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Abstract

The magnetohydrodynamics with embedded particle-in-cell (MHD-EPIC) model has been successfully applied to global mag-

netospheric simulations in recent years. However, the PIC region was restricted to be a box, which is not always feasible for

covering the whole physical structure of interest. The FLexible Exascale Kinetic Simulator (FLEKS), which is a new PIC code

and allows a PIC region of any shape, is designed to break this restriction. It is usually used as the PIC component of the MHD

with adaptively embedded particle-in-cell (MHD-AEPIC) model. FLEKS supports dynamically activating or deactivating cells

to fit the regions of interest during a simulation. An adaptive time-stepping scheme is also introduced to improve the accuracy

and efficiency of a long simulation. The particle number per cell may increase or decrease significantly and lead to load imbal-

ance and large statistical noise in the cells with fewer particles. A particle splitting scheme and a particle merging algorithm are

designed to limit the change of the particle number and hence improve the simulation load balancing. Both particle splitting

and particle merging conserve the total mass, momentum, and energy. FLEKS also contains a test-particle module to enable

tracking particle trajectories with the time-dependent electromagnetic that is obtained from a global simulation.
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limit the change of the particle number and hence improve the accuracy of
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to the time-dependent electromagnetic field that is obtained from a global
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1. Introduction1

Multi-scale plasma simulations are challenging due to the limitation of2

computational resources. Fluid models are efficient for global simulations,3

but kinetic-scale physics is missing. Fully kinetic codes, such as particle-in-4

cell (PIC) codes and Vlasov solvers, contain electron and ion scale physics.5

However, it is extremely computationally expensive to resolve the global6

scale and the electron scale at the same time for three-dimensional (3D)7

global simulations. Traditional hybrid models, which usually treat electrons8

as a massless fluid and simulate ions with a PIC method or a Vlasov solver,9

incorporate ion-scale physics into global simulations by sacrificing electron-10

scale kinetic physics. Another class of hybrid methods embeds a kinetic code11

into a global fluid model so that the kinetic code can resolve the regions12

where the kinetic physics is important, and the fluid model handles the rest13

of the domain efficiency. In recent years, independent groups have developed14

models that couple either a PIC code [1] or a Vlasov solver [2] with a fluid15

model.16

Sugiyama and Kusano [3] demonstrated the concept of coupling a PIC17

code with a fluid code. The magnetohydrodynamics (MHD) with embedded18

particle-in-cell (MHD-EPIC) model developed by Daldorff et al. [1] is the19

first mature coupled model that is capable of running 3D large-scale simu-20

lations. The MHD-EPIC model usually covers the dayside or/and the tail21

magnetic reconnection sites with the PIC code when it is applied to simulate22

the dynamics of magnetospheres [4, 5, 6, 7]. Multiple isolated PIC domains23

are supported so that a few regions of interest can be covered by the PIC24

code in one simulation [4]. However, in an MHD-EPIC simulation, each PIC25

region is restricted to be a static box, which is not always efficient or suitable26

to cover the whole physical structure of interest due to either the limitation of27

computational resources or geometric complexity of the physical region. Re-28

cently, Shou et al. [8] developed the magnetohydrodynamics with adaptively29

embedded particle-in-cell (MHD-AEPIC) model, which allows changing the30

location of an active PIC region dynamically.31

In this paper, we introduce a new code, the FLexible Exascale Kinetic32

Simulator (FLEKS), which is designed and implemented to be the PIC com-33

ponent of the MHD-AEPIC model. FLEKS shares some similarities with34

the Adaptive Mesh Particle Simulator (AMPS) used in the work by Shou et35
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al. [8], but FLEKS provides a more flexible grid design. FLEKS uses the36

parallel data structures provided by the AMReX library [9, 10]. The grid of37

FLEKS has to be uniform and Cartesian, but the active PIC region is not38

limited to be a box anymore since the PIC cells can be turned off to fit the39

region of interest. Furthermore, FLEKS also supports switching on and off40

grid cells dynamically for MHD-AEPIC simulations.41

FLEKS employs the Gauss’s law satisfying energy-conserving semi-implicit42

method (GL-ECSIM) [11] as the base PIC solver. The time step of the43

semi-implicit PIC methods is limited by the Courant–Friedrichs–Lewy (CFL)44

condition based on the macro-particle velocities in order to be accurate [12].45

Since the the speed of macro-particles may change significantly during a long46

MHD-AEPIC simulation, the simulation will be either too slow or inaccu-47

rate with a fixed time step. To keep the simulation efficient and accurate48

at the same time, FLEKS uses an adaptive time-stepping algorithm, which49

still satisfies the requirement of the energy-conserving semi-implicit method50

(ECSIM) [13] to keep energy conservation. Section 2 describes the adaptive51

grid and temporal discretization of FLEKS.52

The statistical noise of macro-particles is the primary source of numeri-53

cal error in typical PIC simulations. Dozens to hundreds of particles per cell54

are usually used to achieve a balance between accuracy and computational55

cost. Since there are much more macro-particles than grid cells in a ki-56

netic PIC simulation, particle-related calculations, such as updating particle57

positions and velocities, dominate the total computational time. In addi-58

tion, a massively parallel simulation can be significantly slowed down due to59

the imbalance of macro-particle numbers among the parallel processes. On60

the other hand, the decrease of the number of macro-particles in some cells61

increases the statistical noise and reduces the accuracy. A particle resam-62

pling algorithm that is able to control the macro-particle number per cell63

is crucial for improving both the simulation efficiency and accuracy. More64

macro-particles need to be added into the cells that contain fewer macro-65

particles than required to represent the plasma velocity-space distribution66

accurately. This goal is usually achieved by splitting particles. In the cells67

with more macro-particles than some threshold, a particle merging algorithm68

needs to be applied to reduce the number of macro-particles and speed up the69

simulation. A particle resampling algorithm is even more crucial for a PIC70

code with adaptive mesh refinement, where the motion of macro-particles71

between the coarse and fine cells alters the macro-particle number per cell72

dramatically [14, 15].73
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Both the particle splitting and particle merging processes replace the74

original particles with a set of new particles. Lapenta [16] suggested that the75

replacement should maintain the following properties:76

1. The plasma moments evaluated on the simulation grid, which are used77

to update electric and magnetic fields, should not be changed by the78

replacement.79

2. The replacement should keep the original particle phase space distri-80

butions.81

It is more challenging to achieve these two goals for a particle merging al-82

gorithm than for a particle splitting algorithm, because it is inevitable to83

lose information when replacing original particles with fewer particles. A few84

algorithms have been designed to merge particles. Lapenta [16] introduced85

two algorithms to merge particles that are close to each other in the phase86

space. The algorithm C1 merges two particles into one, and the algorithm87

C2 merges three particles into two. The algorithm C2 conserves the mass,88

momentum, and energy of the particles, and also the charge densities on89

the grid, but it is not straightforward to extend to 2D and 3D. Vranic et90

al. [17] also proposed an algorithm to merge particles into two new particles91

while conserving the overall mass, momentum, and energy, and the original92

particles are chosen by binning particles in the momentum space. Instead93

of merging a few particles into one or two, the algorithms designed by As-94

sous et al. [18], Welch et al. [19], Pfeiffer et al. [20], and Faghihi et al.95

[21] use a set of particles to replace the old ones. Assous et al. [18] and96

Welch et al. [19] focused on the conservation of the grid quantities, but the97

fine structures in the velocity space may not be well preserved. Pfeiffer et98

al. [20] generated the new particle velocities from a distribution function99

and adjusted the velocities to conserve energy afterward. Faghihi et al. [21]100

created new particles with a uniform distribution inside a phase space bin,101

and adjusted the weights to conserve the moments. As a general rule, the102

particles selected for merging should be close to each other in the phase space103

to minimize the error that is introduced by merging. Besides the method of104

binning the velocity space [17, 21], Teunissen and Ebert [22] applied a k-d105

tree to find the particles that are closest to each other, and Luu et al. [23]106

showed how to partition particles with the Voronoi diagram. Our new parti-107

cle merging algorithm implemented into FLEKS searches for 6 particles that108

are close in phase space and merges them into 5 particles while preserving109

mass, momentum and energy and also minimizes the change in the phase110
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Figure 1: A schematic shows the improvement of the MHD-AEPIC (right) model from
the MHD-EPIC (left) model.

space distribution. The details of the splitting and merging algorithms are111

described in section 4.112

Tracking the motion of macro-particles is useful for investigating the par-113

ticle trajectories and the energization of particles. FLEKS provides a paral-114

lel test particle module to follow the motion of macro-particles and save the115

particle trajectory data to disk. The test particle module can be used either116

inside the PIC code, or as an independent component directly coupled to117

the MHD model. Section 5 describes the implementation details of the test118

particle module.119

The paper is organized as follows. Section 2 describes the grid design of120

FLEKS. Section 3 introduces the adaptive time-stepping scheme. Section 4121

focuses on the particle splitting and particle merging algorithms. Section 5122

discusses the implementation of the test particle module. Section 6 presents123

numerical tests to demonstrate the capability of the adaptive active PIC124

regions, the role of the particle resampling algorithms, the parallel efficiency125

of FLEKS, and examples of global simulations with FLEKS. Finally, section126

7 presents the conclusions.127

2. Adaptive grid128

Since the MHD-EPIC model was developed by Daldorff et al. [1], we129

have developed new features to make it more flexible to use. It now supports130

multiple independent PIC domains to cover several regions of interest [4], and131

it also allows rotating a PIC box domain to align with the features of interest132

[24]. However, a box is not always suitable or efficient to cover the region133

of interest. For example, if a PIC box is used to cover the whole dayside134
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magnetopause, which is close to a paraboloid, the box will cut through the135

planet and introduce extra difficulties, and the PIC box will also contain136

a large portion of cells, where the kinetic effects are not important, which137

slows down the simulation. A flexible grid that allows creating an active PIC138

domain that approximates the shape of a paraboloid to fit the magnetopause139

can solve this problems. A dynamically adaptive grid is also useful to improve140

the efficiency of some simulations. For instance, the near-Earth X-line may141

move from the inner magnetotail to the middle or even far magnetotail [25],142

and an adaptive grid that only covers the environment around the X-line is143

much more efficient than a large PIC box that covers the whole magnetotail.144

The MHD-AEPIC algorithm is designed to solve these problems and FLEKS145

is the key component. Figure 1 shows the conceptual difference between the146

MHD-EPIC and MHD-AEPIC models.147

FLEKS still requires the shape of the full PIC grid to be a box, and the148

Cartesian grid has to be uniform (this is a requirement of the GL-ECSIM149

algorithm). But FLEKS allows switching off part of the cells to approx-150

imately fit a region of any shape. The most straightforward approach is151

switching on/off each cell independently. However, this approach has several152

drawbacks, as discussed below, so we make the algorithm a bit more sophis-153

ticated. We divide the whole PIC domain into patches (Figure 2(a)). Each154

patch contains N cells in each direction, and one can turn on or turn off155

each patch. The patch size N is required to be larger or equal to 2. We do156

not allow N = 1 (switching on/off each cell independently) for the follow-157

ing reasons. FLEKS requires two ghost cell layers for coupling with MHD158

at the PIC region boundary. If N = 1, the boundary ghost cells of an ac-159

tive region may overlap with the physical cells of another active region, and160

hence introduces more difficulties to handle the boundary ghost cells. A large161

patch size also benefits the coupling efficiency. In MHD-AEPIC simulations,162

the fluid model controls the status of the patches based on geometric and163

physics-based criteria [25]. The fluid model passes the bit-wise patch status164

array to FLEKS through the Message Passing Interface (MPI), and the size165

of this array is reduced significantly with a larger patch size (proportional to166

N−3 in 3D). In this paper, we use the word ‘active’ to describe the patches167

or cells that are switched on. The active cells do not have to be connected,168

and the boundary ghost cells of the active regions are filled in with the in-169

formation obtained from the fluid model [1]. Figure 2(a) shows an example170

that contains two separated active regions.171

FLEKS uses the data structures provided by the AMReX library to store172
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the fields and also the particles. After the patch status array is obtained from173

the fluid model, FLEKS uses the functions provided by the AMReX library174

to divide the active regions into blocks. AMRex does not require all the175

blocks to have the same size. We note that the patch and the block are two176

independent concepts. The patches are only used to activate or deactivate177

cells. For example, the ’L’ shape active region in Figure 2(a) consists of 3178

patches and it can be divided into 2 blocks (Figure 2(b)).179

FLEKS allows activating or deactivating patches during a simulation. If180

the active regions change, FLEKS will produce a new set of blocks to cover the181

new active regions. With the function provided by AMReX, FLEKS copies182

the fields and particles from the old blocks to the new ones for the cells that183

are already active and deletes the information of the newly deactivated cells.184

The newly activated cells are filled in with the information obtained from185

the fluid model as what is done for FLEKS initialization.186

FLEKS has two ghost cell layers, but the outer layer is only used to receive187

and store the magnetic fields, which are necessary for calculating currents on188

the nodes of the inner ghost cell layer from ~J = ∇× ~B in normalized units.189

The currents are used to generate particles with correct velocities in the inner190

layer ghost cells. To simplify the description, we ignore the outer layer in191

Figure 2(c) and also in the rest of the paper unless otherwise specified. The192

principle of setting boundary conditions of the electromagnetic fields and the193

particles is still the same as the MHD-EPIC coupling algorithm [1]. However,194

the non-box shape of an active region introduces some extra implementation195

difficulties. There are three types of ghost cells for a block: the internal ghost196

cells (blue cells in Figure 2(c)), the exclusive boundary ghost cells (gray cells197

in Figure 2(c)) and the shared boundary ghost cells (cyan cells in Figure 2(c)).198

The internal ghost cells are not boundary cells, and there is no need to apply199

boundary conditions. The exclusive boundary ghost cells are not overlapped200

with any cells of the neighboring blocks, and they should be filled in with new201

macro-particles as the particle boundary condition. The shared boundary202

ghost cells are overlapped with the boundary ghost cells of the neighboring203

blocks, and only one of these blocks should generate boundary particles.204

Here is the algorithm to choose the block for populating new particles. The205

first step is to distinguish the boundary ghost cells from the internal ghost206

cells. Then, for each boundary ghost cell, either the exclusive type or the207

shared type, we loop through its at most 26 neighboring cells (3D) in a fixed208

order (we choose to loop through all the face neighbors first, then the edge209

neighbors, and finally the corner neighbors), skip the nonexistent cells and210
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find out the first neighboring cell that is either a physical cell or an internal211

ghost cell. If this neighboring cell is inside the physical domain of this block,212

this block should generate particles inside this boundary ghost cell. For213

example, in Figure 2(c)), C1 and C3 are overlapped with each other. We214

loop through the neighboring cells of C1 and find C2 is its first neighboring215

cell that is either a physical cell or an internal ghost cell (C2 is a physical216

cell), so block-1 should generate particles in C1 since C2 is inside block-1. We217

repeat the same procedure for the cell C3, and find C4 is its first neighboring218

cell that is either a physical cell or an internal ghost cell (C3 is an internal219

ghost cell), but block-2 should not generate particles in C3 since C4 is outside220

the physical domain of block-2.221

The electric fields are node-based in FLEKS. For a node that is shared222

by multiple blocks, such as the one indicated by a red-cross in Figure 2(c)),223

only one block should take care of the shared node when solving the linear224

equations of the electric fields. The aforementioned algorithm is also applied225

to choose the proper block for a shared node.226

3. Adaptive time-stepping227

The time step of the energy-conserving semi-implicit method (ECSIM)228

is subject to the accuracy condition vrms∆t/∆x < 1 just as other semi-229

implicit PIC methods [12], where vrms is the maximum root mean square of230

macro-particle velocities. For a long MHD-AEPIC simulation, vrms may vary231

significantly, so an adaptive time-stepping algorithm that adjusts time-step232

accordingly will improve the simulation efficiency and accuracy. However,233

the energy conservation property of ECSIM is sensitive to the temporal dis-234

cretization scheme, and the adaptive time-stepping algorithm should not235

break the conservation.236

Our adaptive time-stepping algorithm is summarized in Figure 3. At the237

end of one cycle, both the electromagnetic fields and the particle velocities are238

at time stage tn, and the particle locations are at the staggered stage tn+1/2.239

The difference between tn+1/2 and tn is tn+1/2 − tn = ∆tn/2.The maximum240

speed vrms can be obtained with the particle velocities at tn, and a new241

time step ∆tn+1 can be calculated from ∆tn+1 = CFL ·∆x/vrms. However,242

during the next cycle of updating the electromagnetic fields and particle243

velocities from tn to tn+1, the time step should be ∆tn instead of ∆tn+1, so244

that the particle location Xn+1/2 is still at the middle of tn and tn+1, and245

the energy conservation property of ECSIM is preserved. In order to adjust246
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Block−1

Block−2

Block−3

(b)

(a)

Block−2

Block−1

(c)

C2 C3

C4C1

Figure 2: The black lines represent the cells of a PIC domain. The red dashed lines in
(a) show the patches, and one patch contains 4 × 4 cells in this example. In (a), the
active patches/cells are colored by dark gray, and light gray area represents the ghost
cells of the active PIC regions. (b) shows the blocks of the active regions. (c) shows the
inner layer of the ghost cells of two blocks, and the red dots represent the macro-particles
that are generated in the ghost cells as the particle boundary condition. Blue ghost cells
are internal ghost cells, which are overlapped with the physical cells of the neighboring
blocks. The gray cells are exclusive boundary ghost cells, and they should be filled in with
macro-particles as the boundary condition. The cyan cells are also boundary ghost cells,
but they are overlapped with the boundary ghost cells of the neighboring blocks, and only
one of the blocks should generate boundary particles. The C1...C4 labels and the two red
crosses are used in the main text describing the algorithm.
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Figure 3: The adaptive temporal discretization.

the time step for the next cycle, we use the time step (∆tn + ∆tn+1)/2 for247

updating the particle location from Xn+1/2 to Xn+3/2. The velocity V n+1
248

at tn+1 is not centered exactly between tn+1/2 and tn+3/2, but the deviation249

(∆tn+1 − ∆tn) ∝ (∂ ln vrms/∂t)(∆t
n)2 is second order since the vrms used250

to calculate the time steps changes continuously with time. Therefore the251

second-order accuracy of updating particle locations is still satisfied.252

4. Particle resampling253

Particle resampling algorithms are used to control the macro-particle254

number of each cell. At the end of every computational cycle, a particle255

splitting (merging) algorithm is applied to generate (remove) macro-particles256

for the cells that contain fewer (more) particles than the splitting (merging)257

threshold. The goal of splitting and merging is to stop the number of parti-258

cles per cell (ppc) from dropping or increasing continually. Essentially, the259

particle resampling algorithms use a new set of particles to replace the old260

ones. Our guiding principle of designing the algorithms is that the replace-261

ment should preserve the original particle phase space distribution as much as262

possible. In order to conveniently apply the resampling algorithms, FLEKS263

stores the particle data cell by cell.264

4.1. Particle splitting265

Our particle splitting algorithm is essentially the same as the one in-266

troduced by Lapenta [16], in which one particle is split into two children267
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particles. The children particles have the same velocity as their parent par-268

ticle, but their locations are oppositely displaced slightly along the velocity269

direction. By displacing the new particles along the velocity direction, the270

orbits of the new particles are still close to the orbit of the old particle.271

The particle splitting will be triggered for the cells with ppc less than the272

splitting threshold, which is 80% of the initial ppc by default, and we will273

use this number for all the simulations presented in section 6. Initially, the274

particles that are close to each other have similar weights, but the weights275

may become quite different later due to the transport of particles and also the276

particle splitting and merging. For each cell, we choose to split the heaviest277

N particles to minimize the particle weight variance, where N is the difference278

between the current ppc and the splitting threshold.279

4.2. Particle merging280

The essence of particle merging is replacing a set of particles with a new281

set, which contains fewer particles than the old set. Particle merging reduces282

the particle number in some cells and improves simulation speed. In gen-283

eral, particle merging has a negative impact on the accuracy of a simulation284

because (1) the replacement introduces errors, and (2) fewer particles lead285

to larger statistical noise in the subsequent simulation. The statistical noise286

increasing is inevitable, but the errors caused by the replacement can be287

minimized with a proper merging algorithm.288

Our particle merging algorithm consists of two steps: (1) selecting 6 par-289

ticles that are close to each other in the phase space, and (2) merging these290

6 particles into 5. In the following subsections, we will describe the merging291

step first, and what follows is the selecting step.292

4.2.1. Merging particles293

Once the 6 old particles for merging have been obtained from the select-294

ing step, we use 5 new particles to replace them. The replacement should295

not alter the original phase space distribution significantly. However, it is296

not trivial to quantitatively measure the change of the phase space. The297

conservation of total mass, momentum, and energy can be used as a guid-298

ance and indicator of preserving phase space structure. However, satisfying299

the conservation property is not good enough, it is still possible that the300

new particle set occupies a very different velocity space volume than the old301

set. Previous methods [26, 17] usually generate new particles with velocities302

that are different from the velocities of the old particles, and extra actions303
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are usually required to ensure the new particles are not too far away from304

the old ones in the velocity space. To avoid this difficulty, we choose to305

delete one of the 6 old particles and distribute its mass to the remaining 5306

particles under the constraint of conserving total mass, momentum vector,307

and energy. The weights of these 5 particles change, but their velocities are308

inherited from the old ones, so the new particle set occupies almost the same309

phase space volume as the old set.310

The total mass, momentum and energy of the old particle set are:311

wt =

Nold∑
i=1

wi, pt =

Nold∑
i=1

wivi, et =

Nold∑
i=1

1

2
wiv

2
i , (1)

where Nold = 6. From these 6 particles, we find the pair that is closest to each312

other in the 6D phase space (Figure 4(d)), then remove the lighter one of this313

pair and adjust the weights of the rest 5 particles to satisfy the conservation314

requirement:315

wt =
Nnew∑
i=1

wi,new, pt =
Nnew∑
i=1

wi,newvi, et =
Nnew∑
i=1

1

2
wi,newv

2
i (2)

wi,new > 0 (3)

where we choose Nnew = 5 since there are 5 quantities to conserve. The316

velocities vi are known, and the new weights wi,new are the 5 unknowns of317

the linear equations (2) under the constraint of positivity (3). If the solution318

does not satisfy the constraint, we skip this merging.319

To minimize the impact of the merging on the phase space distribution,320

we need to quantify a distance in the 6D phase space. The actual definition321

will be described in the next subsection, here we simply assume that the322

appropriate distance function exists.323

By deleting the lighter particle from a pair that is closest to each other324

in the phase space, it is likely that its heavier neighbor will gain most of the325

weight and the other 4 particles adjust their weights relatively slightly. By326

inheriting the velocities and locations from the old particles, the new particles327

occupy almost the same phase space volume as the old particles (Figure 4(d)328

and (e)), so there is no room for the phase space structure to change dramat-329

ically. Compared to the schemes that allow choosing new particle velocity330

with fewer restrictions [17], our merging algorithm is less efficient to reduce331
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the particle number because (1) the new particle set still contains 5 parti-332

cles, and (2) the merging may fail when the constraint wi,new > 0 can not333

be satisfied. If it is required, our algorithm can be easily modified to use a334

Nold that is larger than 6 by deleting Nold − 5 particles. However, as it can335

be seen from the following numerical test section, merging 6 particles into 5336

is already efficient enough for our typical applications.337

4.2.2. Selecting particles338

To minimize the phase space change, the particles selected for merging339

should be close to each other in the 6D phase space. Several strategies have340

been proposed for selecting particles, including binning particles in the phase341

space [21], partitioning phase space with Voronoi diagram [23], and using k-d342

tree data structure [22]. For the sake of simplicity, we choose the binning343

strategy. The dimension of the 6D phase space is so high that even only344

splitting each direction into 3 pieces leads to 36 = 729 bins in total. Our345

typical simulations use about 100 particles per cell initially, and it is likely346

few phase space bins contain enough particles for merging with 36 bins. To347

avoid this problem, we only bin particles in the 3D velocity space and skip the348

merging if the 6D volume occupied by the selected particles is too large. This349

approach takes into account the spatial distribution of the selected particles,350

but also implies reducing the variance in the velocity space is more crucial351

than controlling the spatial location variance. Because all the particles are352

already in the same spatial cell, i.e., they can not be too far away from each353

other in the spatial dimensions. Inside each velocity space bin, we choose 6354

particles that are closest to each other for merging.355

The particle merging algorithm needs to calculate the distance between356

two macro-particles in the 6D phase space. The distance is defined as:357

d =
∆s

∆x
+ c1

∆v

vth
(4)

where ∆s is the spatial distance and ∆v is the distance in the velocity space358

between the two particles. The normalization in space is the simulation cell359

size ∆x. The velocity is normalized to the thermal velocity in the cell360

vth =
1

Np

Np∑
i=1

|vi − v|2 (5)

where v it the bulk velocity of the cell and Np is the number of particles in361

the cell. We note that the thermal velocity defined above is used to measure362
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the seperation of particles in the velocity space, so the particle weight is not363

involved in the calculation. The constant c1 in (4) determines the relative364

importance of the spatial distance ∆l3D and the velocity distance ∆v. We365

choose c1 = 2 based on our experience with many numerical tests.366

At the end of each computational cycle, the following algorithm is per-367

formed to select particles for merging if the ppc of a cell is larger than the368

merging threshold, which is 1.5 times of the initial ppc by default:369

1. Bin the particles in the velocity space. For each spatial cell (Fig-370

ure 4(a)), we create a grid in the velocity space ranging from (vx −371

vth, vy − vth, vz − vth) to (vx + vth, vy + vth, vz + vth), and assign par-372

ticles to velocity bins (Figure 4(b)). The velocity grid is divided into373

nbin =
⌈
0.8N

1/3
p

⌉
bins in each direction, where Np is the current ppc of374

the cell and the constant 0.8 is chosen based on numerical experiments.375

We note that each bin contains a buffer region (Figure 4(c)), and the376

particles in the buffer region may also belong to other bins. We use377

1/8 of the velocity space bin size as the width of the buffer region (Fig-378

ure 4(c)). Due to the existence of the buffer region, one particle may379

belong to multiple bins, but it can only be selected for merging at most380

once during one cycle.381

2. Select particles from a bin. If there are more than 6 particles inside382

a bin, including the buffer region, we choose a cluster of 6 particles383

from them. For each velocity bin, we calculate the velocity center of384

the associated particles (black cross in Figure 4(c)), and find the 6385

particles closest to the center in the 3D velocity space. If a particle in386

the buffer region has been selected for merging by a neighboring bin,387

this particle should not be selected again.388

3. Limit the 6D distance. The previous step selects particles only based389

on the distance in the velocity space. This step ensures the selected390

particles are also close to each other in the 6D phase space. We find391

the 6D center (blue cross in Figure 4(d)) of these 6 particles, and the392

6D distance d of all the 6 particles to the center should be less than393

0.6. Again, the constant 0.6 is chosen based on numerical experiments.394

4. Merge 6 particles into 5 with the algorithm described in section 4.2.1.395

The particle selection method used in step 2 prefers selecting particles in the396

center of a bin. Without applying the buffer region in step 1, the particles397

near the edge of a bin are less likely to be chosen for merging. On the other398
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(e) After merging (d) Before merging 

Vx – Vth  Vp,x Vx + Vth

Vy + Vth     

Vy - Vth     

Vp,y

(b) Velocity space bins 

(a) Spatial grid 

X

Y

(c) One velocity bin with buffer 

buffer 
size

Figure 4: Schematics of the algorithm of merging macro-particles. See text for details.

hand, it is more likely that a bin extended with a buffer region contains399

more than 6 particles, which improves the merging efficiency. Based on400

our numerical experiments, applying the buffer region does not improve the401

simulation results significantly, but it is still kept by default to avoid the402

aforementioned potential issues.403

5. Test particle module404

An independent test particle (TP) module is designed to track the mo-405

tion of the macro-particles for FLEKS. It can be used either as an auxiliary406

component of the PIC algorithm or as an independent component. The TP407

module uses the same algorithm to move particles as the GL-ECSIM algo-408

rithm. When the TP module is used with the PIC component together, the409
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Figure 5: The file structure for storing test particles.

TP module shares the same grid layout as the PIC component and uses the410

electromagnetic fields calculated by PIC to update test particles. When the411

PIC component is turned off, FLEKS becomes a pure test particle code, and412

the TP module can directly obtain the grid structure and electromagnetic413

fields from the MHD model. Compared to the embedded PIC simulations,414

the pure test particle simulations are only one-way coupled, i.e., the MHD415

model provides the electromagnetic fields for FLEKS, but there is not any416

feedback from FLEKS to the MHD model.417

In a 3D simulation, it is common to track the motion of millions of test418

particles, and a few thousand steps of the update will easily produce a few419

hundred Gigabytes of particle trajectory data. The test particle module420

should organize the data properly to improve both the IO performance of421

writing data to disk and also the efficiency of reading the trajectory of a422

particle for data analysis. To reduce the IO frequency, the TP module of423

FLEKS saves the particle trajectory data every 100 cycles, and all the pro-424

cessors write to the same file with MPI-IO APIs. We note that if a test425

particle moves from one processor to another in the middle of two IO op-426

erations, its trajectory data should also be transferred to the destination427

processor. Besides the particle trajectory data file, a particle ID list file,428

which maps a particle ID to its data location in the particle data file, is also429

created. An example of these two files is shown in Figure 5. With this file430

structure, it is efficient to find all the trajectory data of a particle for data431

analysis.432
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6. Numerical tests433

6.1. Two-dimensional fast magnetosonic wave propagation with adaptive PIC434

region435

We use a two-dimensional (2D) fast magnetosonic wave propagation test436

to demonstrate the capability of FLEKS’s adaptive grids. The same initial437

condition as what is described in [1] is applied here to produce a propagat-438

ing fast magnetosonic wave. The simulation domain of the MHD code is439

−160/3 < x < 160/3 and −40 < y < 40. Two independent PIC domains440

are used. The left domain in Figure 6 covers the region of −40 < x < 0 and441

−20 < y < 20 with a grid resolution of ∆x = ∆y = 1/16. The right domain442

covers the region of 20 < x < 40 and −10 < y < 10 with a grid resolution443

of ∆x = ∆y = 1/8. All cells of the right PIC domain are always switched444

on during the simulation. For the left domain, only the cells that satisfy the445

following conditions are switched on:446

r <
Lx
10

or

r <
Lx
4

+
Lx
4

t mod 200

200
and r >

Lx
8

+
Lx
10

t mod 200

200
,

(6)

where r is the distance to the center of the PIC domain, Lx is the length of447

the PIC domain, which is 40 in this case, and t is the simulate time. The448

central PIC cells (r < Lx/10) are always switched on, and the outer shell of449

active PIC cells keep changing during the simulation. A movie that shows450

the adaptation of the active PIC region is provided as an online supplement.451

We note that the simulation parameters for these two PIC domains can be452

specified independently. For example, the cell size is different for these two453

PIC domains as it is described above, and the ion-electron mass ratio mi/me454

is 25 for the left domain and it is 100 for the right domain. Both PIC domains455

use CFL = 0.2, and 900 particles per cell (ppc) per species.456

Figure 6 shows the plasma velocity Ux and the area of the active PIC457

cells at the beginning and at t = 400. The interface between the active458

PIC region and the MHD region is smooth, and there is not any significant459

artificial effect observed.460

6.2. One-dimensional non-linear magnetosonic wave evolution461

The evolution of the magnetosonic wave is non-linear. The wave may462

finally evolve into a shock, where the plasma phase space distributions may463
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Figure 6: The velocity Ux of the 2D fast magnetosonic wave test at the beginning (left)
and at t = 400 (right). The black rectangles show the area of the PIC grids. Inside each
PIC grid, the semi-transparent area, which is enclosed by red lines, represents the active
PIC region. Since all PIC cells are active for the right PIC grid, the black lines and the
red lines are overlapped.

become non-Maxwellian. So the non-linear evolution of the magnetosonic464

wave simulation is suitable for testing the particle resampling algorithms.465

In section 6.1, the wave vector is perpendicular to the background mag-466

netic field direction. To make the particle phase space distribution further467

away from Maxwellian and hence more challenging for the particle resampling468

algorithms, we use a more general setting that the background magnetic field469

is neither perpendicular nor parallel to the wave vector in this 1D test. The470
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initial condition of the 1D magnetosonic wave is:471

Bx(x) = B0 cos(θ)

By(x) = B0 [sin(θ) + δ sin(kx− ωt)]
Bz(x) = 0

ux(x) = δ sin(θ)
v2Avp
v2p − v2s

sin(kx− ωt)

uy(x) = δ cos(θ)
v2A
vp

sin(kx− ωt)

uz(x) = 0

ρ(x) = ρ0

[
1 + δ sin(θ)

v2A
v2p − v2s

sin(kx− ωt)
]

p(x) = p0

[
1 + γδ sin(θ)

v2A
v2p − v2s

sin(kx− ωt)
]
,

(7)

where γ is the specific heat ratio, vA = B0√
ρ0

is the Alfven speed, vs =
√

γp0
ρ0

472

is the sound speed, and θ is the angle between the wave vector, which is473

the x-direction here, and the background magnetic field. The phase speed474

vp = ω/k is the fast magnetosonic speed:475

v2p =
1

2

{
v2A + v2s + [(v2A + v2s)

2 − 4v2sv
2
A cos2 θ]1/2

}
, (8)

In this paper, we use γ = 5/3, B0 = 0.1, θ = 30°, ρ0 = 1, p0 = 0.0001,476

k = 2π/λ = 2π/64, and δ = 0.5. We note that the perturbation δ = 0.5477

is not small so that the solution will evolve to the nonlinear stage soon.478

Since the goal of this test is to compare the simulation results with and479

without particle resampling, it is suitable and acceptable to use such a large480

perturbation.481

The 1D simulation domain is −32 < x < 32 with a cell size ∆x = 0.05.482

The initial number of particles per cell per species is 900, and CFL = 0.2.483

The simulation results at t = 200 are presented in Figure 7. To distinguish484

between the physical density and macro-particle number per cell, we use485

’mass density’ to represent the physical density, and ’number density’ is the486

number of macro-particles per simulation cell or phase space bin. At t = 200,487

the wave already evolves into a non-linear state, and the velocity shows a488

sharp gradient near x = 20. The minimum and maximum number of ppc are489
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about 500 and 3140, respectively, for the simulation without applying particle490

resampling. For the simulation with particle resampling, the minimum ppc491

is about 750 and the maximum ppc is about 1360, and these numbers are492

close to the splitting limit 0.8 ∗ 900 = 720 and the merging limit 1.5 ∗ 900 =493

1350. It suggests that the particle resampling algorithms are effective in494

controlling particle numbers. Except for the particle number, the physical495

quantities of these two simulations are very similar to each other. The only496

noticeable difference is that the electric field Ey of the simulation with particle497

resampling is noisier near x = 20 due to the reduction of particle number.498

Figure 7(b) shows the ion phase space distribution for particles between499

x = 21 and x = 21.2. The two mass density distributions are comparable500

even though the particle number densities are quite different.501

Figure 8 shows the simulation speed, which represents the number of PIC502

cells that are updated per second per CPU core. For the first 700 cycles, both503

simulations become slower and slower due to the imbalance of the particle504

number per CPU core. Later, the minimum and maximum ppc reach the505

splitting and merging thresholds and the particle splitting algorithms start506

controlling the further change of the minimum and maximum ppc, so the507

simulation speed stops dropping for the simulation with particle resampling.508

At the end of the simulation, the simulation with particle resampling is almost509

twice faster than the one without particle resampling.510

6.3. Two-dimensional double-current-sheet magnetic reconnection511

Magnetic reconnection is regarded as one of the most important physical512

processes for energy transfer between magnetic field and plasma in the space513

plasma environment, so it is also widely used to benchmark the performance514

of a kinetic plasma modeling code. Here, we use a two-dimensional (2D)515

asymmetric magnetic reconnection problem to test the particle resampling516

algorithms, because the particles distributions near the reconnection site can517

be non-Maxwellian. It is crucial to demonstrate that the particle resampling518

algorithms preserve the non-Maxwellian distributions.519

A double current sheet is used to initialize the simulation so that the520

whole system is symmetric, and periodic boundary conditions can be applied521

in all directions. The simulation domain is −64 < x < 64 and −16 < y < 16.522

The background magnetic field is initialized as:523

Bx(y) =

(
B1 +B2

2

)[
tanh

(
y + Ly/4

δ

)
− tanh

(
y − Ly/4

δ

)]
−B2, (9)
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(a)

(b)

Figure 7: The 1D magnetosonic wave simulation results at t = 200. (b) shows phase space
distributions at x = 21 that is marked with a dashed black line in (a). The upper panel of
(b) shows the results without particle resampling, and the lower panel shows the results
with particle resampling.
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Figure 8: The simulation speed of the 1D magnetosonic wave simulations.
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where B1 = 1 and B2 = 2 are the asymptotic magnetic field amplitudes.524

Ly = 32 is the width of the simulation domain, and the centers of the two525

current sheets are at y = −8 and y = 8, respectively. The plasma pressure526

is set to balance the magnetic field pressure pB = B2/2. To mimic the527

plasma environment of Earth’s magnetopause, the asymptotic plasma beta528

β = (pi+pe)/pB are 3.6 and 0.15 on the ”1” and ”2” sides, respectively. The529

initial pressure ratio between electrons and ions is pi/pe = 5 in the whole530

simulation domain. The ion temperature is:531

Ti(y) =

(
Ti,1 + Ti,2

2

)[
tanh

(
y + Ly/4

δ

)
− tanh

(
y − Ly/4

δ

)]
+ Ti,2. (10)

Ti,1 = 1.33 and Ti,2 = 3.33 are used in the simulation. With the pressure532

and temperature given above, the corresponding densities and ion inertial533

lengths are n1 = 1.127, n2 = 0.0736, di,1 = 0.942 and di,2 = 3.69. For all the534

simulations presented in this subsection, the grid resolution is ∆x = 1/16,535

and the CFL is 0.4.536

Figures 9 and 10 show the fields near the reconnection site at t = 20 with537

100 and 400 initial ppc, respectively. The left (right) columns of Figures 9538

and 10 are the results without (with) applying particle resampling. Due to539

the magnetic reconnection plasma flow, the electron ppc around the current540

sheet increases to about 250 (950), and the minimum ppc in the inflow region541

reduces to less than 50 (200) in Figure 9 (Figure 10) without applying542

the particle resampling algorithms. After applying the particle resampling543

algorithms, the electron ppc becomes more uniform in the whole domain.544

With the threshold parameters described in section 4, the particle splitting545

(merging) threshold ppc is 80 (150) and 320 (600) for the simulations with546

the initial ppc of 100 and 400, respectively. The minimum electron ppc in the547

right column of Figure 9 (Figure 10) is about 83 (325), and the maximum ppc548

is about 190 (630). The minimum ppc in the simulate is just a few particles549

more than the splitting threshold since the splitting algorithm is effective in550

generating new particles. The difference between the maximum ppc and the551

merging threshold is larger, but the maximum ppc is still much smaller than552

that in the simulation without applying particle resampling.553

Figures 9 and 10 also compare the physical quantities of the simula-554

tions. All simulations show essentially the same structures, including the555

off-diagonal electron tensor. It demonstrates that the particle resampling556

algorithms do not introduce any significant artificial effect.557
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Figure 11 shows the electron phase space distributions from three sam-558

pling locations near the reconnection site. These three sampling locations559

are marked with black rectangles in the first rows of Figures 9 and 10. From560

top to bottom, we label these three sampling boxes as box-A, box-B, and561

box-C. In Figure 11, rows (a) and (b) show distributions from box-A, rows562

(c) and (d) show distributions from box-B, and rows (e) and (f) show dis-563

tributions from box-C. Each column shows the distributions from the same564

simulation, and the simulation parameters, i.e., the initial ppc and turning565

on/off the particle resampling algorithms, are described at the top of Fig-566

ure 11. Rows (a), (c) and (e) show the density distributions, and rows (b),567

(d) and (f) show the macro-particle number distributions in phase space.568

Figure 11 demonstrates that the particle resampling algorithms preserve the569

phase space distributions well. The particle resampling does not change the570

particle number too much at the sampling location box-A (row (b)), and571

the ’U’-shape density distribution is well preserved (row (a)). From rows572

(d) and (f), it is clear that the particle resampling significantly reduces the573

particle number around the distribution centers, so the centers of the density574

distribution (rows (c) and (e)) with particle resampling are noisier. But the575

density distribution structure, which consists of a core and a crescent distri-576

bution, is still clearly preserved in the row (c) and also in (e1) and (e2). The577

distributions of (e3) and (e4) are also very similar to each other.578

6.4. Strong and weak parallel scalings579

3D asymmetric magnetic reconnection simulations are used to test the580

strong and weak scaling of FLEKS. The setup of the 3D test is similar to581

the 2D simulation in the previous subsection, and it is uniform in the z-582

direction. Since FLEKS uses the parallel field and particle data structures583

provided by AMReX, the scaling results largely depend on the performance584

of AMReX [9, 10]. Figure 12 shows the weak scalings. With 83 cells per core,585

the performance is still good with up to about 10k cores. With 163 cells per586

CPU core, it reaches good performance even with 28,672 cores. Figure 13587

shows the strong scalings of two problems. The speedup is not too far away588

from the ideal scaling up to about 7k (Figure 13(a)) or 14k (Figure 13(b))589

CPUs for these problems.590

6.5. Magnetospheric simulations591

Magnetospheric simulations represent the most important application of592

MHD-AEPIC. Here, we show examples of how FLEKS benefits magneto-593
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Figure 9: 2D magnetic reconnection results with (right column) or without (left column)
particle resampling. The initial particle number per cell is 100. The black boxes in the
top row indicate where the distribution functions shown in Figure 11 are taken from.
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Figure 10: 2D magnetic reconnection results with (right column) or without (left column)
particle resampling. The initial particle number per cell is 400 that is 4 times more than in
Figure 9. The black boxes in the top row indicate where the distribution functions shown
in Figure 11 are taken from.
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Figure 11: Each column shows the phase space distributions from the same simulation.
The first two rows, middle two rows and the last two rows represent the distributions
of box-A, box-B and box-C, respectively. From top to bottom, the black rectangles in
Figures 9 and 10 show the locations of box-A, box-B and box-C. Rows (a), (c) and (e)
are physical density distributions. Rows (b), (d) and (f) show particle number per phase
space bin.
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Figure 12: The weak parallel scaling results of FLEKS. The execution time with 112 CPU
cores is used as the reference. For perfect scaling the normalized execution time would be
1.0 for all runs.

sphere modeling. The global MHD magnetosphere model uses the same594

setup as the simulations presented in [5, 24], but the active PIC region is not595

limited to be a box anymore. Figure 14 shows how the active PIC region596

can efficiently cover the dayside magnetopause, including the dawn-side and597

dusk-side flanks, and also the cusp region at the same time.598

The test particle module enables us to follow the trajectories of particles599

in the magnetosphere. Figure 15 shows an example of test particles in Earth’s600

magnetosphere.601

7. Conclusion602

In this paper, we introduce a new kinetic code FLEKS, which is designed603

as the kinetic component of the MHD-AEPIC model [8, 25]. To support604

long simulations with varying global configurations, FLEKS allows activating605

or deactivating cells dynamically during a simulation to fit the regions of606

interest. This feature was introduced by Shou et al. [8] first, but FLEKS607

is more flexible since the minimum activation unit is a patch containing N608

(N ≥ 2) cells in each direction instead of a large block used in [8], and FLEKS609

supports multiple independent PIC domains in an MHD-AEPIC simulation.610
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Figure 13: The strong scaling of FLEKS. Panels (a) and (b) show the scaling of simulations
with 1.835 million and 14.68 million cells, respectively. The red solid lines represent
speedup, and the red dashed lines correspond to perfect speedup. The blue lines show the
number of PIC cells per CPU core.
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Figure 14: An MHD-AEPIC simulation of Earth’s magnetosphere with the dayside mag-
netopause and the cusps covered by FLEKS. The black lines indicate the edge of the active
PIC region.
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Figure 15: The locations (left) and the example trajectories (right) of test particles.

During a long simulation, since the plasma properties inside the active PIC611

region may change greatly, we design an adaptive time-stepping algorithm612

to adjust PIC time step accordingly. The adaptive time-stepping scheme613

preserves the energy conservation property of the ECSIM algorithm.614

Since the number of particles per cell may change dramatically during a615

long simulation and leads to load imbalance and loss of accuracy in the cells616

with fewer particles, a particle splitting and a particle merging algorithms are617

designed to control the change of ppc. The particle merging algorithm selects618

6 particles that are close to each other in the phase space and combines them619

into 5 new particles. The merging conserves the total mass, momentum, and620

energy, and it also preserves the phase space structure as much as possible621

by inheriting velocities from the old particles. We have presented several622

non-trivial tests showing that the particle splitting and merging algorithm623

does not introduce any spurious features.624

The particle resampling improves the efficiency of FLEKS substantially by625

not allowing the ppc to drop to very small values or increase to unnecessarily626

high values. In addition, load balancing the PIC domain becomes much easier627

with roughly the same number of particles in each grid cell. Indeed, FLEKS628

shows excellent weak and strong parallel scaling. Finally, the test-particle629
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module expands the capability of FLEKS, and provides a useful tool for630

investigating the transport and energization of particles in magnetospheres.631

FLEKS improves the quality and efficiency of MHD-AEPIC simulation632

results significantly. For example, Wang et. al. [27] use FLEKS inside the633

Space Weather Modeling Framework to model a complete magnetospheric634

storm with kinetic reconnection in the tail.635
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