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Abstract

On-site earthquake early warning techniques, which issue alerts based on seismic waves measured at a single station, are promis-

ing, and have performed quite successfully during some damaging earthquakes. Conventionally, most existing techniques extract

several P-wave features from the first few seconds of seismic waves after the trigger to predict the intensity or destructiveness

of an incoming earthquake. This type of technique neglects the behavior of temporal varying features within P waves. In

other words, the characteristics of data sequences are not considered. In this study, a long short-term memory (LSTM) neural

network, which was capable of learning order dependence in seismic waves, was employed to predict the PGA of the coming

earthquake. A dense LSTM architecture was proposed and a large data set of earthquakes was used to train the LSTM model.

The general performance of the LSTM model indicated that the predicted PGA values were quite promising but were generally

overestimated. However, the predicted PGA of the Chi-Chi earthquake data set, whose fault rupture was complex and long,

using the proposed LSTM model was more accurate than the PGA predicted in a previous study using a support vector regres-

sion approach. In addition, an alternative alert criterion, which issues alerts when the predicted PGA exceeds the threshold in

successive time windows, is presented, and the performance of the proposed LSTM model when different PGA thresholds are

considered is also discussed.

1



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

Early Peak Ground Acceleration Prediction for On-Site Earthquake Early Warning 
Using LSTM Neural Network 

T. Y. Hsu1,2 and A. Pratomo1  

1 Department of Civil and Construction Engineering, National Taiwan University of Science and 
Technology, Taiwan. 
2 National Center for Research on Earthquake Engineering, Taiwan. 
Corresponding author: T. Y. Hsu (tyhsu@mail.ntust.edu.tw)  

Key Points: 

 An on-site earthquake early warning technique is proposed to predict PGA using long 
short-term memory neural network. 

 The predicted PGA values were quite promising but were generally overestimated. 

 The predicted PGA of the Chi-Chi earthquake was more accurate than those predicted 
using a support vector regression approach. 
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Abstract 
On-site earthquake early warning techniques, which issue alerts based on seismic waves 
measured at a single station, are promising, and have performed quite successfully during some 
damaging earthquakes. Conventionally, most existing techniques extract several P-wave features 
from the first few seconds of seismic waves after the trigger to predict the intensity or 
destructiveness of an incoming earthquake. This type of technique neglects the behavior of 
temporal varying features within P waves. In other words, the characteristics of data sequences 
are not considered. In this study, a long short-term memory (LSTM) neural network, which was 
capable of learning order dependence in seismic waves, was employed to predict the PGA of the 
coming earthquake. A dense LSTM architecture was proposed and a large data set of 
earthquakes was used to train the LSTM model. The general performance of the LSTM model 
indicated that the predicted PGA values were quite promising but were generally overestimated. 
However, the predicted PGA of the Chi-Chi earthquake data set, whose fault rupture was 
complex and long, using the proposed LSTM model was more accurate than the PGA predicted 
in a previous study using a support vector regression approach. In addition, an alternative alert 
criterion, which issues alerts when the predicted PGA exceeds the threshold in successive time 
windows, is presented, and the performance of the proposed LSTM model when different PGA 
thresholds are considered is also discussed. 

 

 Plain Language Summary 
On-site earthquake early warning techniques have successfully issued alerts during some 
damaging earthquakes. Conventionally, most existing techniques draw out features from the first 
few seconds of seismic waves after the trigger to predict the intensity or destructiveness of an 
incoming earthquake. This type of technique neglects the behavior of temporal varying features 
within seismic waves. In this study, a long short-term memory (LSTM) neural network, which 
was capable of learning order dependence in seismic waves, was employed to predict the peak 
ground acceleration of the coming earthquake. A dense LSTM architecture was proposed and a 
large data set of earthquakes was used to train the LSTM model. The general performance of the 
LSTM model indicated that the predicted PGA values were quite promising but were generally 
overestimated. However, the predicted PGA of the Chi-Chi earthquake data set, whose fault 
rupture was complex and long, using the proposed LSTM model was more accurate than the 
PGA predicted in a previous study using a support vector regression approach.  

 
 

1 Introduction 
After an earthquake rupture occurs, it is possible for an earthquake early warning (EEW) 

system to send alerts to earn several seconds to tens of seconds of lead time before destructive 
seismic waves strike. Regional EEW techniques estimate the magnitude and location of an 
earthquake based on seismic waves measured at several stations, while on-site EEW techniques 
estimate the earthquake’s intensity or identify destructive earthquakes based on seismic waves 
measured at only a single station. Successful EEW alerts were issued during several large 
earthquakes using both regional (e.g., Fujinawa & Noda 2013; Cuéllar et al. 2014; Yamada et al. 
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2014; Kodera et al., 2016) and on-site techniques (e.g., Hsu et al. 2016; Hsu et al. 2018; Wu et 
al. 2019). On-site techniques could attain a longer lead time at the region close to the epicenter 
during several large earthquakes (e.g., Hsu et al. 2018; Wu et al. 2019). Nowadays, a number of 
EEW systems issue alerts based on hybrid techniques (e.g., Kodera et al. 2018; Kodera et al. 
2019; Hsu et al. 2021). The status of these EEW techniques and systems have been addressed by 
several recent review papers (e.g., Allen & Melgar 2019; Cremen and Galasso 2020; Wald 
2020). 

In order to predict the source characteristics, e.g., magnitude, distance from the epicenter, 
and seismic intensity (peak ground acceleration [PGA] and peak ground velocity [PGV]), of a 
coming earthquake at the stage of initial seismic waves, artificial intelligence techniques have 
recently been employed, especially for on-site EEW. Often, several P-wave features are 
extracted from the initial waveforms after the trigger and inputted into the prediction model 
constructed using artificial intelligence techniques for on-site EEW. For instance, the integration 
of the absolute value of acceleration, velocity, and displacement time histories, which describe 
the envelope of the waveforms in a simplistic way, is used as the input in multilayer feedforward 
neural networks (Bose et al. 2012). Similarly, effective predominant period, cumulative absolute 
velocity, integral of the squared velocity, peak acceleration, peak velocity, and peak 
displacement are used as the input in the prediction model constructed using the support vector 
regression (SVR) technique (Hsu et al. 2013). In this model, only some important P-wave 
features are used, so other important underlying information in the waveforms may be ignored. 
Hsu et al. (2021) attempted to exploit convolutional neural networks to automatically extract 
useful features from previously measured P-wave data without losing too much information in 
the seismic waveforms and successfully predict the PGA of coming earthquakes.  

However, different prediction models are required to be constructed using the above-
mentioned approaches based on artificial intelligence techniques if different time-window 
lengths of P waves are employed after the trigger. For instance, the typical length of these 
approaches is 3 s. In addition, temporal variation within P waves is also neglected in the above-
mentioned approaches, and only lumped information is considered. In other words, the 
characteristics of data sequences are not considered in these approaches.  

Long short-term memory (LSTM) is a class of recurrent neural networks that provides a 
connection between previous inputs and current inputs. The network stores information 
selectively from previous time steps, which then acts as an additional input in the current time 
step. The LSTM model can capture the dependencies between time steps and has been proven to 
be very useful for some sequential data problems such as speech recognition (Senior et al., 
2020), prediction of stock prices (Murtaza et al. 2017), and short-term traffic forecasting (Zhao 
et al., 2017). Wang et al. (2020) developed an LSTM neural network for on-site EEW. The 
LSTM model was trained to predict whether or not a large earthquake (with a PGA of more than 
80 Gal) was imminent. In other words, the LSTM model only predicted the class of earthquake. 
However, PGA values are quite useful for different application purposes. For issuing alerts to the 
general public, 25 Gal is often employed as the threshold in Taiwan (Hsu et al. 2018). The 
machines in semiconductor fabrication plants are sensitive to small earthquakes and could be 
shut down by the emergency stop due to registering small vibration signals, e.g., with a PGA of 
several Gal. In contrast, high-speed trains may have different emergency responses to a PGA of 
40, 80, or 120 Gal. The nuclear power plants in Taiwan are designed to resist earthquakes with a 
PGA of several hundred Gal. Therefore, in this study, we constructed an LSTM model to predict 
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PGA values. The methodology of the proposed LSTM approach and the earthquake data used are 
explained in the second section. The results are discussed in the third section, and conclusions 
are drawn in the final section. 

 

2 Methodology and Earthquake Data 

2.1 A Brief Description of the LSTM Neural Network 
Each LSTM unit, shown in Figure 1, contained an internal cell, a forget gate, an input 

gate, and an output gate (Hochreiter and Schmidhuber 1997). The internal cell stored values over 
time intervals via a self-recurrent connection to the previous time step, and value updating was 
controlled by the gates. The algorithm of an LSTM unit was defined as 

푓 = 휎 푤 [퐻 , 푋 ] + 푏  (1), 

푖 = 휎(푤 [퐻 , 푋 ] + 푏 ) (2), 
퐶 = 푡푎푛ℎ(푤 [퐻 , 푋 ] + 푏 ) (3), 

퐶 = 푓 × 퐶 + 푖 × 퐶  (4), 
표 = 휎(푤 [퐻 , 푋 ] + 푏 ) (5), and 
퐻 = 표 × 푡푎푛ℎ(퐶 ) (6). 

The forget gate took the current time step input (푋 ) and the hidden state (퐻 ) from the 
previous time step as concatenated input, multiplied the forget gate weight (푤 ), added the forget 
gate bias (푏 ), and applied the activation function. The input gate was provided with a 
concatenated input (퐻 ,푋 ) with its weights (푤 ) and biases (푏 ) along with the candidate cell 
state (퐶 ). The cell state was updated with the forget gate (푓 ) by applying both the previous cell 
state (퐶 ) additional to the input gate (푖 ) and the candidate cell state (퐶 ). The input gate 
determined whether or not the information in the current time step was memorized and stored in 
the cell state. The output gate (표 ) managed the output to update the cell state with its specific 
weights (푤 ) and biases (푏 ) using concatenated input similar to that of the input gate. 

 

 

σ σ σtanh

tanh

Input 

Output 

: Forget Gate
: Input Gate

: Tanh Layer
: Output Gate
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Figure 1.  The LSTM unit. 
 
 

2.2 Design of the Input and Output of the LSTM Model 
Before we introduce the neural network architecture, the design of the input and output of 

the proposed LSTM model is explained in this section. The goal of the proposed LSTM approach 
was to predict the PGA of the coming earthquake, as soon as possible after the arrival of the P 
wave, based on the measured seismic waves. Hence, the target output of the LSTM model, 
shown in Figure 2, was designated as a step function with the amplitude of the PGA: 

ℎ(푡) =
0      , 푡  ≤  푡 <  푡
푃퐺퐴 , 푡  ≤  푡 ≤  푡  (7), 

푡 = 푡 + 푡 ;       푡 = 0.5,1.0,1.5,2.0,2.5,3.0 (8), and 

푡 = 4 − 푡  (9), 

where 푡  was the P-wave arrival time determined based on the short-term average over long-term 
average (STA/LTA) algorithm; 푡  and 푡  were start time and end time, respectively; and 푡  was 
the length of the time-window between 푡  and 푡 . 

 

 

Figure 2.  The schematic diagram of the target output of the LSTM model. 
 

In this study, six 푡  lengths with an interval of 0.5 s were employed; hence, 
corresponding six truncated lengths with 4 s of “windowed” inputs were also employed. For 
instance, when 푡 = 0.5, only seismic waves with a time-window length of 0.5 s after the trigger 
were employed in the inputs, while those with a time-window length of 1.0 s after the trigger 
were employed when 푡 = 1.0, and so on. An example of the input and output targets of one 
typical earthquake is shown in Figure 3. The windowed input when 푡 = 0.5 is illustrated in 
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Figure 3(a); Figure 3(a) to 3(c) show three acceleration time histories and three velocity time 
histories for different time-window lengths. The velocity time histories were obtained from 
integration of the acceleration time histories. The corresponding target output time histories are 
shown in Figure 3(d) to 3(f). 

 

 

Figure 3.  A typical example of the input/output of the LSTM model. (a) input of tw = 0.5 s; (b) 
input of tw = 1.0 s; (c) input of tw = 3.0 s; (d) target output of tw = 0.5 s; (e) target output of 
tw = 1.0 s; and (f) target output of tw = 3.0 s. 

 

To save computational effort, the sampling rate of the input and output was reduced. 
Since the energy of seismic waves tended to be below 25 Hz, the original seismic waves were 
down-sampled from 200 Hz to 50 Hz using an 8th order Chebyshev Type I infinite impulse 
response lowpass filter with a cutoff frequency of 40 Hz. Hence, the number of samples of each 
seismic wave with a window length of 4 s, more precisely, 4.02 s, was 201. As a result, the 
dimensions of the input and output of the LSTM model were 201  6 and 201  1, respectively. 
Both the input and output data were normalized using the RobustScaler normalization algorithm 
which removed the median and scaled the input and output data according to their interquartile 
range. 
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2.3 Proposed LSTM Architecture 
Because a previous study showed that the results of PGA prediction or large earthquake 

detection using conventional LSTM architecture were not acceptable (Wang et al. 2020), a dense 
LSTM architecture was employed in this study for PGA prediction. The dense LSTM 
architecture contained several LSTM layers, with each layer consisting of a parallel LSTM 
series, as shown in Figure 4. After the final dense LSTM layer, two fully connected layers were 
employed to generate the output data. The first layer consisted of a parallel ReLU (Rectified 
Linear Unit) series, which was a series of ReLU activation functions, while the second layer was 
a series of linear activation functions. The final LSTM model is shown in Figure 4. The number 
of LSTM layers and the number of parallel ReLU series in the first fully connected layer were 
determined based on a grid-search approach. The first hyper-parameter in the grid search was the 
number of LSTM layers, 푁, and the number of LSTM series in each layer was determined 
automatically as 2N+2 in descending order. The number of LSTM layers considered in this study 
were [4, 5, 6]. The other hyper-parameter in the grid search was the number of ReLU series in 
the first fully connected layer. The number of ReLU series in the first fully connected layer 
considered in this study were [8, 16, 32]. 

 

 

Figure 4.  Proposed architecture of the LSTM model. 

 

2.4 Earthquake Data Sets 
The Central Weather Bureau (CWB) of Taiwan collects high-quality data on ground 

motions at several hundred seismic stations around Taiwan via the Taiwan Strong Motion 
Instrument Program (TSMIP). The TSMIP data set of 91,128 earthquakes during the period from 
July 29, 1992, to December 31, 2006, was employed in this study. Approximately half of the 
TSMIP data, 40,000 earthquakes in total, for each PGA range defined by the CWB was used for 
training (32,000 earthquakes) and validation (8,000 earthquakes) of the proposed LSTM model, 
as listed in Table 1. The P-wave arrival time was determined based on the STA/LTA algorithm. 
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In addition, two data sets of the most damaging recent earthquake events in Taiwan were 
employed to test the performance of the proposed LSTM approach. The 2016 Meinong 
earthquake event (Mw = 6.53) and the 2018 Hualien earthquake event (Mw = 6.2) in Taiwan 
resulted in 117 deaths and 17 deaths, respectively. 

 

Table 1.  The number of earthquakes of different ranges in the TSMIP data set. 

Data set 

PGA (Gal) 

Total 0.8~2.5 2.5~8 8~25 25~80 80~250 250~800 800~ 

Whole TSMIP 117 31,192 43,334 13,366 2,843 268 8 91,128 

Training 46 12,477 12,882 5,347 1,138 108 2 32,000 

Validation 13 3,119 3,220 1,336 284 26 2 8,000 

 

2.5 Classification Metrics and Lead Time 
In this study, the PGA threshold for general application was assumed to be 25 Gal. In the 

field of machine learning, the confusion matrix of false positives (FPs), false negatives (FNs), 
true positives (TPs), and true negatives (TNs) allows performance to be easily visualized, as 
shown in Figure 5(a). Note that if a correct alert is issued after the observed PGA reaches the 
threshold, i.e., negative lead time, it will be classified as an FN. Lead time, 푡 , is defined as 
the time of issuing an alert minus the time when the observed PGA reaches the threshold. The 
classification metrics of precision, recall, and F1 score are calculated as 

푝푟푒푐푖푠푖표푛 =   
 (10), 

푟푒푐푎푙푙 =   
 (11), and 

퐹1 푠푐표푟푒 = × ×
( )

 (12). 

For community earthquake early warning, the false alert ratio (FAR) and missed alert 
ratio (MAR) are more straightforward to observe than alert performance, and can be calculated 
as 

퐹퐴푅 =  (13) and 

푀퐴푅 =  (14). 
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Figure 5.  The confusion matrix when the threshold is designated as 25 Gal (a) without 
tolerance, and (b) with tolerance. 

 

3 Results and Discussion 

3.1 Training and Validation 
When large deviations exist in the data, e.g., the PGA of large earthquakes can be almost 

1,000 times those of small ones, the root mean squared logarithmic error (RMSLE) is often 
employed to estimate the loss in prediction accuracy, which is defined as 

퐸 = ∑ 푙표푔 푦 + 1 − 푙표푔 푦 + 1  (15), 

where 푦  and 푦  are the actual and predicted PGA of the jth earthquake, respectively, and 푁 is 
the total number of earthquakes. The parameters in the LSTM model were updated based on the 
Nadam optimizer with a learning rate = 0.0001 and batch size = 32 during the training process. 
The training process stopped when validation loss kept increasing over three successive epochs; 
the loss history during a typical training process of the LSTM is shown in Figure 6. The LSTM 
model was trained using Python language on an Intel® Core™ i7-6700 CPU 3.40 GHz 
computer. 
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Figure 6.  Loss history during a typical training process. 
 

3.2 Grid Search Results 
In this study, a grid search approach was employed to determine the two hyper-

parameters (the number of LSTM layers and the number of ReLU series in the first fully 
connected layer) in the LSTM architecture. Both PGA prediction accuracy and lead-time length 
were considered in the evaluation of the performance of the LSTM architecture. Specifically, the 
model score, 푆 , of the LSTM architecture was calculated using the Min-Max normalized F1 
score, 퐹 , and the Min-Max normalized average lead-time, 푡̃ , (without tolerance) as 

푆 =  퐹 + 푡̃  (16) 

Table 2 shows the F1 score, average lead time, and model score of the nine combinations 
of the two hyper-parameters. The highest model score was achieved by the 7th LSTM model. 
Thus, the selected LSTM model consisted of six hidden LSTM layers and eight ReLU series in 
the first fully connected layer, which was used in the following analyses. 

 

Table 2.  The nine combinations of the two hyper-parameters of the LSTM models. The F1 
score, average lead time, and model score of these models are also given. 

Model  
No. 

Number of  Average  
lead time (s) 

F1 Score  
(w/o tolerance) 

Model  
     score LSTM layers ReLU series 

1 4 8 6.512 0.757 0.623 
2 4 16 6.539 0.730 0.270 
3 4 32 6.537 0.764 0.837 
4 5 8 6.520 0.783 1.091 

5 5 16 6.572 0.788 1.340 
6 5 32 6.773 0.728 1.000 
7 6 8 6.670 0.785 1.613 
8 6 16 6.468 0.778 0.834 

9 6 32 6.673 0.734 0.769 

: Training Loss

: Validation Loss
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3.3 Typical Predicted PGA Time Histories 
In this section, the raw output of the predicted PGA time history using the proposed 

LSTM approach is discussed. The predicted PGA time histories of a TP case using different 
input windows are shown in Figure 7. When tw = 0.5 s, the observed PGA time history and the 
predicted PGA time history of the LSTM model are shown as the thin dashed–dotted gray line 
and the thick color line, respectively, in Figure 7(a). The target PGA is shown as the step 
function in a brown dashed–dotted line style, where the trigger time is indicated by the location 
of a “jump” in the step function. Because the predicted PGA exceeds 25 Gal at approximately 
4.04 s (shown as the dotted salmon-colored vertical line), the alert is issued in this window, i.e., 
at 4.5 s, as indicated by the dashed–dotted, teal-colored vertical line (at the very end of this 
figure). When tw = 1.0 s (Figure 7(b)), since the predicted PGA already exceeded the threshold in 
the previous window when tw = 0.5 s, the alert has already been issued and the alert time remains 
at 4.5 s. The measured accelerations exceed the threshold approximately at 4.88 s (shown as the 
dashed purple line); hence, the lead time of this TP case is 4.88 - 4.5 = 0.38 s. Note that an alert 
is classified as a TP only when it is issued before the threshold is reached, i.e., the lead time is 
positive. If a correct alert is issued but the lead time is zero or negative, the alert is classified as a 
false negative (FN). The observed PGA time history and the predicted PGA time history of the 
LSTM model when tw = 1.5, 2.0, 2.5, and 3.0 s are shown in Figures 7(c) to 7(f). Figure 7(a) to 
7(f) can be combined together to produce Figure 8(a) for conciseness of this paper. 
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Figure 7.  The observed PGA time histories, predicted PGA time histories, and target PGA time 
histories of a typical true positive (TP) case using (a) tw = 0.5 s; (b) tw = 1.0 s; (c) tw = 1.5 s; (d) 
tw = 2.0 s; (e) tw = 2.5 s; and (f) tw = 3.0 s. 
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Figure 8.  Observed PGA time histories, predicted PGA time histories of different windows, and 
target PGA time histories of a typical (a) TP, (b) FP, (c) TN, and (d) FN case. 

 

The results of a typical FP case using different input windows are shown in Figure 8(b). 
Because the predicted PGA exceeds 25 Gal at approximately 4.02 s (shown as the dotted salmon-
colored vertical line), the alert is issued in this window, i.e., at 4.5 s (shown as the dashed–
dotted, teal-colored vertical line). However, the actual PGA is only about 16 Gal, as indicated by 
the dashed–dotted cobalt blue step function of the target PGA; hence, this is an FP case if no 
tolerance of the error of the predicted PGA is allowed. The results of a typical true negative (TN) 
case using different input windows are shown in Figure 8(c). Although the time histories of the 
predicted PGA at each window are quite different, the maximum predicted PGA of all windows 
are approximately below 15 Gal, hence no alert will be issued in this case. The actual PGA is 
only about 21.7 Gal as indicated by the step function of the target PGA; hence, no alert is 
necessary in this case. The results of a typical FN case using different input windows are shown 
in Figure 8(d). The actual PGA is approximately 33.6 Gal as indicated by the step function of the 
target PGA. However, the maximum predicted PGA of all the six windows is only about 11.1 
Gal; hence, no alert is issued in this case. 

: Observed PGA

: Target PGA

: Predicted PGA  25 Gal
: Alert Time
: Observed PGA  25 Gal

Time of

: = 0.5 s

: = 1.0 s

: = 1.5 s

: = 2.0 s

: = 2.5 s

: = 3.0 s

Predicted PGA (a)

: Observed PGA

: Target PGA

: Predicted PGA  25 Gal
: Alert Time

Time of

: = 0.5 s

: = 1.0 s

: = 1.5 s

: = 2.0 s

: = 2.5 s

: = 3.0 s

Predicted PGA (b)

: Observed PGA

: Target PGA

: = 0.5 s

: = 1.0 s

: = 1.5 s

: = 2.0 s

: = 2.5 s

: = 3.0 s

Predicted PGA (c)

: Observed PGA

: Target PGA

: = 0.5 s

: = 1.0 s

: = 1.5 s

: = 2.0 s

: = 2.5 s

: = 3.0 s

Predicted PGA (d)



Confidential manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

3.4 General Performance of the TSMIP Data Set 
The accuracy of the predicted PGA of the entire TSMIP data set of 91,119 earthquakes is 

discussed here to understand the general performance of the LSTM model in PGA prediction. 
The predicted PGA is a time history of each window, hence the data set for predicting the PGA 
of 91,119 earthquakes using six different windows is quite substantial. Because an alert will be 
issued when any predicted PGA within any window exceeds the threshold, the maximum 
predicted PGA within all the windows is a critical value affecting performance in issuing alerts 
and will be discussed here. Figure 9 illustrates the comparison between the maximum predicted 
PGA and the actual PGA of all 91,119 earthquakes. The RMSLE value of the maximum 
predicted PGA is 0.804. It is evident that the maximum predicted PGA tends to be larger than the 
actual one, which is reasonable because the maximum value of the predicted PGA within all the 
windows is considered.  

 

  

Figure 9.  (a) Lead time distribution of the TSMIP data set; and (b) close view of the distribution 
of lead times shorter than 2 s. 

 
The performance of the alerts issued based on the PGA prediction results of the LSTM 

model is discussed next. The confusion matrix of FP, FN, TP, and TN when no tolerance of the 
predicted PGA is allowed and the PGA threshold for issuing an alert is designated as 25 Gal 
(Figure 5(a)). The performance metrics based on the confusion matrix, such as the number of 
TPs, FPs, FNs, TNs, and the values of the F1 score, precision, and recall are shown in Table 3. 
Although recall is quite high (95.17%), precision and F1 score are quite low, only 32.4% and 
48.3%, respectively. This is because the predicted PGA tends to be overestimated, hence the 
number of FPs is quite large, i.e., 32,720, compared to the number of TPs, i.e., 15,684. In other 
words, the false alert rate (FAR), at 67.6%, is quite high and the missed alert rate (MAR), at 
4.90%, is quite low.  

As proposed by Meier (2017), a tolerance range can be used when evaluating the 
classification performance of an EEW system. A  1 level of the CWB intensity scale based on 
PGA, as shown in Figure 5(b), is employed here, and the performance metrics of tolerance are 
also summarized in Table 3. While tolerance is allowed, only 17 and 7,119 cases of FNs and 
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FPs, respectively, remain and precision, recall, and F1-score increase to 85.3%, 100.0%, and 
92.1%, respectively. Hence, the overall potential alert performance using the proposed LSTM 
model appears to be quite promising in general if tolerance is allowed. The false alert rate (FAR), 
at only 14.7%, is quite acceptable, and the missed alert rate (MAR), at 0.03%, is almost zero.  

Table 3.  The performance metrics of the TSMIP, Chi-Chi earthquake, Meinong earthquake, and 
Hualien earthquake data sets using the proposed LSTM model. 

Metric 

TSMIP  Chi-Chi  Meinong  Hualien 

w/o  w/  w/o  w/  w/o  w/  w/o w/ 

Tolerance  Tolerance Tolerance Tolerance 

RMSLE 0.804  0.941  1.141  0.882 
TP 15,684 41,295  310 317  186 268  55 133 

FP 32,720 7,119  7 -  106 24  109 31 
FN 801 17  59 22  71 24  25 8 
TN 41,924 42,708  1 38  160 207  275 292 

Precision (%) 32.4 85.3  97.8 100  63.7 91.7  32.7 80.9 
Recall (%) 95.1 100  84.0 93.5  72.4 91.1  66.3 92.9 

F1 score (%) 48.3 92.1  90.4 96.6  67.8 91.4  43.8 86.5 

FAR (%) 67.6 14.7  2.21 0.00  36.3 8.30  67.3 19.1 

MAR (%) 4.90 0.03  16.0 6.49  27.6 8.90  33.7 7.10 

Lead time (s) 7.46  13.66  6.04  4.29 

 

The distribution of lead times of the cases when both the actual and predicted PGA is 
 25 Gal is shown in Figure 10. The lead times of these cases are between -1 s and 26 s, and the 
average lead time is 7.46 s. The lead times of only five cases are negative, and these cases are 
classified as FN, as shown in Figure 10(b). 

 

  

(a) (b)
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Figure 10.  (a) Lead time distribution of the TSMIP data set; and (b) close view of the 
distribution of lead times shorter than 2 s. 

 

3.5 Performance of the Chi-Chi Earthquake Data Set 
The Chi-Chi earthquake data set is also included in the TSMIP data set of 91,119 

earthquakes. The fault rupture of the Chi-Chi earthquake has been reported as long and complex 
(Ma et al. 2001). In addition, several studies have indicated that the magnitude or intensity 
estimation based on the short beginning of vibration signals (usually several seconds) is not 
reliable for such large earthquakes, which are usually generated by a long and complex rupture 
(e.g., Wu & Zhao, 2006; Rydelek et al., 2007; Hoshiba et al., 2011; Kodera, 2019). As in the 
case of the Chi-Chi earthquake, underestimation of PGA is usually observed when the prediction 
model is established using SVR (Hsu et al. 2013), a multilayer feedforward network (Hsu et al. 
2020), or a convolutional neural network (Hsu et al. 2021). Hence, we also assessed the PGA 
prediction results of the Chi-Chi earthquake data set using the proposed LSTM approach in this 
study, as shown in Figure 11(a) and Table 3. The maximum PGA of the same windows, i.e., 
0.5 s, 1 s, 1.5 s, 2 s, 2.5 s, and 3 s, after the trigger, predicted using the SVR approach, is shown 
in Figure 11(b) for comparison (Hsu et al. 2013). It is evident that the PGA predicted using the 
SVR approach is substantially underestimated, while that predicted using the LSTM approach is 
much closer to the actual PGA, although the predicted PGA of some earthquakes is still 
underestimated. The number of TPs, FPs, FNs, TNs, and the F1 score, precision, recall, FAR, 
and MAR using the SVR approach are shown in Table 4. Tables 3 and 4 show that while the 
FARs of both LSTM and SVR approaches are very low, the MARs of the latter approach are 
much higher than those of the former. In addition, the average lead time of the proposed LSTM 
approach is much longer than that of the SVR approach. Based on these results, the proposed 
LSTM approach may have an advantage over the other approach in more accurately predicting 
the PGA of earthquakes with a long and complex rupture process, but further study is necessary 
to support this finding. 

 

Table 4.  The performance metrics of the Chi-Chi earthquake data set using the SVR approach. 

Metric 

 Chi-Chi  

 w/o  w/ 

Tolerance 

RMSLE  2.005 
TP  80 80 
FP  1 1 
FN  267 109 
TN  29 187 

Precision (%)  98.7 98.7 
Recall (%)  23.0 42.3 

F1 score (%)  37.3 59.2 
FAR (%)  3.33 0.53 
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MAR (%)  76.9 57.7 
Average lead time (s)  5.70 

 

  

Figure 11. Comparison between the predicted PGA and actual PGA of the Chi-Chi data set 
using (a) the proposed LSTM approach, and (b) the SVR approach. 

 

3.6 Performance of the Independent Data Sets 
In addition to the TSMIP data set, the performance of the proposed LSTM approach was 

also studied using the independent data sets of the 2016 Meinong earthquakes and the 2018 
Hualien earthquakes. The comparison between the predicted and actual PGA of these two data 
sets is shown in Figure 12. The distribution indicates that the independent data sets could also 
demonstrate the anticipated accuracy of PGA prediction. The RMSLE of the Meinong and 
Hualien data sets was 1.410 and 0.882, respectively. The performance metrics, based on the 
confusion matrices in Figure 5, are shown in Table 3. If no tolerance is allowed, the number of 
FPs is larger than the number of FNs, resulting in higher recall than precision of both data sets. If 
tolerance is allowed, precision, recall, and F1 score of these two data sets are quite high, between 
80.9%–92.9%. Hence, the performance of alert classification seems quite promising in general if 
tolerance is allowed.  

 

(a) (b)
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Figure 12. Comparison between the predicted PGA and actual PGA of the (a) Meinong data set, 
and (b) Hualien data set. 

 

The lead times of these two data sets were between -2 s and 17 s, and the average lead 
times were 6.04 s and 4.29 s, as shown in Figure 13 and Table 3. Although the predicted PGA 
was larger than the threshold for all the cases with a negative lead time, these cases were 
classified as FN due to late alerts, whose locations are shown as inverted triangles in Figure 14. 
Note that it is not necessary for the stations with a negative lead time to be close to the epicenter. 
In fact, the lead time of only one of these cases was < -1; the observed PGA and the predicted 
PGA using different input windows of this case are shown in Figure 15(a). The amplitude of 
observed PGA time history was quite small and increased very slowly with time, which may 
make accurate prediction of PGA in time quite difficult. In all other cases with negative lead 
times, their lead times were actually between -0.5 and 0 s. A typical case with negative lead 
times is shown in Figure 15(b). Because the predicted PGA exceeded 25 Gal in the same time 
window with the actual PGA exceeding 25 Gal, the negative lead-time cases could become 
positive if smaller intervals are used (for example, when the time interval is changed to 0.1 s). 

The locations of the classification results with tolerance for the Meinong earthquakes are 
shown in Figure 14(a). The background of PGA distribution may result from the northwestward 
rupture of the left–lateral strike-slip fault. Most of the alerts of the stations close to the epicenter 
are TP. In addition, most of the stations with FN alerts are located in the region approximately 80 
km to 130 km north of the epicenter. This phenomenon could mainly be related to the seismic 
wave difference due to the rupture directivity of the fault. In addition, most of the FP alerts are 
located in east Taiwan. Besides the rupture directivity of the fault, another possible reason for 
this phenomenon could be the effect of the path from west to east through the mountainous area 
in central Taiwan. In the case of the Hualien earthquakes, the background of PGA distribution in 
Figure 14(b) indicates that the rupture was oriented toward the south, which was identical to the 
focal mechanism solutions. The majority of the alerts of stations near the epicenter were TP, 
except for those of several stations very close to the epicenter. Most of the FP stations were 
located north of the epicenter. This phenomenon may also be related to the seismic wave 
difference due to the rupture directivity of the fault. 

(a) (b)
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Figure 13. Lead time distribution of the (a) Meinong data set, and (b) Hualien data set. 
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Figure 14. The locations of the stations of different classification conditions of the (a) Meinong 
data set, and (b) Hualien data set. The background indicates the distribution of observed PGA. 

  

Figure 15. Observed PGA time histories, predicted PGA time histories of different windows, 
and target PGA time histories of (a) the only case of lead time < -1 s in the Meinong data set, and 
(b) a typical case of lead time < 0 s in the independent data sets. 

 

3.7 Discussion of the Alert Criterion 
From the general performance of the LSTM approach to the analysis of the TSMIP data 

set, it is evident that the predicted PGA tends to be overestimated, resulting in a higher FAR. The 
alert is issued once the predicted PGA is equal to or larger than the threshold in any of the six 
windows. In this section, an alternative algorithm for issuing an alert is proposed to reduce the 
FAR. This algorithm has two conditions to fulfill to issue an alert. The first is satisfied when the 
predicted PGA is equal to or larger than the threshold in two consecutive windows. The second 
is satisfied when the predicted PGA is equal to or larger than the threshold in the last window (tw 
= 3.0 s). As shown in Table 5, the number of FP cases decreased from 32,720 to 27,024, while 
the FAR decreased from 14.7% to 11.5% when tolerance was allowed. However, the number of 
FN cases increased from 17 to 20, while the MAR increased from 0.03% to 0.04% when 
tolerance was allowed, and the average lead time also decreased from 7.46 s to 6.91 s. A trade-
off was always present between FP cases and the FN cases, and also between prediction accuracy 
and lead time. If more missed alerts are not tolerable, then the original criterion to issue an alert 
should be employed. 

Table 5.  The performance metrics of the TSMIP data set using the proposed LSTM model with 
an alternative alert criterion. 

Metric 

TSMIP 

w/o  w/ 

Tolerance 

TP 15,491 37,644 
FP 27,024 4,871 
FN 994 15 

(a)

: Predicted PGA  25 Gal
: Alert Time
: Observed PGA  25 Gal

Time of
: Observed PGA
: Target PGA (b)

: Predicted PGA  25 Gal
: Alert Time
: Observed PGA  25 Gal

Time of
: Observed PGA
: Target PGA
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TN 47,620 48,599 
Precision (%) 36.4 88.5 
Recall (%) 94.0 100 
F1 score (%) 52.5 93.9 
FAR (%) 63.6 11.5 

MAR (%) 6.03 0.04 

Lead time (s) 6.91 

 

3.8 Performance of Different PGA Thresholds 
As discussed in the Introduction, a threshold can be designated for different applications. 

In this study, two alternative thresholds were considered. The first was a relatively small 
threshold, which is required to issue a command to automatically park machines in 
semiconductor fabrication plants during the manufacturing process even when the intensity of 
the coming seismic vibration is small. By doing so, these machines can restart the manufacturing 
process after the earthquake much faster than when they are shut down by the emergency stop 
due to the measured vibration signals. The reduced time required to restart the manufacturing 
process is very beneficial to the semiconductor fabrication plants. Hence, the threshold of 8 Gal 
was considered in this study, and the general performance of the TSMIP data set was assessed. 

The performance metrics when the PGA threshold for issuing an alert is designated as 8 
Gal are shown in Table 6. If no tolerance is allowed, the number of FPs is quite large, i.e., 
31,047, compared to the number of TPs, i.e., 59,778, resulting in the FAR being quite high at 
34.2%. Note that the FAR is much lower than that (it is 67.6%) when the threshold is 25 Gal 
(Table 3). On the other hand, the number of FNs is only 41, resulting in the MAR being only 
0.07%. The average lead time is 6.60 s. The number of FPs becomes only 112, which is very 
small compared to the number of TPs, i.e., 90,713, when a 1 level of the CWB intensity scale is 
employed, as shown in Figure 16(a). In addition, only three FNs remain. Hence the FAR and 
MAR are very small, i.e., 0.12% and 0.01%, respectively. As a result, the performance of alert 
classification using 8 Gal as the threshold seems quite promising in general if tolerance is 
allowed.  

The other threshold is relatively large, which could be useful for nuclear power plants 
because their design basis earthquake is much larger than that of ordinary structures. Hence, the 
threshold of 250 Gal is studied here, and the general performance of the TSMIP data set is 
assessed. The performance metrics when the PGA threshold for issuing an alert is designated as 
250 Gal are also shown in Table 6. If no tolerance is allowed, the number of FPs is only 560, but 
it is relatively large compared to the number of TPs, i.e., 211, resulting in the FAR, at 72.6%, 
being quite high. On the other hand, the number of FNs is only 65, which is relatively small 
compared to the number of TPs, resulting in the MAR being only 23.2%. The average lead time 
is 6.32 s. When a 1 level of the CWB intensity scale is employed here, as shown in Figure 
16(b), the number of FPs is only 74, which is very small compared to the number of TPs, i.e., 
697. In addition, the number of FNs becomes 0. Hence, the FAR and MAR are very small, i.e., 
9.60% and 0.00%, respectively, lower than 14.7% and 0.03% when the threshold is 25 Gal 
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(Table 36). As a result, the performance of alert classification using 250 Gal as the threshold also 
seems quite acceptable in general if tolerance is allowed. 

 

Table 6.  The performance metrics of the TSMIP data set using the proposed LSTM model with 
different PGA thresholds. 

Metric 

Threshold 

8 Gal  250 Gal 

w/o  w/  w/o  w/ 

Tolerance  Tolerance 

TP   59,778   90,713          211         697 
FP   31,047         112          560           74 

FN           41             3            65            -   
TN         263         301    90,293   90,358 
Precision (%) 65.8 99.9  27.4 90.4 
Recall (%) 99.9 100  76.8 100 
F1 score (%) 79.4 99.9  40.3 95.0 
FAR (%) 34.2 0.12  72.6 9.60 

MAR (%) 0.07 0.01  23.2 0.00 

Lead time (s) 6.60  6.32 

 

  

Figure 16. The confusion matrix with tolerance when the threshold is designated as (a) 8 Gal, 
and (b) 250 Gal. 
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4 Conclusion 
In this study, a dense architecture was proposed for the LSTM neural network to predict 

the PGA of the incoming seismic wave at the same site. The input data of the LSTM model were 
the acceleration and velocity time histories of different window lengths of P-wave data after the 
trigger. The general performance of the proposed LSTM model using the TSMIP data set with 
91,128 earthquakes was quite acceptable. However, the predicted PGA of the proposed LSTM 
model tended to be overestimated, hence a higher FAR (14.7%) and a lower MAR (0.03%) were 
obtained when a 1 level of the CWB intensity scale was tolerated, and the average lead time 
was 7.46 s for the whole TSMIP data set.  

Surprisingly, the accuracy of the predicted PGA of the Chi-Chi earthquake using the 
proposed LSTM model was quite acceptable, resulting in a zero FAR (0.00%) and a low MAR 
(6.49%) when a 1 level of the CWB intensity scale was tolerated. Note that the predicted PGA 
of the Chi-Chi earthquake in previous studies was always seriously underestimated. For 
comparison, if the maximum predicted PGA for the same windows after the trigger is considered 
using the SVR approach, an FAR of 0.53% and a high MAR value of 57.7% with a shorter 
average lead time of 5.70 s are obtained. This illustrates one of the merits of the proposed LSTM 
approach. 

Two independent data sets for damaging earthquakes that occurred recently in Taiwan 
were employed to validate the proposed LSTM approach. The results indicate that the anticipated 
accuracy of PGA prediction could also be demonstrated with the independent data sets. When 
tolerance was allowed, the performance of alert classification appeared quite promising in 
general because precision, recall, and F1-score were quite high, i.e., between 80.9%–92.9%. The 
lead times of these two data sets were between -2 s and 17 s, and the average lead times were 
6.04 s and 4.29 s. Lead time can be improved if smaller intervals between time windows are 
employed, especially for the cases with negative lead times, but further studies are required to 
support this hypothesis.  

Because the proposed LSTM approach tended to predict overestimated PGA in general, 
an alternative algorithm to issue alerts is proposed to reduce the FAR. In this alternative 
algorithm, an alert will be issued only if the PGA threshold is satisfied in two consecutive 
windows (except the last window). The performance of the alternative algorithm was tested with 
the TSMIP data set. When tolerance was allowed, although the FAR decreased from 14.7% to 
11.5%, the MAR increased from 0.03% to 0.04% and the average lead time decreased from 7.46 
s to 6.91 s.  

The threshold can be designated for different applications. In this study, two alternative 
thresholds were studied. The performance of the different thresholds was tested with the TSMIP 
data set. If the PGA threshold for issuing an alert was designated as 8 Gal and tolerance was 
allowed, the FAR and MAR were very small, i.e., 0.12% and 0.01%, respectively, and the 
average lead time became somewhat shorter, i.e., 6.60 s. If the PGA threshold for issuing an alert 
was designated as 250 Gal and tolerance was allowed, the FAR and MAR were also very small, 
i.e., 9.60% and 0.00%, respectively, and the average lead time also became a little shorter, i.e. 
6.32 s. Note that these FAR and MAR values were smaller than those, i.e., 14.7% and 0.03%, 
when the threshold was 25 Gal. However, more studies are required because the number of 
earthquakes with a PGA of < 2.5 Gal or >250 Gal is not large enough. Nevertheless, the results 
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still indicate possible application of the proposed LSTM approach to different designated 
thresholds. 
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