) and the fault rock types. Figure614

13a-b compares the posterior densities (computed using the approximation error model615

considering the bias-only correction) in different orientations for the permeability of hyalo-616

clastites (3 units), lava flows (4 stratigraphic units), Generally, with the exception of LV001617

(which is modeled as an aquiclude), the predicted permeability of the hyaloclastites and618

lava flows is very high (10−14 - 10−12 m2). For both the hyaloclastites and lava flows (Fig.619

13a,b), the rift-parallel permeability (red lines) seems to be higher (10−13 m2 than the620

cross-rift (grey lines) or vertical (blue lines) permeability. The predicted permeability621

of the lowermost lava flow LV001 is distinctly lower (10−17 - 10−15 m2).622

Figure 13c shows that the fault rock types (barrier faults, shown by the solid lines,623

and transform fault, shown by the dashed lines) show distinct anisotropic permeability624

contrasts consistent with their strikes. The barrier faults (solid lines), which strike SW-625

NE parallel to the rift, show intermediate rift-parallel (x) and vertical permeability (z)626

around 10−15 m2, but lower cross-rift permeability (∼10−16 m2). The NNW-SSE-striking627

transverse faults (dashed lines) oriented roughly perpendicular to the axis of rifting, show628

intermediate rift-parallel permeability but higher cross-rift and particularly vertical per-629

meability (10−15 m2). These results indicate that these the faults are generally more per-630

meable along the axis of their strike, retain moderate vertical permeability, and are less631

permeable across strike.632
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Figure 12. Marginal posteriors for permeability (x = cross-rift, y = rift-parallel, and z =
vertical) for four rock types, a-c) BASE1, d-f) OUTER, g-i) HY001, j-l) CLAYC. The blue lines
shows the naïve posterior, calculated by performing MCMC on the coarse model without any
approximation error. The dashed light blue lines shows the prior. The solid red lines shows the
posterior calculated by the discrepancy-informed model with bias-only correction to the likeli-
hood function. The orange line shows the posterior calculated by the discrepancy-informed model
considering both the bias and covariance in the model approximation error.

5 Discussion633

5.1 Calibration of natural state reservoir models634

We have presented an approach to inverse modeling of geothermal reservoirs that635

incorporates the additional error resulting from performing MCMC sampling with a “coarse”,636
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Figure 13. Marginal posterior densities for permeability in different directions (x = cross-rift,
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relatively inexpensive model instead of a finer, computationally expensive model into a637

hierarchical Bayesian framework. Compared to other approaches that construct approx-638

imate posterior distributions using reduced-order models in the context of natural state639

geothermal reservoir models, such as delayed acceptance schemes that calculate the model640

reduction error dynamically (Cui et al., 2011; Cui, Fox, & O’Sullivan, 2019; Cui, Fox,641

Nicholls, & O’Sullivan, 2019), the approach of Maclaren et al. (2020) is relatively easy642

to implement, requiring a relatively small number of fine model simulations to construct643

the posterior-informed model approximation error. Despite a huge reduction in the di-644

mensionality of the coarse model compared to the fine model (from 17193 to 2551 grid645

blocks), the naïve posterior is strongly informative (Fig. 12), suggesting that the physics646

of the fine model are adequately captured in the coarse model and that the approxima-647

tion error calculated using the naïve posterior yields relevant error estimates.648

Despite the computational intensity involved with running hundreds of thousands649

of AUTOUGH2 models, the MCMC approach can be used to achieve a reasonably good650

fit to temperature data derived from 40 deep geothermal wells. Such a fit has also been651

obtained for large-scale reservoir models using manual calibration (Ratouis et al., 2016)652

or optimization based schemes such as iTOUGH2 and PEST (Mannington et al., 2004;653

Gunnarsson et al., 2010; Prasetyo et al., 2016). However, it is not uncommon that optim-654

um inferred parameter values differ greatly from initial “best-guess” estimates, or are restricted655

by reasonable bounds imposed on the inversion process (Reid & Wellmann, 2012; Kondo656

et al., 2017). While iTOUGH can be useful for showing the most uncertain parameters657

(Moon et al., 2014), when an optimization function can have several local minima, as658

is likely for geothermal data, the algorithms often only converge to the minima closest659

to the initial starting guess (Plasencia et al., 2014).660

The data (downhole temperature profiles) and parameter (posterior parameter distri-661

butions) space show considerable differences arising if the likelihood function is induced662

by both the bias and covariance of the model approximation errors or the bias-only. This663

results from the much higher covariance of certain model approximation errors for certain664

measurements, particularly for measurement points in the isothermal zone, effectively665

resulting in a lower weight for these measurements in the likelihood function. In contrast,666

the covariance of model approximation errors in the boiling zones is very low due to the667

boiling point with depth constraint. Therefore, we suggest the use of a bias-only correcti-668

on can be justified in such cases where the variability of coarse and fine model results669

is much greater in selected measurement points.670

This study shows that a Bayesian framework to calibrate natural state geothermal671

reservoir models allows quantification of the uncertainty of the inferred permeability struc-672

ture while retaining strong prior beliefs about the geologic/hydrologic structure of the673

system. Although the anisotropic permeability of each rock type are treated as stochastic674

parameters, the arrangement of rock types and the applied mass and heat fluxes at the675

base of the model are fixed. Other studies have also treated the input mass as an uncertain676

variable during calibration and even treated each block as a separate rock type (Cui et677

al., 2011). However, in our case this would result in a very large dimensional parameter678

space that would limit the feasibility of using the affine invariant MCMC sampling scheme679

(Foreman-Mackey et al., 2013). Rather, our approach ensures a close link between the680

conceptual model and the reservoir model, in effect allowing the reservoir model to serve681

as a test of the conceptual model. The relatively good match between measured data682

and simulation results may suggest that the conceptual model is highly informative. More-683

over, the general correspondence between the prior and posterior means for permeability684

suggests that the a priori permeability ranges for the different rock types are realistic.685

Inferred permeabilities in the range of 10−16-10−12 m2 are consistent with prev-686

ious field measurements in geothermal systems (G. Björnsson & Bödvarsson, 1990; Ingebrit-687

sen & Manning, 2010). Although permeabilities measured in intact core samples under688

confining pressures are lower than inferred in this study (Eggertsson, Lavallée, et al., 2020;689
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Eggertsson, Kendrick, et al., 2020; Weaver et al., 2020), this discrepancy can generally690

be explained as permeability being fracture-controlled (Lamur et al., 2017). For a geo-691

thermal field such as Krafla, such fine-scale permeability heterogeneities will not be cap-692

tured in models that assume permeability is fixed for each rock type or within grid blocks693

of the resolution used in this study. Previous modeling studies of Icelandic geothermal694

systems have inferred similarly high permeability values for extrusive volcanic rocks (hyalo-695

clastites and lava flows). For example, using drawdown (pressure) and tracer data, Aradóttir696

et al. (2012) calculated lateral and vertical permeabilities of 3×10−13 and 1.7×10−12 m2
697

for the basaltic lava flows hosting the Carbfix injection site at the Hellisheidi geothermal698

field. These values lie at the high end of the inferred permeability values in this study699

(Fig. 13a,b).700

The inferred permeability values of the different rock types reflect the conceptual701

model. If a different conceptual model was assumed, with a significantly different geologic702

structure and distribution of heat and mass at the bottom boundary, different calibra-703

ted rock permeabilities would result. For example, tests were carried out to investiga-704

te results if the prior permeability of the aquitard (LV001) was set to be similar the other705

hyaloclastites and lava flows. Given this scenario, the model resulted in much higher natural706

state temperatures in the isothermal zone than measured, unless the prior permeability707

of the extrusive volcanic rocks was unrealistically high (≥10−11 m2). Such high rock per-708

meabilities are not justified by the data cited above. Given the inherent uncertainty of709

the conceptual model and data, a range of different conceptual models should be developed710

and tested using numerical models (Cumming, 2016b). Bayesian approaches are well-711

suited to incorporate future conceptual model reassessments and additional constraints712

as new geologic and thermohydrodynamic data becomes available.713

This study shows several practical limitations to using MCMC sampling for inverse714

modeling of the natural state of geothermal reservoirs. Running a single ensemble of 100715

MCMC walkers for 80 steps required computational time in excess of two weeks. In addi-716

tion, computation of the approximation error model and the posterior predictive checks717

required significant computational expense, as a single fine model iteration could take718

up to a day or more to compute. More troublingly, the integrated autocorrelation time719

suggests that the chain is not long enough and adequate coverage of the target poster-720

ior density is not ensured. While running 1000+ iterations in each chain wasn’t possi-721

ble in the present study due to time constraints, ongoing efforts to parallelize TOUGH2722

may enable this in the future (J. O’Sullivan et al., 2019; Croucher et al., 2020). Another723

possible indication of inadequate uncertainty is the observation that limits of the prior724

pdfs for permeability coincide with the limits of the posterior uncertainty (e.g. Fig. 12g-725

i). However, widening the prior further would have the disadvantage that the chain would726

take a significantly longer time to run, without necessarily providing more realistic estima-727

tes. Thus, the prior means and bounds must be carefully selected based on considerati-728

on of realistic permeability ranges observed in similar types of geothermal systems. Al-729

though MCMC methods may be prone to underestimating uncertainty due to the effects730

of autocorrelation and an insufficiently broad prior, the value of the calibrated permea-731

bilities and uncertainty metrics ultimately hinges on the conceptual model and the assumpti-732

on of an informative prior model. This will inevitably be the case for natural state geo-733

thermal reservoir models, which are poorly suited to “black box” inverse modeling ap-734

proaches. In addition, the reliability of the inferred permeability structure depends greatly735

on the quality of data (both geologic and downhole measurements) used to calibrate the736

numerical model. Given the limited temperature data at depth ≥2 km, the uncertainty737

of the model predictions in the “deep roots” of the system is much greater than at shallower738

depths, as is reflected by the posterior predictive checks (Figs. 9-11).739
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5.2 The natural state of the Krafla geothermal reservoir740

The foundation of the natural state geothermal reservoir model presented in this741

study is the conceptual model described in Section 2.2. According to our conceptual model,742

the distinctive spatial variability of temperature in Krafla is the combined result of heterogeneous743

upflow of high-enthalpy fluid from the deep heat source, structural partitioning of the744

reservoir by the Hveragil eruptive fissure, and the presence of a low permeability aqui-745

tard isolating the shallow boiling zone in Leirbotnar from the deeper boiling zone. Superimposed746

on these factors is the effect of topography-driven fluid flow associated with the Mt. Krafla,747

which shields the Suðurhlíðar system from intensive cold recharge leads to the relatively748

low temperatures in Leirbotnar.749

Model results derived from the maximum a posteriori (MAP) estimate are presented750

in Figure 14 with the same cross-sections used to develop the conceptual model. Schematic751

flow arrows in Figure 14a indicate intensive southward-directed recharge into Leirbot-752

nar at the depth of the isothermal zone (-0.5 km a.s.l.). Similarly intensive lateral rechar-753

ge is lacking in the Suðurhlíðar subfield, likely due to the topographic high associated754

with Mt. Krafla, which leads to higher hydrostatic pressures in this area. Increasing tem-755

peratures within the isothermal zone to the SE of Leirbotnar result from increased mix-756

ing of ascending fluid within the Hveragil fault to the SW. Thus, the model predicts that757

topographic gradient from the NE to the SW drives fluid flow to the SW, resulting in758

cooling of the Leirbotnar isothermal zone as well as the shallow outflow in Hvítholar.759

As a result of intensive cold water recharge from the north in the Leirbotnar area,760

boiling is confined to depths ≤-0.5 km. However, boiling extends to the surface in the761

Suðurhlíðar area ( Fig. 14b). The distribution of boiling zones is supported by the temp-762

erature measurements as well as production data. Wells that produce exclusively from763

the upper reservoir in Leirbotnar have enthalpies 0.8-1 MJ kg−1, indicative of a single-764

phase liquid reservoir. In contrast, wells that produce from the deeper reservoir in Leirbot-765

nar or in Suðurhlíðar develop much higher discharge enthalpies (up to ∼2.7 MJ kg−1,766

corresponding to the specific enthalpy of saturated vapor), indicative of a boiling reser-767

voir (Guðmundsson & Arnórsson, 2002).768

Zones of single-phase vapor develop beneath Suðurhlíðar, Vestursvaedi, and the north-769

ern part of Leirbotnar ≤-2 km a.s.l. (Fig. 14b,c,d) Generally, the models predict single-770

phase vapor zones at greater depths and lower temperatures than experienced during the771

drilling of the IDDP-1 well, which discharged a ca. 440 ℃ vapor with an enthalpy of 3.2772

MJ kg −1 (Axelsson et al., 2014). However, as the role of the heat source is represented773

using boundary conditions, the structure of the vapor zones is controlled by the input774

of high-enthalpy fluid at the bottom boundary (Fig. 6b). Reproducing the rapid temp-775

erature in the proximity of shallow intrusions like those encountered during the drilling776

of IDDP-1 and KJ-39 requires explicit representation of fluid flow around intrusions (Scott777

et al., 2015). Despite this limitation, the models show how zones of supercritical fluid778

form at depth in the Krafla system and undergo ascent and decompression to form over-779

lying boiling zones. The flow arrows at the base of the model in Fig. 14 indicate that780

circulating liquid may undergo boiling prior to supercritical fluid formation, in agreement781

with geochemical studies indicating that supercritical fluids can form from isobaric heating782

of liquid around intrusions (Heřmanská et al., 2019).783

The distinctive character of the temperature field in the various Krafla subfields784

can be clearly linked to permeability structure. The isothermal zone temperatures in Leirbot-785

nar require very high rock permeability (≥10−13 m2), which allow for the intensive vertical786

and horizontal convection that effectively smear out vertical temperature gradients. In787

addition, the low permeability aquitard lying on top of the basement intrusions reduces788

the input of high-enthalpy fluid from the deeper boiling reservoir to the shallow isothermal789

zone. Previous studies that have suggested that vertically-extensive boiling zones extend-790

ing to ≥1 km depth, such as are found in Suðurhlíðar, require intermediate rock permea-791

–27–



manuscript submitted to Water Resources Research

-2.5

-2.0

-1.5

-1.0

-0.5

0

0.5

El
ev

at
io

n 
[k

m
 a

.s
.l.

]

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Distance [km]

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance [km]

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance [km]

Te
m

pe
ra

tu
re

 [°
C

]

400

350

300

250

200

150

100

50

-2.5

-2.0

-1.5

-1.0

-0.5

0

0.5

El
ev

at
io

n 
[k

m
 a

.s
.l.

]

-2.5

-2.0

-1.5

-1.0

-0.5

0

0.5

El
ev

at
io

n 
[k

m
 a

.s
.l.

]

KG
-12

KJ-14

KJ-17

KJ-18

KJ-19

KG
-26

KJ-29

KJ-31

KJ
-35

K-39

KW
-01

A A’

C C’B B’

KW
-02

KJ-15

KJ-17 KJ-18

KJ-20

KG
-25

KJ-33

KJ-37IDDP-1

KG
-05

KJ-14

KJ-19

KJ-31 KJ-22

KW
-01 KJ-33

KJ-38

KJ-06

KJ-21

KJ-29

KJ-13KJ-23

KJ-15

KJ-36

KG
-12

Boiling

Single-phase 
vapor

578

579

580

581

582

583

IS
N

ET
 Y

 [k
m

]

a) -0.5 km a.s.l.

1

2

3

5

6

8

12

13

14

17
18

19

21
23

24

28

31

34

KV1

30

9

11

20

37

40

22

KS1

7

10

25

26 27

29

33

35

36 38

39

IDDP1

15
A

A’

B

B’

C

C’

600 601 602 603 604 605
ISNET X [km]

b) 

c) d) 

Figure 14. Model results from max a posteriori estimate. a) Depth slice at -0.5 km asl. Grid
blocks modeled as fault rock types are outlined, with barrier faults outlined in black and trans-
verse faults in blue. Well-head locations shown with triangles with same symbology as in Figure
3. b-d) Vertical cross-sections through numerical model, with traces of cross-sections shown in a).
Cross-sections correspond to same cross-sections shown in Figure 4. Boiling zones are highlighted
in dashed lines, zones of single-phase vapor with solid black lines. Well traces shown in green.
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bility (∼10−15 m2) (Hayba & Ingebritsen, 1997; Scott et al., 2016). However, this stu-792

dy shows that such temperature contrasts can also result from spatial variations in the793

strength of the deep upflow, which is stronger beneath Suðurhlíðar due to higher deep794

mass input (Fig. 6b), as well as the lack of the low permeability aquitard in this area.795

The numerical models suggest that a substantial untapped resource may be present796

in the Krafla area. For example, the models predict the shallow boiling zone in Suður-797

hlíðar extends further to the south, towards Sandabotnaskarð. Such an inference is also798

supported by resistivity measurements, which reveal that the areal extent of the shallow799

low-resistivity cap rock exceeds the present area exploited for power production, extend-800

ing along the eastern rim of the caldera and to the south of Leirhnjúkur, located to the801

northwest of the main production area at Krafla (Árnason & Magnússon, 2001). Leir-802

hnjúkur was a major locus of extrusive magmatism and magmatic gas discharge during803

the volcano-rifting event between 1975-1984 (Ármannsson et al., 1989). However, as th-804

ere are no deep wells drilled into these area, it remains uncertain whether and to what805

extent the high-temperature system extends to this area.806

6 Conclusions807

This study has presented a new natural state model of the Krafla geothermal system.808

The Bayesian approach to model calibration quantifies the significant uncertainty in the809

model parameters. Even in an extensively drilled geothermal field such as Krafla, for which810

temperatures from many deep wells are available, the uncertainty in the inferred anisot-811

ropic permeability values of the different rock types is considerable, often exceeding two812

orders of magnitude. Moreover, fundamental restrictions on grid resolution and computa-813

tional expense presently limit the ability for models to resolve small-scale permeability814

variations. Therefore, when harnessing modern machine learning techniques for the cali-815

bration of natural state geothermal reservoir models, a close link between the resource816

conceptual model and the reservoir model is essential to ensure adequate representati-817

on of the large-scale structure of the system.818

The presented numerical model is one of the first to extend to the deep, supercritical819

roots of a system under production. However, as the role of the heat source is expressed820

in terms of bottom boundary conditions, fluid flow processes around the intrusive heat821

sources are not explicitly modeled. Moreover, geothermal systems such as Krafla und-822

ergo processes such as repeated intrusion, fracturing, and eruption over time scales of823

102-103 years (Thordarson & Larsen, 2007; Sparks & Cashman, 2017), and the heat of824

subsurface intrusions can be exhausted by hydrothermal fluid circulation on time sca-825

les of 103-104 years (Scott et al., 2016), shorter than the time needed in order to reach826

a steady-state in the transient models (ca. 106 years). Other models of cooling intrusi-827

ons have shown that transient effects play a key role in governing the thermo-hydraulic828

structure (Scott, 2020).829

In addition to better consideration of transient effects, other possibilities for fut-830

ure improvements could include making every block a different rock type (Bjarkason et831

al., 2019) and treating input mass/enthalpy as uncertain parameters (Cui et al., 2011).832

However, as the number of uncertain parameters increases, the connection between the833

reservoir model and the conceptual model becomes more tenuous, and in geothermal fields834

that are well-constrained by geologic and well data, incorporating such constraints in the835

reservoir model is valuable. In addition, the model would benefit from more data, particul-836

arly below -2 km a.s.l. Such data could become available as a result of the ongoing Krafla837

Magma Tested project, which aims drill several additional deep wells into the magma838

body in Krafla to better constrain the interface between the magmatic heat source and839

overlying hydrothermal system(Eichelberger et al., 2018) While the production history840

of this system was not used to calibrate the numerical model, this natural state model841

could serve a basis for the calibration of such a model. In addition, it would help evaluat-842
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ing whether the exploitation of the system has led to changes in the temperature distribu-843

tion of the system (Guðmundsson & Arnórsson, 2002). Generally, the development of844

natural state model should be seen as a dynamic, iterative process, that improves as addi-845

tional data becomes available and the conceptual understanding of the system deepens.846
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