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Abstract

To capture the effects of mesoscale turbulent eddies, coarse-resolution Eulerian ocean models resort to tracer diffusion param-

eterizations. Likewise, the effect of eddy dispersion needs to be parameterized when computing Lagrangian pathways using

coarse flow fields. Dispersion in Lagrangian simulations is traditionally parameterized by random walks, equivalent to diffusion

in Eulerian models. Beyond random walks, there is a hierarchy of stochastic parameterizations, where stochastic perturbations

are added to Lagrangian particle velocities, accelerations, or hyper-accelerations. These parameterizations are referred to as the

1st, 2nd and 3rd order ‘Markov models’ (Markov-N), respectively. Most previous studies investigate these parameterizations in

two-dimensional setups, often restricted to the ocean surface. On the other hand, the few studies that investigated Lagrangian

dispersion parameterizations in three dimensions, where dispersion is largely restricted to neutrally buoyant surfaces, have fo-

cused only on random walk (Markov-0) dispersion. Here, we present a three-dimensional isoneutral formulation of the Markov-1

model. We also implement an anisotropic, shear-dependent formulation of random walk dispersion, originally formulated as

a Eulerian diffusion parameterization. Random walk dispersion and Markov-1 are compared using an idealized setup as well

as more realistic coarse and coarsened (50 km) ocean model output. While random walk dispersion and Markov-1 produce

similar particle distributions over time when using our ocean model output, Markov-1 yields Lagrangian trajectories that better

resemble trajectories from eddy-resolving simulations. Markov-1 also yields a smaller spurious dianeutral flux.
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Key Points:7

• We create a 3D isoneutral version of the Markov-1 Lagrangian dispersion model,8

similar to Redi’s isopycnal rotation of the diffusion tensor.9

• Dispersion from Markov-1 includes ballistic and diffusive regimes, making trajec-10

tories more realistic than those from random walk models.11

• Markov-1 produces a much smaller spurious dianeutral diffusivity than Markov-12

0 (random walk).13

Corresponding author: Daan Reijnders, b.j.h.r.reijnders@uu.nl

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Abstract14

To capture the effects of mesoscale turbulent eddies, coarse-resolution Eulerian ocean15

models resort to tracer diffusion parameterizations. Likewise, the effect of eddy disper-16

sion needs to be parameterized when computing Lagrangian pathways using coarse flow17

fields. Dispersion in Lagrangian simulations is traditionally parameterized by random18

walks, equivalent to diffusion in Eulerian models. Beyond random walks, there is a hi-19

erarchy of stochastic parameterizations, where stochastic perturbations are added to La-20

grangian particle velocities, accelerations, or hyper-accelerations. These parameteriza-21

tions are referred to as the 1st, 2nd and 3rd order ‘Markov models’ (Markov-N), respec-22

tively. Most previous studies investigate these parameterizations in two-dimensional se-23

tups, often restricted to the ocean surface. On the other hand, the few studies that in-24

vestigated Lagrangian dispersion parameterizations in three dimensions, where disper-25

sion is largely restricted to neutrally buoyant surfaces, have focused only on random walk26

(Markov-0) dispersion. Here, we present a three-dimensional isoneutral formulation of27

the Markov-1 model. We also implement an anisotropic, shear-dependent formulation28

of random walk dispersion, originally formulated as a Eulerian diffusion parameteriza-29

tion. Random walk dispersion and Markov-1 are compared using an idealized setup as30

well as more realistic coarse and coarsened (50 km) ocean model output. While random31

walk dispersion and Markov-1 produce similar particle distributions over time when us-32

ing our ocean model output, Markov-1 yields Lagrangian trajectories that better resem-33

ble trajectories from eddy-resolving simulations. Markov-1 also yields a smaller spuri-34

ous dianeutral flux.35

Plain Language Summary36

Turbulent eddies stir and disperse material in the ocean. Depending on the reso-37

lution of ocean models, these eddies can have length scales that are too small to be re-38

solved explicitly, so they need to be represented by parameterizations. This implies that39

when particle pathways are computed in Lagrangian simulations, the effect of eddy dis-40

persion also needs to be parameterized. This is traditionally done by adding a random41

walk on top of successive particle positions. An improvement of this parameterization,42

referred to as the Markov-1 model, adds random perturbations to particle velocities in-43

stead. Dispersion parameterizations have been studied primarily at the surface in two44

dimensions. In contrast, eddies in the ocean interior predominantly stir and disperse along45

tilted surfaces of neutral buoyancy. We present a novel three-dimensional formulation46

of the Markov-1 model and compare it to the random walk model in an idealized setup,47

as well as using more realistic coarse and coarsened (50 km) ocean model output. Par-48

ticle distributions produced by both models are similar, but the trajectories produced49

by Markov-1 better resemble trajectories from simulations that explicitly resolve eddies.50

Markov-1 also is better able to restrict particle movement to the tilted neutral buoyancy51

surfaces.52

1 Introduction53

Turbulent stirring in the ocean disperses tracers and suspended material over time.54

The eddies, jets, and fronts that characterize this turbulent motion occur at a range of55

spatial and temporal scales. Since ocean models have a finite resolution, structures with56

spatial scales of the order of the grid resolution or smaller are not resolved explicitly. Cur-57

rent state-of-the-art global ocean models use nominal 1/48° grid resolutions (Su et al.,58

2018; Fox-Kemper et al., 2019), resolving the mesoscale and part of the submesoscale59

spectrum. Still, computational constraints limit the simulation length of models at such60

resolutions to only a few years. Many of the latest generation of Earth system models61

that are used for CMIP6 use ocean grid resolutions of 1° and 1/4° (Hewitt et al., 2020).62

The models at 1° do not resolve any mesoscale eddies. While the 1/4° models are eddy-63
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permitting in parts of the ocean, much higher resolutions are required to resolve the first64

baroclinic Rossby radius at higher latitudes, such as in the Southern Ocean, where it is65

O(10 km) (Chelton et al., 1998). Parameterizations of mesoscale eddies therefore remain66

vital to ocean modeling.67

The spreading of tracers due to unresolved eddies is typically parameterized as a68

diffusive processes, with the evolution of a tracer concentration C governed by the advection-69

diffusion equation:70

∂C

∂t
+ u ·∇C = ∇ · (K ·∇C), (1)

where u is the resolved, large-scale velocity, and K is the diffusivity tensor. This prac-71

tice traces back to Boussinesq’s concept of eddy viscosity (Boussinesq, 1877) and G.I.72

Taylor’s work on diffusion (Taylor, 1922), and is still ubiquitous in ocean modeling (Fox-73

Kemper et al., 2019). Much research has focused on determining and formulating K in74

order to best represent ocean eddies. This includes aspects like the isopycnal or isoneu-75

tral orientation of eddies in the ocean interior (Redi, 1982), their advective effect (Gent76

& McWilliams, 1990; Griffies, 1998; Haigh et al., 2021), their diffusivity strength (Abernathey77

et al., 2013; Griesel et al., 2014; Wolfram et al., 2015; Nummelin et al., 2020), and their78

anisotropy (Le Sommer et al., 2011; Bachman et al., 2020).79

Spreading of tracers and suspended material can also be investigated through the80

Lagrangian framework. Through Lagrangian particle simulations, we can study the path-81

ways of fluid parcels and suspended material forward and backward in time (van Sebille82

et al., 2018). The Lagrangian framework is an especially useful alternative for the Eu-83

lerian framework in studying tracer transport when dealing with point sources (Spivakovskaya84

et al., 2007; Wagner et al., 2019). Lagrangian simulations use Eulerian ocean model fields85

to advect virtual particles. This means that Lagrangian simulations also require param-86

eterizations to represent missing dispersion due to the unresolved scales in the Eulerian87

input data.88

The simplest Lagrangian sub-grid scale dispersion model consists of adding a ran-89

dom walk onto a particle’s successive locations. It can be shown that this method is con-90

sistent with the advection-diffusion equation (1) (Heemink, 1990; Visser, 1997; Spagnol91

et al., 2002), hence it is often referred to as ‘diffusion’ in Lagrangian literature. It is the92

simplest member of a hierarchy of stochastic parameterizations that is Markovian in na-93

ture, and we will refer to it here as Markov-0 (Berloff & McWilliams, 2002). ‘Markovian’94

relates to the Markov property that each successive displacement in the random walk95

is independent from the previous.96

One shortcoming of Markov-0 is that, just like the eddy diffusion approximation97

in Eulerian models, it assumes that eddies have infinitely short time scales. Put differ-98

ently, it assumes that there is no autocorrelation in the turbulent velocity of the Lagrangian99

particles. This assumption does not hold true for mesoscale eddies, which transport La-100

grangian particles coherently (Haller & Yuan, 2000; Berloff & McWilliams, 2002). Eddy101

coherence leaves an imprint on the Lagrangian velocity autocorrelation, which can be102

separated into an exponentially decaying part and an oscillatory part that is the result103

of phase differences between the eddies and background flow (Veneziani et al., 2004; Klocker,104

Ferrari, & LaCasce, 2012). Due to this imprint, Markov-0 is only accurate at time scales105

when the autocorrelation has decayed away, meaning t ≫ TL. Here, TL is the Lagrangian106

timescale, equal to the e-folding timescale of the exponential decay of the autocorrela-107

tion (LaCasce, 2008). TL may vary between timescales of a day (Koszalka et al., 2013)108

to several weeks (see section 4.2), depending on the characteristics of the ocean domain109

at hand. If one is concerned with timescales equal to or smaller than TL, Markov-0 is110

inadequate for parameterizing subgrid-scale dispersion. Regardless, this is often the only111

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems

scheme for parameterizing subgrid-scale dispersion implemented in community Lagrangian112

modeling frameworks (van Sebille et al., 2018).113

Parameterizations higher in the hierarchy of stochastic models add Markovian noise114

not on particle locations, but on their velocities (Markov-1), accelerations (Markov-2),115

or even hyper-accelerations (Markov-3) (Sawford, 1991; Rodean, 1996; Griffa, 1996; Berloff116

& McWilliams, 2002). In doing so, these models are capable of better representing dis-117

persion at shorter timescales (for which t ̸≫ TL), and they can be informed by statis-118

tical variances in velocity, acceleration, and hyper-acceleration, respectively, as well as119

the timescales over which the autocorrelations of these quantities decay. Further improve-120

ments have been formulated that include the looping of particles due to eddy coherence121

(Reynolds, 2002; Veneziani et al., 2004), as well as the relative dispersion between dif-122

ferent particles (Piterbarg, 2002).123

Previous ocean applications of this hierarchy of stochastic models in the Lagrangian124

framework have been restricted to the horizontal plane (e.g. Haza et al. (2007); Kosza-125

lka et al. (2013)). However, dispersion through stirring in the interior occurs primarily126

along sloping surfaces of neutral buoyancy (McDougall, 1987), which are closely related127

to isopycnals (surfaces of constant potential density). Spivakovskaya et al. (2007) there-128

fore investigated an isopycnal formulation of the random walk dispersion model. Shah129

et al. (2011) and Shah et al. (2013) further investigated how the spurious diapycnal flux130

due to numerical integration can best be minimized.131

In this study, we discuss, implement, and test an isoneutral formulation of the Markov-132

1 subgrid-scale dispersion model. We compare the Markov-0 and Markov-1 models when133

applied to coarse-resolution and coarsened model output data. Specifically, we apply these134

parameterizations to a channel model of the Southern Ocean, with scales and model set-135

tings comparable to contemporary global and basin-scale ocean models. This allows us136

to also assess the spurious dianeutral flux associated with interpolating discrete ocean137

model output fields.138

Furthermore, we also consider an anisotropic, shear-dependent formulation of the139

diffusive/Markov-0 model, formulated by Le Sommer et al. (2011) (LS hereafter), which140

accounts for anisotropy due to shearing and stretching brought about by mesoscale ed-141

dies. Our aim here is to show how one of the many enhancements proposed to the Eu-142

lerian diffusion parameterization can be extended to an isoneutral Lagrangian formula-143

tion.144

This study focuses on how the isoneutral form of the Markov-1 model, as well as145

the anisotropic and shear-dependent form of the Markov-0 model, can best be implemented,146

and to which qualitative differences they lead in the dispersion of Lagrangian particles147

when compared to a dispersionless case and the isotropic Markov-0 parameterization.148

We also assess errors of the parameterizations in terms of spurious diffusivities. We aim149

to use sensible orders of magnitude for the model parameters, but parameter estimation150

is not our final goal. We are chiefly concerned with formulating an isoneutral form of the151

Markov-1 model, laying the groundwork for isoneutral subgrid-scale Lagrangian mod-152

els beyond the isotropic diffusive/Markov-0 parameterization. Higher order stochastic153

models beyond Markov-1 and extensions thereof will be left out of the scope of this pa-154

per. These should nonetheless benefit from the ideas discussed here. The advective ef-155

fect of eddies as captured by the Gent-McWilliams parameterization (Gent & McWilliams,156

1990) is also not considered.157

In section 2, we give isoneutral formulations of the Markov-0 and Markov-1 param-158

eterizations, as well the anisotropic LS formulation of the Markov-0 parameterization.159

Then, in section 3, we implement and apply these parameterizations to Lagrangian sim-160

ulations in an idealized situation, and in section 4 to ocean model data output. We as-161

sess the performance qualitatively and quantitatively. Qualitatively, we compare indi-162
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vidual particle trajectories and the dispersion of particles in a tracer-like patch with the163

dispersion in a fine-resolution eddy-resolving model. For the Markov-1 model we also look164

at the Lagrangian timescale and associated asymptotic diffusivity, to assess to which ex-165

tent we can reproduce these profiles in a fine-resolution setting. Quantitatively, we in-166

vestigate the spurious dianeutral diffusivity of the different models. These models should167

keep particles restricted to neutral surfaces, but since we use discrete model output, spu-168

rious dianeutral fluxes will occur due to interpolation and other numerical aspects. We169

wrap up this study with concluding remarks in section 5.170

2 Lagrangian isoneutral subgrid-scale models171

2.1 Markov-0 (diffusion)172

When we interpret the (Eulerian) advection-diffusion equation (1) as a Fokker-Planck173

equation that gives the probability distribution of particle locations over time (Heemink,174

1990), this yields a stochastic differential equation (SDE) describing the evolution of La-175

grangian particle positions x as176

dx = [u(x) +∇ ·K(x)]dt+V(x) · dW(t). (2)

Here, V is computed from K as K = 1
2V·VT , meaning that the random noise on the177

particle position is proportional to the elements of the diffusivity tensor. This requires178

K to be symmetric and positive-definite. dW(t) is a vector whose elements correspond179

to independent Wiener increments in each respective coordinate direction. These Wiener180

increments are normally distributed random variables N (0, dt) with zero mean and vari-181

ance dt (see also Appendix A from Shah et al. (2011)).182

The ∇ ·K-term in (2) ensures the well-mixed condition (WMC) when the diffu-183

sivity tensor is not spatially uniform, and follows the interpretion of (1) as the Fokker-184

Planck equation corresponding to the SDE (2) (Heemink, 1990). Simply put, the well-185

mixed condition ensures that a particle distribution that is initially mixed, stays mixed.186

This condition is also essential for the forward- and backward-in-time formulations of187

the model to be consistent. The WMC is extensively discussed by Thomson (1987).188

The stirring of tracers and dispersion of particles occurs primarily along sloping189

neutrally buoyant surfaces (McDougall, 1987). Due to uncertainty about its strength,190

spatial variation, and anisotropy of eddy stirring, the eddy diffusivity is often pragmat-191

ically chosen to be a homogeneous and isotropic in the neutral plane, with its strength192

expressed by the ‘diffusivity’ constant κ (with units m2 s−1). Redi (1982) showed that193

a diffusivity tensor with these characteristics can be written in geopotential (‘z-’) coor-194

dinates in terms of the slopes of the locally neutral plane:195

KRedi =
κ

1 + S2
x + S2

y

 1 + ϵS2
x + S2

y −(1− ϵ)SxSy (1− ϵ)Sx

−(1− ϵ)SxSy 1 + S2
x + ϵS2

y (1− ϵ)Sy

(1− ϵ)Sx (1− ϵ)Sy ϵ+ S2
x + S2

y

 , (3)

where ϵ ≡ κdia/κ denotes the ratio of dianeutral (diabatic) to isoneutral diffusivity, and196

Sx and Sy are the slopes of the neutral surfaces. When the neutral surfaces are aligned197

with the isopycnals, which is the case for an equation of state that is linear in salinity198

and potential temperature, these slopes are found as199

Sx = −∂ρ

∂x

/
∂ρ

∂z
, Sy = −∂ρ

∂y

/
∂ρ

∂z
. (4)
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Cox (1987) showed that the diffusivity tensor (3) can be simplified when these slopes200

are small (say |S| =
√
S2
x + S2

y < 10−2, which is generally the case in the ocean), and201

when ϵ is small compared to unity, so that it reduces to202

KRedi,approx = κ

 1 0. Sx

0. 1 Sy

Sx Sy ϵ+ |S|2

 . (5)

Particle trajectories can then be computed by integrating equation (2). A κ that203

is constant in space and time corresponds to the idealized case of homogeneous and sta-204

tionary turbulence. The model has the Markovian property that successive spatial per-205

turbations V · dW(t) are uncorrelated. This in turn causes successive particle velocities206

v = ∂x
∂t to be uncorrelated as well, which is unrealistic at short timescales (i.e. t ̸≫207

TL) (LaCasce, 2008).208

2.2 Anisotropic Shear-dependent Markov-0209

While the tensors (3) and (5) assume that the diffusivity is isotropic and uniform210

in the isoneutral plane and time, the transport and stirring by eddies leads to effective211

diffusivities that are highly inhomogeneous and anisotropic (McWilliams et al., 1994; Sallée212

et al., 2008; Nummelin et al., 2020). In ocean modeling, the effects of eddies on momen-213

tum transfer are represented by an eddy viscosity. To account for the inhomogeneous214

effect of eddies on the momentum transfer, the eddy viscosity is often parameterized us-215

ing the Smagorinsky parameterization (Smagorinsky, 1963), which relates the strength216

of the viscosity to the local shear of the flow based on closure of the momentum equa-217

tions. This parameterization can also be used for tracer diffusion (Le Sommer et al., 2011),218

and has been applied for spatially-dependent (horizontal) random walk dispersion to pa-219

rameterize eddies in Lagrangian studies (Nooteboom et al., 2020).220

Le Sommer et al. (2011) derived an anisotropic and shear-dependent diffusion pa-221

rameterization, related to the Smagorinsky parameterization, that also accounts for the222

anisotropy in effective diffusivity due to the shearing and stretching effect from the re-223

solved scales on the unresolved scales. This parameterization, here abbreviated as LS,224

was originally proposed for parameterizing the submesoscale using resolved mesoscale225

motions, but Nummelin et al. (2020) suggest that the LS parameterization can be ap-226

plied to coarser models in which the mesoscale is not resolved.227

The isoneutral diffusivity tensor from the LS parameterization is given by228

KLS =
h2

2
(1 + δ2)

 p r pSx + rSy

r q rSx + qSy

pSx + rSy rSx + qSy pS2
x + qS2

y + 2rSxSy

 , (6)

with p =
√
r2 + a2 + a and q =

√
r2 + a2 − a. Here, r = ∂v

∂x + ∂u
∂y is the rate of shear229

strain and a = ∂u
∂x − ∂v

∂y the rate of normal strain, both in the horizontal plane. The230

underlying assumption is that the largest contribution to the isoneutral dispersion falls231

within the horizontal plane. The h-term is the horizontal filter size over which the pa-232

rameterization acts, and δ = [∂u∂x + ∂v
∂y ]/

√
r2 + a2 is a non-dimensional divergence pa-233

rameter. The filter size h is related to the size of the grid and it should be tuned through234

an O(1), model-dependent constant C that depends on the underlying advection scheme,235

so h2 = Cdx · dy. A fixed dianeutral diffusivity ϵκ can be set if we approximate it as236

a vertical diffusivity and add it to KLS,33.237

This parameterization can readily be used in Lagrangian simulations by using KLS238

(6) for the Markov-0 model (2). The parameterization is inherently local, with each of239
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the parameters computed on the location a Lagrangian particle (or grid cell, in the Eu-240

lerian case).241

2.3 Markov-1242

Next in the hierarchy of stochastic subgrid-scale dispersion models is the Markov-243

1 model, also known as the random acceleration or Langevin model (Berloff & McWilliams,244

2002). The Markov-1 model adds a random forcing on particle velocities, which should245

be proportional to the velocity variance associated to the unresolved eddies. The model’s246

governing equations are247

dx = [u(x) + u′]dt, (7a)

du′ = [−[θ−1(x)] · u′ + ã(x,u′)]dt+ b · dW(t). (7b)

The particle location x evolves through integration of the resolved mean flow u(x) and248

a turbulent fluctuation u′. This fluctuation evolves through the stochastic differential249

equation (7b). The deterministic part of this equation consists of two terms: a fading-250

memory term, which ensures an exponential decay in the autocorrelation of the parti-251

cle’s velocity, regulated through the fading-memory time tensor θ (with time as its di-252

mension), and a drift correction term ã, which ensures the well-mixed condition. The253

stochastic forcing term consists of the Wiener increment dW and the random forcing254

is related as b bT = 2σθ−1. Here, σ is the velocity variance tensor, which relates to the255

strength of the velocity fluctuations u′ that are to be simulated:256

σij = ⟨u′
iu

′
j⟩, (8)

where the angled brackets denote ensemble averages over Lagrangian trajectories.257

The drift correction term is given by258

ãi =
1

2

∂σik

∂xk
− σim

2
(uk + u′

k)
∂[σ−1]

∂xk
u′
j . (9)

See Berloff and McWilliams (2002) for further details and derivations.259

The nonsingular velocity variance tensor σ and the fading-memory time tensor θ260

are the free parameters in the Markov-1 model. They can be estimated from velocity fields261

in which the turbulent velocity is resolved. For the velocity variance, this is clear from262

equation (8). The velocity variance tensor may be anisotropic, inhomogeneous in space,263

and evolving over time. An obvious and useful simplification is to use a single, average264

velocity variance parameter ν2 that characterizes the entire system (Koszalka et al., 2013).265

In this case σ is diagonal with its values equal to ν2. Alternatively, the velocity variance266

may be a probability distribution rather than an average value in order to account for267

the variance in ν2 found within different regions of a fluid domain (Berloff & McWilliams,268

2003).269

The fading-memory time tensor θ determines the strength of the exponential de-270

cay of the turbulent velocity u′. The elements of θ are found by integrating the Lagrangian271

autocorrelation Rij(τ) over all time lags τ :272

θij =

∫ ∞

0

Rij(τ)dτ, (10)

where273

Rij(τ) = ⟨u′
i(t)u

′
j(t+ τ)⟩/(⟨u′2

i ⟩ ⟨u′2
j ⟩)1/2. (11)
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Like the turbulent velocity, the Lagrangian autocorrelation exhibits spatial variation in274

the ocean, and its anisotropy can be strongly affected by the presence of jets (Griesel et275

al., 2010). Still, it is also useful to characterize the fading-memory time of the entire sys-276

tem by an average value. In a homogeneous, stationary situation without boundary ef-277

fects, the fading memory tensor is diagonal with its values equal to the Lagrangian in-278

tegral time TL.279

We characterize the dispersion of particles by the single-particle (sometimes called
‘absolute’) dispersion tensor:

Dij(t,x(0)) = ⟨(xi(t)− xi(0))(xj(t)− xj(0))⟩. (12)

Berloff et al. (2002) note that while the dispersion tensor in the ocean may evolve in a280

nonlinear manner, it can be described by different power laws at intermediate timescales:281

Dii(t) ∼ tαii . (13)

Single-particle dispersion in the ocean is initially ballistic, meaning D(t) ∼ t2 for t ≪282

TL. At longer time-scales, it becomes approximately linear in time, i.e. D(t) ∼ t. Since283

such behavior is equivalent to that of a diffusive process, this is also referred to as the284

diffusive limit. Unsurprisingly, dispersion simulated by the Markov-0 model is purely dif-285

fusive. The Markov-1 model, however, is able to also simulate the initially ballistic be-286

havior of particles dispersion. For time scales longer than those characterized by the el-287

ements of θ, the Markov-1 model essentially behaves diffusively (Rodean, 1996). In this288

limit, assuming homogeneity, stationarity, and absence of boundary effects, we can re-289

late the absolute diffusivity, velocity variance and Lagrangian integral time as290

ν2TL = κ. (14)

At intermediate time-scales, αii can take on other values than 1 and 2, which is referred291

to as anomalous dispersion (LaCasce, 2008). While the dispersion regimes other than292

the ballistic and diffusive cannot be simulated by Markov-1, the higher order Markov-293

2 and Markov-3 models, or modifications of Markov-1 are able to account for such be-294

havior, such as the oscillatory component of the Lagrangian autocorrelation (Berloff &295

McWilliams, 2002; Reynolds, 2002; Veneziani et al., 2005). However, we limit ourselves296

here to Markov-1 for its simplicity, as each modification or higher model in the hierar-297

chy includes more free parameters.298

We now formulate an ad-hoc three-dimensional, isoneutral version of the Markov-299

1 model in the case of homogeneous and stationary turbulence without boundary effects.300

First, we assume that the turbulent velocity perturbations should remain primarily re-301

stricted to the local neutral plane, in which it is isotropic. In isoneutral coordinates this302

yields303

σiso =

ν2 0 0
0 ν2 0
0 0 ην2

 , and θiso =

TL 0 0
0 TL 0
0 εTL

 . (15)

Assuming there is some dianeutral velocity perturbation ν2dia (≪ ν2), we define η ≡ ν2dia/ν
2.304

Similarly, assuming a separate dianeutral Lagrangian integral time TL,dia, we define ε ≡305

TL,dia/TL.306

Then, we simply transform σ and θ from isoneutral coordinates to geopotential co-307

ordinates in analogy to Redi’s formulation of the isoneutral diffusivity tensor (Redi, 1982).308

This yields:309
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σgeo =
ν2

1 + S2
x + S2

y

 1 + ηS2
x + S2

y −(1− η)SxSy (1− η)Sx

−(1− η)SxSy 1 + S2
x + ηS2

y (1− η)Sy

(1− η)Sx (1− η)Sy η + S2
x + S2

y

 , (16)

and310

θgeo =
TL

1 + S2
x + S2

y

 1 + εS2
x + S2

y −(1− ε)SxSy (1− ε)Sx

−(1− ε)SxSy 1 + S2
x + εS2

y (1− ε)Sy

(1− ε)Sx (1− ε)Sy ε+ S2
x + S2

y

 . (17)

Note that in order for these tensors to be nonsingular, η and ε should be nonzero, mean-311

ing that σgeo and θgeo have nonzero diapycnal contributions. We thus have to specify312

η and ε in a way such that they are small enough to prevent large dianeutral excursions.313

While the diffusivity tensor (3) can be simplified (5) by the assumption that slopes314

are small, this assumption cannot be applied to the tensors σgeo (16) and θgeo (17), since315

the terms that are scaled out in the small-slope assumption become dominant in the in-316

verses of σgeo and θgeo, which are used in (7), (9) and when computing b.317

A key assumption of Redi’s diffusivity tensor Kredi is that the neutral surfaces are318

stationary and locally flat. ‘Locally’ here is related to the length scale associated to the319

displacement of a particle over one timestep. The assumption is that when a particle is320

advected, the neutral slope at the particle’s original location x0 at time t0 is approxi-321

mately equal to the neutral slope at the particle’s new location x1 after a timestep dt.322

Any difference in the orientation of the neutral surface over successive timesteps will lead323

to some dianeutral movement, but as long as neutral surfaces are locally flat, this dia-324

neutral movement is limited and the new local slopes are used for computing the next325

neutral displacement.326

For Markov-1, the situation is more complicated. In this case, the stochastic ve-327

locity perturbations of a particle at time t0 and location x0 are oriented parallel to the328

local neutral plane. However, since particle velocities (7b) are autocorrelated, the cur-329

vature of the neutral surface at a particle’s initial location x0 can influence a particle’s330

velocity over several timesteps, as the particle is displaced away from x0. This influence331

decays exponentially with the e-folding timescale εTL. Thus if a neutral surface curves332

at spatial scales that are similar to or smaller than the length scale L over which a par-333

ticle travels within the timescale εTL, the signal of the turbulent velocity perturbation334

at t0 influences the particle’s net turbulent velocity, causing a dianeutral velocity con-335

tribution, and therefore a dianeutral displacement. To combat this dianeutral movement,336

the Lagrangian autocorrelation in the dianeutral direction should rapidly decay away at337

each timestep. Put differently, εTL should be so small that a neutral surface can be ap-338

proximated as flat over the length scale L. While εTL should be larger than zero to avoid339

singularity of θ, one ad-hoc workaround to rapidly extinguish the signal of velocity per-340

turbations at previous timesteps is to set341

εTL = dt. (18)

This workaround comes at a price: if the neutral surface curves, the Lagrangian decor-342

relation of an initially isoneutral signal may occur more quickly than is prescribed by343

θ, since the initially isoneutral perturbation becomes dianeutral over time, which causes344

it to decay rapidly due to (18). This effect increases when more curvature is covered by345

a Lagrangian particle as it moves in space and time. Properly retaining autocorrelations346

on curved surfaces is a complicated matter (Gaspari & Cohn, 1999), so here we take a347

pragmatic approach by assuming that the change in isoneutral curvature is small enough348

for practical use to warrant our ad-hoc formulation of a three-dimensional Markov-1 model.349
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Finally, when ε is fixed by (18), η can be chosen in such a way that the effective350

dianeutral diffusivity in the limit t ≫ TL is controlled as:351

ϵκ = η ν2 ε TL. (19)

This means that if we indeed assume homogeneity, stationarity, and a lack of boundary352

effects, the parameters necessary for Markov-1 model may be determined by specifying353

the Lagrangian integral time TL and an effective diffusivity κ, which fix ν2 through (14),354

and by specifying the dianeutral diffusivity ratio ϵ, fixing ε and η (through (18) and (19)).355

3 Numerical implementation356

3.1 Discretization357

To use the Markov-0 and Markov-1 models numerically, we need to discretize SDEs
(2) and (7). The simplest SDE discretization is Euler-Maruyama scheme, which can be
seen as a stochastic version of the Euler-forward scheme. Given a general stochastic dif-
ferential equation

dX = α(X, t)dt+ β(X, t)dW(t), (20)

with α(X, t) signifying the deterministic forcing strength and β(X, t) the stochastic forc-358

ing strength, the Euler-Maruyama scheme approximates the true solution for X by the359

Markov chain Y as360

Y k
n+1 = Y k

n + αk∆t+

m∑
j=1

βk,j∆W j , (21)

where superscripts denote the k-th component of the m-dimensional vectors X and Y361

and subscripts denote discrete time indices. ∆W is an m-dimensional vector of discretized362

Wiener increments, which are normally distributed, N (0,∆t), with zero mean and vari-363

ance ∆t. See Kloeden and Platen (1999) or Iacus (2008) for more details on numerical364

SDE schemes. The expressions for α and β can be readily identified in (2) and (7b). In365

the case of Markov-1, an additional numerical integration is necessary for (7a). For con-366

sistency with the Euler-Maruyama scheme, this can simply be the Euler-Forward dis-367

cretization.368

We implemented the Markov-0 and Markov-1 schemes in the Parcels Lagrangian369

framework (Delandmeter & van Sebille, 2019). All Lagrangian simulations in this pa-370

per are carried out with Parcels (van Sebille et al., 2020).371

3.2 Idealized test case372

We assess the validity of the isoneutral subgrid-scale models using an idealized, sta-373

tionary density field for which we can compute the isoneutral slopes exactly, assuming374

that here the neutral surfaces align with the isopycnals. We do not consider any actual375

fluid dynamical setup, meaning there is no background flow (u = 0). This three-dimensional376

idealized test case is an extension of the two-dimensional test case from Shah et al. (2011),377

and is given by378

ρ(x, y, z) = ρ0

[
1− N2z

g
+Ax sin(kxx) +Ay sin(kyy)

]
, (22)

with ρ0 a reference density, N the Brunt-Vaisala frequency, g the gravitational acceler-379

ation, A the amplitude of the wave-like neutral surfaces, and k their wavenumber (sub-380

scripts denoting direction). The z-coordinate of the neutral surface corresponding to the381

density ρ∗ is then found as382
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ziso(ρ
∗, x, y) =

g

N2

[
1− ρ∗

ρ0
+Ax sin(kxx) +Ay sin(kyy)

]
. (23)

We use a similar choice of parameters as (Shah et al., 2011), which is representa-
tive of the large-scale ocean:

ρ0 = 1025 kgm−3, N2 = 1× 10−5 s−2, g = 10m s−2,

Ax = 1× 10−3, Ay = 1.1× 10−3, kx = ky =
2

π
× 1× 10−5 m−1.

(24)

This choice of parameters leads to a maximum slope of max(|S|) ≈ 10−3, which is a383

typical value for neutral slopes in the ocean, and for which the small-slope approxima-384

tion (5) is valid (Mathieu & Deleersnijder, 1998). Although we may not use this approx-385

imation in the Markov-1 model due to singularity, as explained in section 2.3, it is use-386

ful to compare the small-slope approximation of Markov-0 (5) with its full formulation387

(3).388

3.3 Spurious diffusivity389

We can compare the spurious dianeutral diffusivities induced by numerical errors390

in the discretized Markov-0 and Markov-1 models. We limit this analysis for brevity and391

refer the reader to Shah et al. (2011) for an extensive discussion of numerical errors in-392

troduced by Markov-0. The models considered here have an equivalent effective diffu-393

sivity (14) in the limit t ≫ TL. We initialize 12,800 particles on a neutral surface, us-394

ing a regular xy-grid, with the z-coordinates computed from (23) and ρ∗ = 1027.5 kgm−3.395

We found that results are insensitive to adding more particles. We take into account the396

periodic topology of the neutral surfaces to make sure crests and troughs are sampled397

evenly. Then, we numerically integrate the particles for 90 days using several choices of398

integration timestep ∆t. The particle displacements are computed by using the exact399

density field (22) and its spatial derivatives. From the vertical departure of the parti-400

cles from the neutral surfaces, we can compute an effective spurious vertical diffusivity,401

κz,spurious =
(⟨z − ziso⟩)2

2Tint
, (25)

where the angled brackets denote a particle ensemble average and Tint is the total in-402

tegration time. We use this as an approximation of the spurious dianeutral diffusivity403

introduced by the numerical approximation of (20).404

In the Markov-0 model, we set κ = 1000m2 s−1 and ϵ = 0, such that the only405

dianeutral movement of particles is due to numerical errors. We test both KRedi and KRedi,approx.406

We cannot test Markov-0 using KLS, as we do not consider a fluid setup with flow from407

which its parameters are computed.408

For Markov-1, we use a value of TL = 20 days, and we determine ν2 = κ/TL =409

5.79×10−4 m2 s−2, so that the effective isoneutral diffusivity in the diffusive limit equals410

the one used for Markov-0 (see (14)). We also need to specify the nonzero dianeutral fading-411

memory time and velocity variance in the Markov-1 model to guarantee that (16) and412

(17) are nonsingular. To ensure rapid decorrelation of u′ in the local dianeutral direc-413

tion, we set ε = ∆t
TL

(18). In order to avoid θ being singular, we also need a nonzero414

η. However, here we are interested in the dianeutral movement induced by numerical er-415

rors, rather than what is specified by the algorithm. Here we need to make a trade-off:416

we found that if η gets very small (η ≲ 10−10), this causes instabilities due to the mul-417

tiplication of very small and very large terms (inverses of η) when computing the drift418

correction term (9). This may not necessarily lead to a spurious diapycnal diffusivity,419

but we found that it can lead to particle accumulation is specific areas. We choose η =420
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10−8; a value for which we do not observe noticeable instabilities with the drift correc-421

tion term. For small choices of dt, this choice of η will cause the ‘spurious’ diapycnal dif-422

fusivity to equal the expected diapycnal diffusivity (computed using (19)), while for larger423

timesteps the spurious diffusivity is dominated by numerical errors.424
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Figure 1. Spurious dianeutral diffusivities after 90 days in the Markov-0 model (with and

without the small-slope approximation (5)), and the Markov-1 model, using several timesteps ∆t.

For Markov-1, we also plot the diapycnal diffusivity that is theoretically imposed through our

choice of η. The Markov-1 model has a much smaller spurious dianeutral flux for each timestep.

Using the small-slope approximation for Markov-0 leads to negligible differences in the spurious

diapycnal diffusivity.

Figure 1 shows that the spurious dianeutral diffusivity after 90 days of integration425

is much smaller for Markov-1 than for Markov-0. Recall that both use the same Euler-426

Maruyama discretization scheme (21). The difference in dianeutral diffusivity is due to427

the fact that the expected turbulent displacement for a single timestep in Markov-1 is428

E(||u′||∆t) = ν∆t (see (7)), while that in Markov-0 is E(V·dW) =
√
2κ∆t, (see (2))429

where E denotes the expected value and || · || the vector norm. The turbulent excur-430

sion of Markov-1 in one timestep is therefore much smaller than that of Markov-0 over431

the range of ∆t investigated here, and thus Markov-1 introduces less dianeutral move-432

ment as the neutral surfaces curve. Also note that over this range of ∆t and with our433

choice of κ, ε and η, as dt increases, the diapycnal diffusivity diverges from the theoret-434

ical diapycnal diffusivity imposed through η. This divergence is caused by numerical er-435

rors, meaning these start dominating for the larger values in our range of dt. We con-436

clude that Markov-1 generally performs significantly better in keeping particles on ide-437

alized neutral surfaces. Note that the spurious diapycnal diffusivity depends on the slopes438

of the idealized neutral surfaces, determined by Ax, Ay, kx, and ky (Shah et al., 2011).439

Several studies propose the use of higher order numerical schemes to reduce the spu-440

rious dianeutral flux resulting from numerical integration (Shah et al., 2011; Gräwe, 2011;441

Gräwe et al., 2012) or the use of adaptive time-stepping methods (Shah et al., 2013). While442

higher order schemes, such as the first order Milstein scheme (see Kloeden & Platen, 1999),443

indeed perform better in the idealized configuration, we find that this improvement is444

negligible when applied to discrete ocean model data using commonly used spatial and445

temporal output resolutions (see section 4.1), and a Lagrangian timestep of 40 minutes,446

indicating that the error introduced by interpolating Eulerian data dominates that of447

the numerical method.448
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3.4 Well-mixedness449

The equations for the Markov-1 model, including the drift-correction term (9), are450

rigorously derived in Berloff and McWilliams (2002). However, since we create an ad-451

hoc adaption of this model for use in three-dimensional isoneutral situations, it is im-452

portant that we verify whether we did not inadvertently violate the well-mixed condi-453

tion. Rather than rigorously proving the WMC, we take a pragmatic approach here and454

visually inspect particle distributions to see if we can find spurious accumulation. We455

choose pragmatism over rigor of proof, because in applications with discrete Eulerian ocean456

model output, Lagrangian simulations with Markov-0 and Markov-1 are both affected457

by numerical errors due to discretization and interpolation. These numerical aspects will458

violate the WMC in any case, hence a pragmatic visual verification of the WMC satis-459

fies our needs.460

Figure 2. a) 204,800 particles on an idealized neutral surface, initialized in a regular xy-grid.

b) the same particles after 90 days of integration with the Markov-1 model, with TL = 20 days

and ν2 = 5.79× 10−4 m2 s−2. Particles remain close to the neutral surface they were released on.

We do not observe any distinct zones in which particles accumulate.

To visually inspect any spurious particle accumulation, which would indicate a WMC-461

violation, we integrate 204,800 particles with the Markov-0 and Markov-1 models for 90462

days and investigate particle distributions. Figure 2 shows the initial and final particle463

distributions on our idealized neutral surfaces for Markov-1. We again set TL = 20 days464

and ν2 = κ/TL ≈ 5.79×10−4 m2 s−2, so that the effective diffusivity after 90 days (in465

the diffusive limit) is approximately κ ≈ 1 × 103 m2 s−1. Figure S3 in the supporting466

information shows the initial and final particle concentrations in the xy-plane, obtained467

by binning particles and dividing by the area of curved neutral surface per bin. We do468

not observe any distinct zones in which particles accumulate. Since the input to the Markov-469

1 model in this test case solely consists of the σ and θ tensors, whose elements in turn470

depend on the slopes of the neutral surfaces, any spurious accumulation should mani-471

fest itself at specific slope levels. Since we do not observe this, this indicates that in this472

stationarity situation without background flow the WMC is not violated by our ad-hoc473

isoneutral formulation of Markov-1.474

4 Dispersion in an Antarctic Circumpolar Current Channel Model475

We also compare the Markov-0 and Markov-1 models through Lagrangian simu-476

lations using the output of an ocean model. We use two types of Eulerian model fields477

at a 50 km horizontal spacing: one is the output of an ocean model run at this coarse478

resolution, and the other is a coarsened output of a fine-resolution 5 km model. The fine-479

resolution data serves as an eddy-resolving reference case. While the coarse-resolution480

data is most representative of the coarse models for which Lagrangian subgrid-scale mod-481
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els are useful, the coarsened data allows for easier comparison to the fine-resolution ref-482

erence case.483

First, we look at how well Markov-1 reproduces the specified Lagrangian integral484

timescale and effective diffusivity in the diffusive limit. Then, we qualitatively compare485

particle trajectories produced by Markov-0 and Markov-1 with those produced by ad-486

vection only. We also compare the spread of a patch of Lagrangian particles, in analogy487

to a tracer patch experiment. Finally, we estimate the spurious dianeutral diffusivities488

introduced by the different models.489

In each experiment, we use single values for the isoneutral Lagrangian integral time490

and isoneutral velocity variance. This means that we assume a homogeneous and sta-491

tionary situation without boundary effects. The stationarity assumption is valid for the492

coarsened and coarse fields, but the other assumptions are not. To deal with inhomo-493

geneity, we could use space-dependent and anisotropic tensors for σ and θ, but since fu-494

ture applications are likely to use constant parameters, we choose the pragmatic route495

and do so as well.496

Since we use Eulerian data with boundaries, we need to consider boundary con-497

ditions. In a two-dimensional stationary and homogeneous setting, perfect reflection sat-498

isfies the WMC (Wilson & Flesch, 1993). Although neutral surfaces in the Southern Ocean499

can outcrop at the surface (Marshall & Speer, 2012), we use the assumption that neu-500

tral slopes at the lateral boundaries are near-flat, and adopt perfect reflection as our choice501

as well. The isoneutral slopes in certain areas of the model data may be unrealistically502

large due to spurious effects, so we use a tapering scheme based on that of Danabasoglu503

and McWilliams (1995) to lower or turn off turbulent displacements in such regions. De-504

tails of the tapering mechanism are found in supporting information Text S1.505

4.1 Eulerian model description506

We use a simplified model of the Antarctic Circumpolar Current run in MITgcm507

(Marshall et al., 1997; Campin et al., 2020), similar to the channel model used by Abernathey508

et al. (2011) and Balwada et al. (2018). We use an adaptation that is extensively described509

in MITgcm’s documentation, also available at: https://mitgcm.readthedocs.io/en/510

latest/examples/reentrant channel/reentrant channel.html. It consists of a zon-511

ally re-entrant channel that is 1000 km long in the zonal (x) direction, 2000 km wide in512

the meridional (y) direction, and 3980m deep. The model consists of 49 vertical levels513

that range from 5.5m depth at the surface to 149m at depth. It is forced by a constant514

sinusoidal wind stress and a temperature relaxation at the surface and northern bound-515

ary. The equation of state is set linearly dependent to potential temperature only, caus-516

ing the neutral surfaces to coincide with surfaces of constant potential temperature. This517

allows us to compute neutral slopes using (4). To break zonal symmetry, a meridional,518

Gaussian-shaped ridge is placed in the center of the domain, going up to 2382.3m m depth.519

The ridge has a small opening in the center, causing a strong barotropic jet to develop.520

The model is spun up for 100 years and run at two horizontal resolutions: once at521

5 km resolution (fine-resolution), at which the mesoscale eddies are resolved, and once522

at 50 km resolution (coarse-resolution) where eddies cannot develop. Daily averages of523

the output data are used for the Lagrangian simulations. The coarse-resolution flow is524

in steady-state, exhibiting no temporal variability. We also create a coarsening of the525

fine-resolution model in space and time, by taking a yearly time-average of the flow and526

spatially averaging velocities and temperature fields over 50 kilometers. These coarsened527

fields thus include the effect of eddies on the mean flow. Snapshots and means of the vor-528

ticity and speed fields in the fine, coarsened and coarse runs are found in Figure S1. The529

derivatives of the density field, used for computing the neutral slopes, are computed by530

means of grid-aware central differences using the XGCM package (Abernathey et al., 2021).531
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4.2 Parameter estimation532

To use the two Markov models in our experiments, we need to identify κ for Markov-533

0 (except when using the LS parameterization) and TL and ν2 for Markov-1. We can es-534

timate globally representative values from Lagrangian quantities of the fine-resolution535

flow field. To do so, we first compute Lagrangian particle trajectories with the fine-resolution536

model output. We initialize 64,860 Lagrangian particles released regularly spaced apart537

20 km in the horizontal and 200m in the vertical, with −200m ≥ z ≥ −1600m in or-538

der to stay away from the mixed layer and the ridge. We then integrate the trajectories539

using a 4th order Runge-Kutta scheme, with a timestep ∆t = 40 minutes for 180 days.540
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Figure 3. Lagrangian autocorrelations in the fine-resolution model, including an exponentially

decaying and oscillatory function (26) with TL = 20 days and Ω = 75 days.

The Lagrangian integral time is related to the Lagrangian autocorrelation (11). Fig-541

ure 3 shows the Lagrangian autocorrelation estimated from particle trajectories in the542

fine-resolution model. We can clearly see the oscillatory and exponentially decaying be-543

havior of the horizontal autocorrelations. Similar to Sallée et al. (2008), we approximate544

the Lagrangian autocorrelation to be decomposable as545

R(τ) = cos(2πΩ) e−τ/TL , (26)

where Ω is the frequency of the oscillation. While the parameters TL and Ω can be es-546

timated using a least-square fit, we are only interested in approximate values for the pa-547

rameters. A choice of Ω = 1/75 per day and TL = 20 days approximates the auto-548

correlation functions well enough for our purposes. Bear in mind, though, that we only549

continue with TL, as Markov-1 cannot reproduce the oscillatory behavior of particle dis-550

persion in the ocean.551

Having fixed TL, we only need to estimate κ, since this will readily give us an av-552

erage value of ν2 that reproduces the correct diffusivity in the dispersive regime through553

(14) (Koszalka et al., 2013). The absolute diffusivity tensor (LaCasce, 2008) is found by554

integrating the Lagrangian autocovariance:555

Kij(x, τ) =

∫ τ

0

⟨u′
i(t0|x, t0)u′

j(t0 + τ̃ |x, t0)⟩dτ̃ . (27)

To find the isoneutral diffusivities, i and j should coincide with the principal directions556

of the neutral plane at each location. However, since the isoneutral slope in our model557
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is small (generally of order 10−3), we will estimate the isoneutral diffusivity from Kxx558

and Kyy.559
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Figure 4. Absolute diffusivities Kxx, Kyy, and Kzz, in the fine-resolution model, computed

through (27).

Figure 4 shows the horizontal and vertical absolute diffusivities over time. The ab-560

solute diffusivity corresponding to the diffusive limit, in which Markov-0 is valid, is found561

at τ ≫ TL, for which the diffusivity should take on a near-constant value. Theoreti-562

cally, it is found by integrating (27) to infinity, but in practice, it can be found by in-563

tegrating past the negative and positive lobes associated with the oscillatory component564

of the Lagrangian autocorrelation, when the diffusivity becomes near-constant (Klocker,565

Ferrari, Lacasce, & Merrifield, 2012; Griesel et al., 2014). From Figure 4, we estimate566

the isoneutral diffusivity to be similar to the horizontal absolute diffusivity, with a value567

of κ = 1.5× 104 m2 s−1.568

4.3 Lagrangian integral time and diffusivity from the Markov-1 model569

Now we initialize particles in the same lattice as used in section 4.2 and apply the570

Markov-1 parameterization. We simulate trajectories by integrating the stochastic dif-571

ferential equations (7) using the Euler-Maruyama scheme (21) for 180 days, with ∆t =572

40 minutes. We set TL = 20 days, and specify ν2 = 8.68×10−3 m2 s−2 in order to ob-573

tain an effective diffusivity of 1.5×104 m2 s−1 in the diffusive limit. We also set η and574

ε in such a way that the effective dianeutral diffusivity in the limit t ≫ TL is 1×10−5 m2 s−1.575

These settings are used in the remainder of this study. Derivatives of Eulerian quanti-576

ties that are necessary for computing the tensor elements of σ and θ (and later K) are577

computed with central differences and successively interpolated linearly in space. Our578

aim is to see how well the model reproduces the diffusivity and Lagrangian timescale that579

we specified, to verify our ad-hoc dianeutral formulation of Markov-1.580

Figure 5 shows the Lagrangian autocorrelation and absolute diffusivity of parti-581

cles simulated using the Markov-1 subgrid-scale model using the coarsened field, sim-582

ilar to Figures 3 and 4. Figure S2 provides a similar diagram for the coarse field. The583

exponential decay with an e-folding timescale of 20 days can be clearly seen in the au-584

tocorrelation. There is a clear absence of the oscillatory component, which Markov-1 is585

unable to simulate.586

The absolute diffusivity of 1.5×104 m2 s−1 is not fully reproduced. In the x-direction,587

values reach up to approximately 1.4×104 m2 s−1, but in the y-direction, they are much588

smaller, with a maximum of 1.0×104 m2 s−1 and a decrease at larger time lags. There589

are two reasons why values do not reach 1.5 × 104 m2 s−1. First, in regions where the590
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Figure 5. Lagrangian autocorrelation and absolute diffusivity produced by the Markov-1

model when applied on the coarsened field. The Lagrangian autocorrelation in the x-direction

best resembles that of an exponentially decaying function with a 20-day e-folding timescale (in

red for reference).

slope is unrealistically high, for example in the direct vicinity of the meridional ridge,591

turbulent velocities are tapered to zero (see supporting information Text S1), which de-592

creases the absolute diffusivity computed from the particle ensemble. Second, the lat-593

eral domain boundaries limit the dispersion of material and therefore also cause a de-594

crease in diffusivity, as Dyy cannot grow linearly over long timescales. While the effect595

of tapering likely plays a role for both Kxx and Kyy, only Kyy is affected by boundaries,596

which causes it to decrease over time. We clearly see that Rzz has a much shorter e-folding597

time than 20 days. This is likely due to the effect of curvature in the neutral surfaces,598

and the rapid decorrelation we impose in the dianeutral directions (18).599

4.4 Individual trajectories600

Figure 6. 100 randomly subsampled trajectories from 180 days of simulation on (a) fine-

resolution and (b) coarsened fields, and using coarsened fields in combination with (c) the dif-

fusive parameterization and (d) Markov-1. While the domain is periodic, here we tile it in the

zonal direction, to separate particles crossing the zonal periodic boundaries. The -3900m isobath

is plotted with dashed grey lines, indicating the location of the ridge in the periodic channel.
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A typical aim of Lagrangian subgrid-scale dispersion models is to construct real-601

istic synthetic particle pathways in the absence of turbulent eddies. It is therefore illus-602

trative to plot particle trajectories generated by advection using the three model fields603

(fine, coarsened and coarse) and compare those with trajectories generated by Markov-604

0 and Markov-1. To do so, we randomly subsample 100 trajectories that were initialized605

on the same lattice as used in section 4.2. We again use the Runge-Kutta 4 scheme for606

advection and Euler-Maruyama for the Markov models, a timestep ∆t = 40 minutes,607

and a simulation time of 180 days. Like in the previous section, we tuned Markov-1 to608

produce a diapycnal diffusivity of 1×10−5 ms−2, and now we do the same for Markov-609

0 by setting ϵκ accordingly. These parameters will also be used for the remainder of this610

paper. To more easily identify re-entering trajectories, we record when particles cross611

the periodic boundary, so that we can plot particle trajectories as unbroken paths by re-612

peating the periodic domain in the zonal direction.613

Figure 7. Same as Figure 6, but using coarse-resolution fields.

Figure 6 considers 100 trajectories from Markov-0 and Markov-1 in the coarsened614

case, compared to advection using fine-resolution and coarsened fields, which serve as615

reference. These trajectories are released at different horizontal and vertical locations,616

subsampled from the lattice used in the previous two sections. From the trajectories in617

Markov-0 we clearly see that there is no autocorrelation in the particle velocities, with618

the directions in which a particle moves rapidly changing between recorded timesteps.619

Particles simulated with Markov-0 also travel much more, as the turbulent displacement620

in this model is much larger than that of Markov-1 (see the discussion in section 3.3).621

Markov-1 clearly does a better job at simulating the trajectories from the fine-resolution622

reference run. A major difference is that trajectories in the fine run exhibit looping mo-623

tions. While the trajectories in Markov-1 veer over time, it is unable to produce the loop-624
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ing motions that are seen in the fine-resolution run (Veneziani et al., 2005). Bear in mind625

that in the stochastic perturbations between different particles advected by Markov-0626

and Markov-1 are uncorrelated. Instead, each particle ‘feels’ its own turbulent field.627

Figure 7 considers the coarse-resolution case. In this case, the underlying flow field628

has no eddies. When comparing trajectories produced by the Markov models, we thus629

have no eddying reference case. In the advection-only case, the absence of strong dis-630

persion is clear. One major difference with the results from the coarsened case is the ab-631

sence of any stationary meanders. Trajectories produced by Markov-1 again seem the632

most realistic when compared to Figure 6a, albeit less obviously than was the case for633

6d.634

4.5 Tracer spread635

In analogy to studying the spread of a small patch of tracer (Wagner et al., 2019),636

we qualitatively compare the spread of a patch of Lagrangian particles advected in the637

fine-resolution, coarsened, and coarse-resolution fields and apply the Markov-0 and Markov-638

1 subgrid-scale models to the later two flows. For Markov-0, we use the isotropic isoneu-639

tral diffusion tensor KRedi,approx (5) and the LS parameterization KLS (6). For the LS640

parameterization, we set C = 1.641

We initialize a patch of particles initially located at z = −736m (corresponding642

to the 25th vertical level) in a radius of 50 km centered around (x = 250 km, y = 1000 km),643

see Figure 8a.644

Figure 8 shows the particle distributions after 180 days of simulation, using advec-645

tion and the different subgrid-scale models on the coarsened flow data. Again, we repeat646

the domain in the zonal direction, so that we can distinguish particles that have crossed647

the periodic boundary. Figure 8c shows the obvious need for modeling subgrid-scale dis-648

persion when turbulent flow features are filtered out.649

Figures 8d, e, and f show similar patterns when compared to one another, albeit650

with the dispersion in the LS case being somewhat weaker, and particles in the Markov-651

0 case reaching deeper than the others. Note that the diffusivity in the LS parameter-652

ization is solely determined by derivatives of the flow fields. The pattern in 8e is qual-653

itatively similar to 8b, which bears testimony to the skill of the LS parameterization. Since654

the particles in the parameterizations each experience their own independent turbulent655

fields, coherent structures and filamentation as seen in 8b cannot be reproduced by the656

Markov models.657

In both Markov-0 models and in the Markov-1 model, we see some spurious par-658

ticle accumulation on the left side of the ridges (at x = 500 km + n ∗ 1000 km, with659

n = 0, 1, 2, . . . ). In the LS case, these accumulation patterns (or patterns where par-660

ticles are fully absent) occur at other places too. In all cases this is likely due to sharp661

changes in the discrete derivatives used for computing the slopes that are necessary for662

filling the elements of K, σ, and θ. The LS parameterization relies on discrete deriva-663

tives of more quantities for computing its tensor elements, since these also depend on664

the shear of the flow (see (6)). It is therefore more susceptible to violations of the WMC665

when these discrete derivatives change strongly in space and interpolation is used.666

Figure 9 shows the spreading of Lagrangian particles in the coarse model. Again,667

the isotropic Markov-0 model and Markov-1 show a similar spread of particles, with par-668

ticles in Markov-0 again reaching slightly larger depths. However, the LS parameteri-669

zation this time produces very different results, with the dispersion being much more lim-670

ited, and the particles being more concentrated. This means that in this case the shear-671

based parameterization leads to much smaller diffusivities in KLS. This makes sense, as672

the fine-resolution flow field (and thus the coarsened flow) is full of baroclinic instabil-673
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Figure 8. (a) Initial particle positions at z = −736m, (b)-(f) show particle locations and

depths after 180 days of simulation with ∆t = 40 minutes. (b) & (c) show particles advected

with the fine-resolution and coarsened model fields, while (d)-(f) use the diffusion/Markov-0 and

Markov-1 models. Particles that fall within the mixed layer are not shown (see supporting infor-

mation Text S2)

.

ities that lead to eddies with large shear. The resolution in the coarse model is too low674

for these instabilities to develop. Instead, the flow tends to a much smoother steady-state,675

with less shear. As this yields smoother derivatives in the temperature field (and in the676

velocity fields in the case of LS), this should lead to less spurious accumulation. Indeed677

we see no clear regions where particles accumulate.678

4.6 Spurious dianeutral diffusivity679

Two possible causes of spurious dianeutral tracer fluxes are numerical integration680

and interpolation of discrete, time-evolving Eulerian flow fields. The spurious dianeu-681

tral flux can be expressed as a diffusivity, and this diffusivity should be as small as pos-682

sible compared to the vertical diffusivity that is specified to represent dianeutral processes.683

For example, in the Southern Ocean, the average diapycnal diffusivity at 1500m depth684

is estimated to be 1.3±0.2×10−5 m2 s−1 (Ledwell et al., 2011). It is important to as-685

sess how large the dianeutral diffusivities in our Lagrangian simulations become, and how686

they compare to the dianeutral diffusivity that we specify. In this section, we will assess687

these spurious dianeutral diffusivities. In these experiments, we specified an explicit di-688

aneutral diffusivity of 1×10−5 m2 s−1. Moreover, in the case of the Markov models, we689
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Figure 9. Like 8, with (a) advection in coarse-resolution model, (b)-(d) using the different

subgrid-scale models.

test several values of (effective) isoneutral diffusivities, keeping TL = 20 days in the case690

of Markov-1. For Markov-0 combined with the LS parameterization, we choose differ-691

ent tuning parameters C at O(1), which affect the strength of the diffusivity.692

We compute the effective dianeutral diffusivity in the case of pure advection us-693

ing the fine-resolution, coarsened, and coarse-resolution fields, and using the Markov-694

0 and Markov-1 model. This dianeutral diffusivity is approximated as follows: for each695

particle, we record its initial local water density. Then, after simulating the particle’s696

movement for 180 days, at the particle’s new horizontal location, we compute the depth697

ziso of the neutral surface corresponding to the original local water density. Comparing698

this depth with the particle’s new depth, we can compute a spurious vertical diffusiv-699

ity (similar to (25)). This again assumes that the dianeutral diffusivity is closely aligned700

with the vertical direction. We separate the results for three depth classes on which par-701

ticles were released. Particle trajectories that at any point reach depths of −50m or higher702

are excluded in these computations, in order to filter out effects related to particles en-703

tering the mixed layer (see supporting information Text S2).704

The results are found in Table 1 for the coarsened flow and in Table 2 for the coarse-705

resolution flow. In all cases, the effective dianeutral diffusivities are larger than the value706

of 1 × 10−5 m2 s−1 that we explicitly set, meaning that the spurious dianeutral diffu-707

sivities due to errors in interpolation and the numerical schemes dominate. This is al-708

ready the case for simulations that only use advection. We found that halving the timestep709

does not make a difference here, indicating that the error in the case of advection is likely710

not due to the time discretization. In the case of advection using fine-resolution data,711

the distance that a particle covers over the course of one flow snapshot, compared to the712

length of a grid cell, is relatively larger than in the case of coarse-resolution data, where713

it takes longer to traverse the larger cells. The dianeutral error can then be reduced by714

using more frequent snapshots of the data (e.g. 6-hourly snapshots instead of daily), such715

that temporal interpolation occurs over a smaller time window (Qin et al., 2014). This716

could however come at a large expense in storage, memory and I/O. Here, we are solely717

interested in comparing the errors between different Lagrangian simulations, so we ac-718

cept that the dianeutral diffusivities are larger than specified. In the coarsened and coarse-719
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Table 1. Effective dianeutral diffusivity (in m2 s−1) for different depth classes with param-

eterizations applied on the coarsened flow field, after numerical integration for 180 days, with

∆t=40 minutes. The color scale indicates the logarithm of the relative dianeutral diffusivity,

when divided by the dianeutral diffusivity in the coarsened case per depth class as reference.

This indicates the orders of magnitude that the dianeutral diffusivity differs from that in the sim-

ulations with only advection using coarsened fields. Of the parameterizations, Markov-1 has the

smallest dianeutral diffusivity, in some cases even smaller than in the simulation with advection

only.

All depths -200  z > -600 -600  z > -1200 -1200  z  -1600

Fine advection

Coarsened advection

Markov-0, =1500

Markov-0, =5000

Markov-0, =15000

Markov-0 + LS, C=0.3

Markov-0 + LS, C=1

Markov-0 + LS, C=3

Markov-1, =1500

Markov-1, =5000

Markov-1, =15000

4.2E-04 1.1E-03 2.1E-04 1.9E-04

3.8E-04 9.3E-04 1.9E-04 1.7E-04

9.2E-04 1.5E-03 6.4E-04 9.1E-04

3.1E-03 2.1E-03 2.5E-03 4.2E-03

1.4E-02 5.0E-03 1.2E-02 1.8E-02

8.6E-04 1.8E-03 5.8E-04 6.0E-04

1.6E-03 2.6E-03 1.2E-03 1.5E-03

5.0E-03 5.3E-03 3.9E-03 6.2E-03

6.2E-04 1.3E-03 4.5E-04 4.0E-04

5.6E-04 9.2E-04 5.6E-04 3.6E-04

2.1E-04 3.7E-04 2.0E-04 1.5E-04
0.5

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g 1

0(
 d

ia
ne

ut
ra

l d
iff

us
iv

ity
 re

la
tiv

e 
to

 c
oa

rs
en

ed
 a

dv
ec

tio
n 

)

resolution fields, we use steady-state flows, meaning that the errors are due to spatial720

interpolation of coarse data, with time-interpolation playing no role.721

Both Tables 1 and 2 show that for each experiment Markov-0 produces a much larger722

spurious dianeutral diffusivity than Markov-1. This corroborates the findings of section723

3.3. A likely explanation is that the isoneutral turbulent displacement in each of the mod-724

els becomes somewhat dianeutral as discrete neutral surfaces ‘curve’, while the displace-725

ments in Markov-1 are much smaller than is the case for Markov-0. In the case of Markov-726

0, we see the error increasing as the diffusivity increases. This pattern cannot be seen727

for Markov-1, where in some cases, the error decreases with increasing effective diffusiv-728

ity. Unfortunately, we do not have an explanation for this pattern.729

Since the dianeutral diffusivity in the case of Markov-0 can become several orders730

of magnitude larger than is the case for only advection, future studies should be care-731

ful with applying this subgrid-scale dispersion parameterization. Here we implemented732

the Euler-Maruyama scheme. Higher-order schemes, such as the first order Milstein scheme,733

are able to greatly reduce the dianeutral error in idealized situations (Shah et al., 2011;734

Gräwe, 2011; Shah et al., 2013). However, we found that the Milstein-1 scheme produces735

similar dianeutral errors to Euler-Maruyama when applied on our coarsened and coarse-736

resolution flows, further indicating that the cause of the error lies in interpolation com-737

bined with large turbulent displacements.738

5 Conclusion739

We achieved two main goals: formulating an isoneutral description of the Markov-740

1 model, and extending an anisotropic tracer diffusion parameterization to the random741
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Table 2. Same as Table 1, but using coarse-resolution flow fields. Again, Markov-1 has the

lowest dianeutral diffusivity of the three parameterizations.

All depths -200  z > -600 -600  z > -1200 -1200  z  -1600

Coarse advection

Markov-0, =1500

Markov-0, =5000

Markov-0, =15000

Markov-0 + LS, C=0.3

Markov-0 + LS, C=1

Markov-0 + LS, C=3

Markov-1, =1500

Markov-1, =5000

Markov-1, =15000

2.6E-05 1.5E-05 2.4E-05 3.7E-05

6.3E-04 1.9E-03 2.5E-04 1.8E-04

1.8E-03 5.8E-03 7.4E-04 3.9E-04

3.8E-03 8.6E-03 2.5E-03 2.6E-03

3.6E-04 6.1E-04 2.4E-04 3.2E-04

5.2E-04 8.4E-04 4.0E-04 4.2E-04

1.1E-03 2.1E-03 8.8E-04 7.7E-04

2.6E-04 5.7E-04 1.3E-04 1.9E-04

3.2E-04 9.4E-04 1.1E-04 1.3E-04

1.0E-04 3.9E-04 1.5E-05 2.0E-05
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walk dispersion/Markov-0 model. With these goals, we aim to improve the parameter-742

ization of unresolved isoneutral turbulent motions due to eddies in Lagrangian studies.743

Because of the inclusion of a velocity autocorrelation, the Markov-1 model is able744

to produce both the ballistic and diffusive dispersion regime, and it produces particle tra-745

jectories and dispersion patterns that are more realistic than those produced by Markov-746

0. Our formulation of Markov-1, inspired by Redi’s diffusion tensor, also has a much smaller747

spurious dianeutral flux than Markov-0, due to the smaller turbulent displacement in each748

timestep. Large turbulent displacements in the isoneutral direction in the presence of749

curvature in the neutral surfaces lead to dianeutral excursions. Therefore, our three-dimensional750

isoneutral formulation of Markov-1 will hopefully be useful to the Lagrangian commu-751

nity, with the many benefits of higher order stochastic models beyond Markov-1 given752

by previous studies (Griffa, 1996; Berloff & McWilliams, 2002; Veneziani et al., 2004).753

We also believe that the isoneutral formulation of the parameter tensors (16) and (17)754

is extendable to the parameter tensors of the higher order stochastic models beyond Markov-755

1, as well as other improvements to this model, like the inclusion of looping motions.756

Further research into the isoneutral formulation of Markov-1, as well higher order757

stochastic models, may focus on better retaining the velocity autocorrelation on curved758

surfaces, which remains a complex issue (Gaspari & Cohn, 1999). Next to that, it may759

also further investigate boundary conditions further, as well as how Lagrangian parti-760

cle models can transition from isoneutral dispersion in the ocean interior to horizontal761

and vertical mixing in the mixed layer, which has been left out of this study (see sup-762

porting information S2). Moreover, future studies employing isoneutral dispersion mod-763

els may benefit from improved computation of neutral surface slopes (Groeskamp et al.,764

2019).765

We hope that future Lagrangian studies using coarse fields, such as the output of766

coupled Earth system models, may also benefit from the LS parameterization, as well767

as other Eulerian anisotropic parameterizations based on closure. This may help auto-768

matically determine the strength of the eddy diffusivity in different regions in the do-769

main. When applied to the coarsened flow field, the LS parameterization was able to pro-770

duce particle distributions similar to the isotropic Markov models, meaning that LS may771

obviate the need for explicit parameter estimation in Markov-0. Our discussion of the772

LS parameterization may inspire further investigation into the application of closure schemes773
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in Lagrangian simulations. Similarly, such closures could be further studied for the Markov-774

1 model, although so far Berloff and McWilliams (2003) tested a related closure based775

on shear with negative results.776

Data and Software Availability Statement777

Lagrangian datasets (CC-BY) and data generation and analysis scripts (MIT li-778

cense) for this research are available at https://doi.org/10.24416/UU01-RXA2PB. This779

includes MITgcm model generation scripts and documentation, data post-processing scripts,780
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Gräwe, U., Deleersnijder, E., Shah, S. H. A. M., & Heemink, A. W. (2012). Why the848

Euler scheme in particle tracking is not enough: The shallow-sea pycnocline849

test case. Ocean Dynamics, 62 (4), 501–514. doi: 10.1007/s10236-012-0523-y850

Griesel, A., Gille, S. T., Sprintall, J., McClean, J. L., LaCasce, J. H., & Maltrud,851

M. E. (2010). Isopycnal diffusivities in the Antarctic Circumpolar Current852

inferred from Lagrangian floats in an eddying model. Journal of Geophysical853

Research, 115 (C6), C06006. doi: 10.1029/2009JC005821854

Griesel, A., McClean, J. L., Gille, S. T., Sprintall, J., & Eden, C. (2014). Eule-855

rian and Lagrangian Isopycnal Eddy Diffusivities in the Southern Ocean of856

an Eddying Model. Journal of Physical Oceanography , 44 (2), 644–661. doi:857

10.1175/JPO-D-13-039.1858

Griffa, A. (1996). Applications of stochastic particle models to oceanographic prob-859

lems. In R. J. Adler, P. Müller, & B. L. Rozovskii (Eds.), Stochastic Modelling860

in Physical Oceanography (pp. 113–140). Boston, MA: Birkhäuser Boston. doi:861
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Text S1. Tapering scheme

We use central differences to compute the neutral slopes Sx and Sy (see equation (4))

in the discrete Eulerian model data in the experiments in Section 4. Incidentally, the

computed neutral slopes can be unrealistically high, for example in the vicinity of the

meridional ridge or in the mixed layer (see Text S2). The buoyancy in the mixed layer

is mostly uniform, but if we compute neutral slopes in this region, small deviations in

the local buoyancy field can lead to huge slopes. It is common practice in Eulerian ocean

modeling to limit or turn off isopycnal/isoneutral diffusion in regions with high slopes, in

order to prevent numerical instability. This practice is called ‘tapering’.
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Here we use a tapering scheme similar to that of Danabasoglu and McWilliams (1995)

to smoothly decrease the values of the Markov-0 diffusivity tensors Kredi,approx and KLS to

zero in regions with high slopes. Similarly, for Markov-1, we use it to smoothly decrease

the perturbative velocity u′ to zero in such regions. At each timestep, we respectively

multiply Kredi,approx, KLS, or u
′ by a taper function ftaper which assumes values between

1 in regions where the isoneutral slopes are well-behaved and 0 in regions where it is

unrealistically high. Danabasoglu and McWilliams (1995) choose a taper function

ftaper,DMW(S) =
1

2

(
1 + tanh

[
Sc − |S|

Sd

])
, (1)

where Sc is the slope at which ftaper = 0.5 and Sd an acting distance over which ftaper

changes steeply. If we were to multiply the perturbative velocity u′ in the Markov-1 model

(7) with such a function, this causes an exponential decay of the u′ with an e-folding

timescale of ∆t/ log(f(s)). This can significantly shorten the effective decorrelation of u′

as set by TL. For example, in a simulation with TL = 20 days and dt = 40 minutes, if

f(S) persistently equals 0.999, this causes u′ to exponentially decay with a timescale of

28 days. In conjunction with the exponential decorrelation specified using TL, this leads

to an effective decorrelation with an e-folding timescale of 12 days. This is why we limit

the slope values over which tapering happens smoothly to values that differ from Sc by

at most 3Sd. We thus use the following taper function

ftaper(S) =


1 |S| < Sc − 3Sd

1
2

(
1 + tanh

[
Sc−|S|

Sd

])
Sc − 3Sd ≤ |S| ≤ Sc + 3Sd

0 Sc + 3Sd < |S|
(2)

Note that ftaper(Sc − 3Sd) ≈ 0.998 and ftaper(Sc + 3Sd) ≈ 0.002. In our simulations in

section 4, we choose Sc = 8× 10−3 and Sd = 5× 10−4. With these values, tapering occurs

only in a fraction of the domain, namely near the meridional ridge and in the mixed layer.
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Text S2. Treatment of the mixed layer

By definition, potential temperature is approximately homogeneous in the mixed layer.

As neutral surfaces appeal to the notion of a strong stratification which inhibits motion in

the dianeutral direction, the concept of neutral surfaces does not apply in the mixed layer.

That is why the experiments in this study focus on the ocean interior. In the experiments

in section 4, particles are released well below the mixed layer. Still, since neutral surfaces

in the Southern Ocean can outcrop to the surface (Marshall & Speer, 2012), particles in

our model may be transported to the surface. In Figures 8 and 9, we exclude particles

that fall within the mixed layer. Similarly, in the computation of the spurious dianeutral

diffusivities in section 4.6, we exclude particle trajectories that at any point reach depths

of −50m. The actual mixed-layer, marked by a sharp gradient in potential temperature,

lies less deep, but since it varies in space, we use −50m as a global approximation for

computational efficiency.
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Figure S1. Snapshot of the vorticity (a-c) and speed (d-f) of the fine (a & d), coarsened (b

& e), and coarse (c & f) model fields used in this study. The fine fields are daily averages, the

coarsened fields are 1-year time averages and 50 kilometer spatial averages, and the coarse model

is in steady state. Dashed lines indicate the position of the meridional ridge.
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Figure S2. Lagrangian autocorrelation and absolute diffusivity produced by the Markov-1

model when applied on the coarse field (cf. Figure 5). The Lagrangian autocorrelation in the

x-direction best resembles that of an exponentially decaying function with a 20-day e-folding

timescale (in red for reference).

December 23, 2021, 3:33pm



X - 6 :

0 250 500 750 1000
x [km]

0

250

500

750

1000

y 
[k

m
]

A
Initial particle concentration

0 250 500 750 1000
x [km]

B
After 90 days of integration

1.8

1.9

2.0

2.1

2.2

2.3

Pa
rti

cle
s p

er
 m

2

1e 7

Figure S3. Concentrations of 204,800 particles before (a) and (b) after 90 days of integration

using the Markov-1 model, using TL = 20 days and ν2 = 5.79× 10−4m2 s−2. We take advantage

of the periodicity of the domain and analyze all particles over one wavelength 1/kx = 1/ky =

1000 km by displacing them as x = x mod 1/kx, y = y mod 1/ky. The concentrations are

computed by binning particles and dividing by the total area of curved surface per bin. Particles

start out evenly spaced. From (a) it can be seen that the curvature causes only negligible

differences in initial concentrations. After 90 days of integration (b), concentrations are much

less homogeneous than they were initially, but there are no clear accumulation patterns coinciding

with specific features of the idealized neutral surface. If that were the case, it would indicate

that the well-mixed condition is violated.
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