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Abstract

Lead (Pb) is a neurotoxicant that particularly harms young children. Urban environments are often plagued with elevated Pb

in soils and dusts, posing a health exposure risk from inhalation and ingestion of these contaminated media. Thus, a better

understanding of where to prioritize risk screening and intervention is paramount from a public health perspective. We have

synthesized a large national dataset of Pb concentrations in household dusts from across the United States (U.S.), part of a

community science initiative called “DustSafe.” Using these results, we have developed a straightforward logistic regression

model that correctly predicts whether Pb is elevated (> 80 ppm) or low (< 80 ppm) in household dusts 75% of the time.

Additionally, our model estimated 18% false negatives for elevated Pb, displaying that there was a low probability of elevated

Pb in homes being misclassified. Our model uses only variables of approximate housing age and whether there is peeling paint

in the interior of the home, illustrating how a simple and successful Pb predictive model can be generated if researchers ask the

right screening questions. Scanning electron microscopy supports a common presence of Pb paint in several dust samples with

elevated bulk Pb concentrations, which explains the predictive power of housing age and peeling paint in the model. This model

was also implemented into an interactive mobile app that aims to increase community-wide participation with Pb household

screening. The app will hopefully provide greater awareness of Pb risks and a highly efficient way to begin mitigation.
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 10 

Abstract 11 

 Lead (Pb) is a neurotoxicant that particularly harms young children. Urban environments are 12 

often plagued with elevated Pb in soils and dusts, posing a health exposure risk from inhalation and 13 

ingestion of these contaminated media. Thus, a better understanding of where to prioritize risk screening 14 

and intervention is paramount from a public health perspective. We have synthesized a large national 15 

dataset of Pb concentrations in household dusts from across the United States (U.S.), part of a community 16 

science initiative called “DustSafe.” Using these results, we have developed a straightforward logistic 17 

regression model that correctly predicts whether Pb is elevated (> 80 ppm) or low (< 80 ppm) in 18 

household dusts 75% of the time. Additionally, our model estimated 18% false negatives for elevated Pb, 19 

displaying that there was a low probability of elevated Pb in homes being misclassified. Our model uses 20 

only variables of approximate housing age and whether there is peeling paint in the interior of the home, 21 

illustrating how a simple and successful Pb predictive model can be generated if researchers ask the right 22 

screening questions. Scanning electron microscopy supports a common presence of Pb paint in several 23 

dust samples with elevated bulk Pb concentrations, which explains the predictive power of housing age 24 

and peeling paint in the model. This model was also implemented into an interactive mobile app that aims 25 

to increase community-wide participation with Pb household screening. The app will hopefully provide 26 

greater awareness of Pb risks and a highly efficient way to begin mitigation. 27 

 28 

Plain Language Summary  29 

Community science has been gaining traction in many locales throughout the United States, 30 

particularly in the field of urban pollution. While this has helped with science education and informing 31 

communities of potential hazards and mitigation tools, little has been done to effectively assimilate this 32 

information in a useful way to help people in other communities throughout the country. Thus, we 33 

utilized a large dataset of household dust samples provided by community scientists across the United 34 

States to build a simple predictive model that lets users know if their dust is likely to be high in a toxic 35 

metal, lead. Additionally, we built this model into an interactive mobile app that we plan to use as a 36 

recruitment tool for usage of lead screening kits. Ultimately, we plan to assess whether this mobile app 37 

improves user knowledge of household lead risks and increases participation from start to finish for free 38 

lead screening services.  39 

mailto:mjdietri@iu.edu
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Key Points  40 

• Community science sampling can provide national-level insight  41 

• Mobile apps can be utilized as a lead intervention tool  42 

• Elevated lead in house dust can be reasonably predicted with a simple statistical model and two 43 

variables 44 

Key Words 45 

Lead (Pb), Community Science, Predictive Modeling, Pollution Intervention, Pollution Remediation, 46 

Scanning Electron Microscopy (SEM) 47 

 48 

1. Introduction 49 

 Lead (Pb) is a naturally occurring heavy metal neurotoxicant that causes many deleterious effects 50 

in humans, even in small quantities (e.g., Assi et al., 2016; Dórea, 2019). It is a biologically non-essential 51 

element that is especially detrimental to young children (e.g., Koller et al., 2004). In the United States 52 

(U.S.), it has largely been phased out of products, most notably leaded gasoline and paint, but remains in 53 

many urban environments as a form of legacy pollution (e.g., Laidlaw et al., 2012). Thus, modern sources 54 

of Pb are primarily lead paint in older homes and soil/dusts that contain remnants of both leaded paint and 55 

gasoline. Ingestion and inhalation of paint, soil, and dust containing elevated levels of Pb still pose a 56 

health risk, particularly for children due to their increased hand-to-mouth behavior (e.g., Ko et al., 2007; 57 

Needleman, 2004; Stewart et al., 2014). 58 

 Household dust Pb concentrations and loadings have been shown to be strongly related to 59 

children’s blood Pb levels (BLLs) (e.g., Lanphear et al., 1996; Gulson and Taylor, 2017; Rhoads et al., 60 

1999). Thus, a better understanding of risk factors associated with Pb in household dusts can help predict 61 

what homes may have elevated Pb concentrations in dusts, and thus help mitigate Pb exposure and 62 

elevated BLLs in children. Predictive modeling of Pb in soil samples with variables such as race and 63 

house age has already been shown to be effective in predicting at-risk areas (Obeng-Gyasi et al., 2021), 64 

but this has not been attempted with household indoor dust Pb concentrations across a wide geographic 65 

area through community-provided samples. 66 

 Citizen/community science sampling of environmental media such as soil has been shown to not 67 

only aid as an educational tool to those collecting the samples, but also provides important scientific data 68 

of inorganic contaminants such as Pb and how they are distributed throughout the environment (e.g., 69 

Filippelli et al., 2018; Masri et al., 2021; Ringwald et al., 2021; Taylor et al., 2021). Community science 70 

offers a gateway to increased sampling resolution and sampling size, which often cannot be achieved by 71 

researchers alone. Thus, we have utilized an ongoing community science project, “DustSafe” 72 

(https://www.360dustanalysis.com/), to analyze approximately 434 household dust samples from across 73 

the United States (Fig. 1) to determine whether homes at risk for elevated dust Pb can be accurately 74 

predicted. While individual variables such as housing age and automobile traffic near homes have been 75 

shown to be correlated with indoor dust Pb concentrations (e.g., Meyer et al., 1999; Rasmussen et al., 76 

2011), variables have not been collectively applied in a predictive model across multiple states and cities 77 

in the U.S. Additionally, we sought to utilize this predictive model as part of an interactive mobile app to 78 

encourage greater community engagement for household Pb screening, which can not only help 79 

individuals gain agency in possible Pb mitigation measures, but can also help policymakers and the 80 

community at large better understand where/how to focus household Pb intervention efforts. As 81 
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community science apps have begun to gain traction in fields such as biology and ecology (e.g., 82 

https://www.inaturalist.org/ and https://ebird.org/home), and have even helped both community scientists 83 

and researchers combat disease vectors such as mosquitoes (Low et al., 2021), we wanted to explore the 84 

potential applicability in the realm of household-level environmental pollution. 85 

 86 

2. Methods 87 

2.1 “DustSafe” sampling 88 

Details of the household dust sampling are provided in Isley et al. (accepted). Briefly, DustSafe 89 

was advertised as a program to thousands of households through social media, e-mail, etc. to gain 90 

community science participants. Project protocols were approved following ethical review at Indiana 91 

University, USA (project #1810831960). Participants completed an online survey (Isley et al., accepted—92 

their SI Text 2) and collected vacuum cleaner dust in a polyethylene bag. Samples were collected from 93 

2019 to present. Once samples were collected by researchers, they were sieved to 250 µm and analyzed 94 

for Pb, As, Cd, Cr, Cu, and Zn using X-ray fluorescence spectrometry (XRF). They were dry by virtue of 95 

the vacuum sampling and needed no desiccation. NIST 2702 was run periodically as an external standard 96 

on the XRF between dust samples, and the arithmetic mean (average) % error for Pb was 14.7% ± 8.6% 97 

(n = 9). 98 

Results were reported back to participants following data collection (Example for Pb in Fig. S1), and 99 

then plotted on the “Map My Environment” website (www.mapmyenvironment.com) with locations 100 

randomly double jittered to protect privacy. This means that the icon for the data point does not appear at 101 

the actual sampling location, but rather, it is moved twice randomly within a radius of ~2 city blocks from 102 

the actual location: once when the data is first uploaded, and then again each time the map is loaded or 103 

refreshed. 104 

2.2 Data filtering/building of logistic regression model 105 

The initial dataset (link to data provided in Text S1) of potentially relevant data for this analysis 106 

contained 434 samples with matching Pb data (greater than detection limit) from the United States (and 107 

three samples from Canada). The most important potential predictive variables of housing age, interior 108 

peeling, exterior peeling, and recent renovation were determined by looking for statistically significant 109 

differences between questionnaire responses (survey link/details in Isley et al. accepted—their SI Text 2), 110 

both through t-tests for binary response variables (Yes/No) and ANOVA tests for multiple categories, 111 

specifically for housing age categories (described below). Additionally, we screened for variables based 112 

on our global dust data (Isley et al., accepted—their Table 1), looking for variables that may be significant 113 

(lower p-values) despite the data being from the global sample set. The data was ultimately filtered down 114 

to 342 samples that contained Pb concentrations and questionnaire responses for housing age, interior 115 

peeling, exterior peeling, and recent renovation. Because exact housing age is difficult to deduce for many 116 

respondents, particularly renters and those who may be surveyed in-person at future community Pb 117 

screening events, we classified housing age into categories of Pre-1940, 1940-1959, 1960-1979, 1980-118 

Present, and “Not Sure”, so this predictor variable may be more useful/applicable in future surveys. 119 

A logistic regression model was applied using independent potential predictor variables to predict 120 

whether an indoor housing dust sample was either ≥80 ppm Pb or <80 ppm Pb. This was used as a 121 

conservative cut-off based on California’s safe screening level for soils, because we did not collect indoor 122 

dust loading data and most other standards used in the U.S. for soil Pb are outdated and likely too high 123 

https://www.inaturalist.org/
https://ebird.org/home
http://www.mapmyenvironment.com/
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(e.g., the U.S. EPA’s 400 ppm residential soil standard; Gailey et al., 2020). Our model was run in 124 

RStudio (R Core Team, 2021) using the “glm” function based on the general equation: 125 

log [
𝑝

1−𝑝
] = 𝑏0 + 𝑏1 ∗ 𝑥1 + 𝑏2 ∗ 𝑥2 … + 𝑏𝑛 ∗  𝑥𝑛                                                           (1) 126 

Where p is the probability of an event occurring, b0 is the intercept, bn is the regression beta coefficient, 127 

and xn is a given predictor variable. 128 

Each potential independent predictor variable (besides housing age) categorical response of “No,” 129 

“Yes,” and “Not Sure” were reclassified as numeric variables of 0, 1, and 2, respectively, for the model. 130 

Housing age categories were reclassified as numeric variables of 0, 1, 2, 3, and 4 for the responses, 131 

“1980-Present,” “1960-1979,” “1940-1959,” “Pre-1940,” and “Not Sure,” respectively. 132 

Our most successful model contained the independent variables of housing age (p = 0.0002) and 133 

interior peeling paint (p = 0.008), which generated the following equation: 134 

𝑙𝑜𝑔 [
𝑝

1−𝑝
] = 2.1413 − 0. 4506 (𝐻𝑜𝑢𝑠𝑖𝑛𝑔) − 1.1535 (𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑎𝑖𝑛𝑡 𝑃𝑒𝑒𝑙𝑖𝑛𝑔)   (2) 135 

This was based on a random training set of 240 samples from our original 342 samples. We evaluated the 136 

model on a random testing dataset of 102 samples from our original 342 samples. All input and output 137 

files are freely available on GitHub (link provided in Text S1), as well as the logistic regression model R 138 

code. 139 

 140 

2.3 Mobile app development  141 

 An interactive online web application was developed to implement our predictive model in a 142 

simple and straightforward manner (link provided in Text S1). The application was built using the shiny, 143 

shinydashboard, shinydashboardPlus, and shinyjs packages in R (Attali, 2020; Chang et al., 2018; Chang 144 

and Borges Ribeiro, 2018; Granjon, 2021). Along with providing users with a straightforward interface 145 

for answering questions about house age and peeling paint and a custom risk assessment based on the 146 

embedded logistic predictive model, the application also provides users with direct links to our 147 

mapmyenvironment.com web portal, where they can register for free dust and soil Pb screening. Finally, 148 

the application offers background information about the current model version used to make the 149 

predictions, and offers direct links to model, data, and application code repositories. 150 

 151 

2.4 Scanning electron microscopy (SEM)  152 

 A subset of DustSafe household dust samples were prepared on aluminum samples stubs using 153 

carbon sticky tab substrates for analysis using a scanning electron microscope (SEM) and energy 154 

dispersive X-ray spectroscopy (EDS).  EDS lines used to identify Pb specifically include the Lα = 10.541 155 

keV (nominally M α = 2.342 keV, Mβ = 2.444 keV). All analyses were conducted at Indiana University-156 

Purdue University Indianapolis with a Zeiss EVO-10 SEM and Bruker XFlash6, 60 mm2 EDS detector. 157 

Backscatter electron (BSE) images were collected at a setting of 15 kV in variable pressure mode. 158 

Qualitative elemental composition data (EDS data) were collected at the same conditions. 159 

 160 

3. Results & Discussion 161 
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3.1 Significant findings between Pb in dust and housing age, vacuum frequency, and peeling paint 162 

 Household dust Pb concentrations were significantly higher in homes where there was interior or 163 

exterior paint peeling (Fig. 2; Table 1), which is in line with recent global household Pb dust data from 164 

the same DustSafe project (Isley et al., accepted). This suggests that leaded paint is still a significant 165 

contributor of Pb to dust in many homes. However, it does not exclude outside sources such as soil/street 166 

dust that may include Pb from leaded gasoline. For example, indoor dusts have been shown to contain 167 

significant Pb sources from outdoor sources such as soils, dust, and industrial pollution as well (e.g., 168 

Adgate et al., 1998; Kelepertzis et al., 2020). 169 

 Greater housing age has long been known to be associated with increased Pb concentrations in 170 

household dusts, such as in Canada and the U.S. (e.g., Rasmussen et al., 2011; Rasmussen et al., 2013; 171 

Spalinger et al., 2007). Our results support this, as a moderate positive correlation was seen between 172 

housing age and Pb concentration in our samples (Fig. 3A), with more recent housing age categories 173 

generally lower in dust Pb as well (Fig. 3B; Table 1). This is most likely due to older homes containing 174 

Pb-based paints that can contribute to dust samples, as Pb housing paint was outlawed in the U.S. in 1978 175 

and housing built before 1940 is the most likely to contain Pb paint (e.g., Levin et al., 2021). Furthermore, 176 

our global DustSafe dataset also observed a strong increase in Pb house dust concentration with home age 177 

(Isley et al., accepted), suggesting that this is a common trend in many countries. 178 

 Regular cleaning of homes and the surrounding environment, including measures such as 179 

vacuuming, have been shown to effectively lower BLLs in children (e.g., Laidlaw et al., 2017; Rhoads et 180 

al., 1999). We also found that those vacuuming more frequently than once a month contained 181 

significantly lower concentrations of Pb in their house dust compared to those vacuuming monthly or less 182 

(Fig. S2A). However, we did not see any significant differences in Pb house dust concentrations in 183 

subcategories where people performed more than monthly vacuuming (Fig. S2B), which corresponds to 184 

our general trends in global dust data where increased vacuuming frequency was not associated with Pb 185 

dust concentration at all (Isley et al., accepted). Our findings suggest that households that hardly vacuum 186 

may be more likely to accumulate Pb-rich larger particles when they do finally vacuum and gather 187 

samples, such as Pb-paint chips, which would skew the bulk chemistry Pb concentration to higher values 188 

(since we didn’t measure loading rates—or the rate of dust deposition). Households that more frequently 189 

vacuum may be less likely to sample larger, Pb-rich particles for their DustSafe sample submission.  190 

 191 

3.2 Predictive accuracy of logistic regression model 192 

Application of our logistic regression model on a “test” dataset of 102 samples from our original 193 

dataset reveals an overall prediction accuracy of 75% when using a probability threshold of 0.8 to 194 

determine “high” or “low” Pb. Importantly, only 4 samples out of 102 test samples (4%) were classified 195 

as “low” Pb when they were actually a “high” Pb sample, shown in our “confusion matrix” output of 196 

sample classifications (Table 2). This implies that from an intervention standpoint our model contains few 197 

false negatives, and thus has excellent sensitivity (82%). 198 

 199 

3.3 Usefulness and “App”lication of model for household Pb screening 200 

  While more sophisticated models can be effective in predicting high risk exposure areas for Pb in 201 

soils or dusts (e.g., Obeng-Gyasi et al., 2021), we believe that from a public health intervention 202 

standpoint, sometimes a simpler model is better. Because only two independent variables with categorical 203 



6 

 

responses were proven statistically significant in our model and yielded an effective prediction accuracy 204 

of 75%, we decided to incorporate our model into a mobile-based app to aid in household Pb screening 205 

recruitment efforts (Fig. 4). The goal is to help people understand whether there is an increased chance of 206 

elevated Pb in their home based on our model, then give them an opportunity to freely test their home so 207 

that they can gain agency in decision-making regarding Pb mitigation. Additionally, we sought to include 208 

decision variables of “Not sure” in our app/model for peeling interior paint and the age of the home, 209 

because this helps with realistic in-person usage of the app at community events, and many people taking 210 

the survey may be renters and unsure of home age. Furthermore, renters are often one of the more likely 211 

subgroups of people to contain elevated household Pb in soil or dust (e.g., Masri et al., 2020; Masri et al., 212 

2021) often because of older housing units and less priority from landlords for remediation. Within our 213 

model, approximately 28 individuals or 8% were uncertain of their exact home age (Fig. S3). Moving 214 

forward, it would be useful to include home ownership in our DustSafe surveys, to understand whether 215 

this is correlated to uncertainty in home age and the predictive power this has for elevated dust Pb.   216 

 Because our mobile app screening questions are simple, straightforward, and contain only 217 

categorical multiple-choice responses, we envision that its usage will be highly effective as a quick 218 

screening tool that many in-person events (i.e., community events, schools) can implement to help people 219 

know if Pb exposure is a hazard they should be concerned about. Furthermore, because our dataset is 220 

based on national-scale data, the mobile app can be utilized in many different locations, further aiding in 221 

its “app”licability and versatility as a Pb screening recruitment tool. 222 

 223 

3.4 Evidence of Pb paint in dust samples 224 

 Through SEM work on several household dust samples that contained elevated bulk Pb 225 

concentrations, we were able to identify numerous examples of particles consistent in composition and 226 

morphology to Pb paint, ranging from ~10 µm in diameter to >100 µm in diameter (Fig. 5). Our Pb paint 227 

chips were similar in composition and morphology to Pb paint analyzed by SEM in Hunt (2016), 228 

including several Pb-carbonate paints and the presence of Zn in the paint (Fig. 5). Additionally, the Mg-229 

Al-Si EDS peaks in several paint samples (i.e., Figs. S6, S7, S8) are consistent with montmorillonite, an 230 

additive commonly used in Pb-based paint as organo-clays to aid in the suspension of the pigments. This 231 

helps explain why the predictor variables of housing age and interior peeling paint were so significant—232 

many household dust samples with elevated concentrations of Pb likely have the Pb predominantly 233 

sourced from house paint. However, this does not mean that Pb in house dusts is exclusively from house 234 

paint, or that other metals are from exclusively indoor sources. As mentioned earlier, outdoor sources of 235 

pollutants can enter homes, such as through dust brought indoors (e.g., Adgate et al., 1998; Kelepertzis et 236 

al., 2020), via vectors such as pets, clothing, or shoes. For example, we found clear examples of 237 

technogenic Fe-oxide spherules, likely a byproduct of anthropogenic combustion, in house dust samples 238 

(Fig. S4). These particles likely came from an outdoor source, such as vehicle exhaust or industrial 239 

combustion, as they are similar to Fe-rich spherical particles commonly found in industrial areas from 240 

high temperature formation processes (e.g., Dietrich et al., 2019; Gaberšek and Gosar, 2021; Miler and 241 

Gosar, 2013; Teran et al., 2020). Furthermore, we found one sample that contains EDS spectra consistent 242 

with PbCrO4, or Pb-chromate paint (Fig. 5A), which could have come from yellow-paint inside the home, 243 

but may have also been brought in from outdoors where Pb-chromate is often used in traffic paint (e.g., 244 

O’Shea et al., 2021). 245 

 246 

3.5 Future goals and directions 247 
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 We based our initial model on predominantly U.S. house dust samples, because of statistically 248 

significant differences in bulk metal composition of dusts between other countries (Isley et al., accepted) 249 

and there are likely other confounding factors between countries that affect Pb in dusts (i.e., different 250 

regulation of Pb paints and Pb gasoline). However, as more data is collected and as we gain a better 251 

understanding of what variables predominantly influence Pb in house dust, our model can be applied to 252 

additional countries and refined within the U.S. to more accurately differentiate what homes likely 253 

contain elevated Pb. A specific area for refinement of the model may lie in spatial data, such as relating 254 

zip codes of samples with socioeconomic (i.e., % poverty, racial distribution) and public health data (i.e., 255 

blood lead levels) within those zip codes, which may add to the predictive power of our model. 256 

Additionally, this type of simple predictive model usage in a mobile app as an intervention tool 257 

can be applied beyond Pb in household dusts, such as to other contaminants of concern in homes like 258 

arsenic (As) or radon (Rn). Lastly, community science sampling endeavors should continue to grow, as 259 

they are not only a great opportunity for direct household contamination intervention, but also contribute 260 

to a greater general understanding of important issues such as Pb pollution and what areas community 261 

remediation should be focused in. Scientific information from the public is one of the most beneficial 262 

ways to help the public with pollution remediation and awareness. We have illustrated this with our 263 

accessible Pb dust logistic regression model and mobile app, and other recent large-scale community 264 

science endeavors have also increased metal pollution mapping and awareness (e.g., Taylor et al., 2021). 265 

 We plan to conduct a follow-up study on the effectiveness of this type of simple intervention in 266 

engaging participants to have full-cycle involvement, going from initial usage of the mobile app to 267 

submittal of samples, to finally opening sample results once generated. Ample examples of citizen science 268 

exist with various ways that the engagement does, or does not, provide real, tangible benefits to 269 

participants (e.g., Hayhow et al., accepted), but they are typically poorly assessed. One recent example of 270 

community science in Australia focused on analyzing garden soil for heavy metals found that 96% of 271 

respondents (n = 361) would recommend the program to someone else, and 94% said their understanding 272 

of heavy metal contaminants in gardens had increased (Taylor et al., 2021). Follow-up surveys from our 273 

global DustSafe program found that 39% of participants (n = 246) took some remedial action at home, 274 

and 94% of participants said the information provided to them was useful (Isley et al, accepted). 275 

However, these detailed, large-scale follow-up surveys are often sparse. We hypothesize that this simple 276 

app engagement will generate greater “engage to completion” metrics because of simplicity of message. 277 

We will therefore develop a follow-up survey once the sample results are generated and returned to users 278 

to determine what, if any, impacts the mobile app and corresponding results had on participants’ behavior, 279 

including any mitigation steps that they took in response to results. 280 

 281 

4. Conclusions 282 

A simple logistic regression model based on real-world samples proved to be effective at identifying 283 

homes at risk for higher Pb in household dusts across the United States. Application of the model on a test 284 

dataset of 102 samples revealed a 75% classification accuracy of either “high” or “low” Pb in household 285 

dust, with the cutoff based on 80 ppm Pb. This illustrates how community science gathered data can 286 

provide valuable insight into primary predictor variables for elevated Pb. Additionally, we showed how 287 

simplistic, yet effective Pb predictive models can be incorporated into interactive mobile apps such as a 288 

Pb screening recruitment tool. Collectively, we hope that modeling efforts such as these and engagement 289 

with local communities will aid in Pb exposure prevention and remediation, so that no child grows up 290 

with an unnecessarily high risk of Pb exposure. 291 
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Tables: 308 

Table 1: Summary statistics of household dust Pb concentrations (mg/kg) from significant predictor 309 

variables utilized in the logistic regression model. The actual questions for the variables from the 310 

questionnaire are provided in Text S2. For “Housing Age,” we have included those who did not complete 311 

a survey in the “Not Sure” category.  312 
 

Mean Std Dev Median Max Min (n) 

Total Pb 99 239 32 2328 3 434 

Exterior Paint 

Peeling 

Yes 131 179 41 815 4 48 

No 80 195 29 1665 3 272 

Not Sure 40 46 28 205 5 23 

Interior Paint 

Peeling 

Yes 142 175 81 729 7 40 

No 77 188 29 1665 4 302 

Not Sure 35 N/A 35 35 35 1 

Housing Age Pre-1940 228 306 134 1665 7 54 

1940-1959 121 221 53 1304 10 33 

1960-1979 78 193 32 1377 6 52 

1980-

Present 

45 114 24 1205 3 178 

Not Sure 37 44 25 202 5 117 

 313 

Table 2: Confusion matrix output of logistic regression model from test dataset (n = 102). 314 

 Actual High Pb Actual Low Pb 

Predicted High Pb 18 21 

Predicted Low Pb 4 59 

https://github.com/dietrimj/Community-Science-Pb-Prediction
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Figures: 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

Figure 1 Samples with Pb (and other heavy metal) results reported back to households from the "DustSafe" project in the U.S. 324 
and Canada.  325 

 326 
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 331 

 332 

 333 
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 360 

Figure 2  Embedded boxplots within violin plots for both interior (A) and exterior peeling paint (B) questionnaire responses. The 361 
boxes represent the interquartile range (IQR) of 25th-75th percentiles of data, the horizontal line is the median, and the whiskers 362 
represent 1.5 times the IQR. Two-sample paired t-test results between yes/no responses are also provided. The y-axes are 363 
transformed on a log10 scale, and the dashed red lines represent California’s safe screening soil Pb level of 80 ppm. 364 
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 365 

 366 

Figure 3 (A) Scatterplot between approximate housing ages and log10 Pb concentrations with the Pearson correlation coefficient 367 
and associated p-value provided, as well as a linear regression line in blue with the shaded 95% confidence interval. (B) 368 
Embedded boxplots within violin plots for housing age categories used in the predictive model. The boxes represent the 369 
interquartile range (IQR) of 25th-75th percentiles of data, the horizontal line is the median (which is connected between housing 370 
age categories with a black line), and the whiskers represent 1.5 times the IQR. An analysis of variance (ANOVA) test associated 371 
p-value between all housing age categories is provided. The y-axis is transformed on a log10 scale, and the dashed red line 372 
represents California’s safe screening soil Pb level of 80 ppm. 373 
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 399 

 400 

 401 

Figure 4 Screenshots from the beginning of the interactive Pb household dust screening app (https://iupui-earth-402 
science.shinyapps.io/IUPUI-LeadRiskApp/). 403 

 404 

https://iupui-earth-science.shinyapps.io/IUPUI-LeadRiskApp/
https://iupui-earth-science.shinyapps.io/IUPUI-LeadRiskApp/
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 405 

 406 

Figure 5 SEM images of particles resembling Pb paint, surrounded by other particulates in various high Pb DustSafe household 407 
dust samples (corresponding EDS spectra provided in Supplementary Materials; Figs. S5-S10). Pb paint particles are evident by 408 
very high contrast of electron backscatter detection—more so than surrounding particles because of the high atomic number of 409 
Pb. Most Pb-bearing particles are angular or jagged, with clear flaky particles on their surface. 410 

 411 
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Text S1. 

Link to GitHub repository of data, R code, mobile app files, and logistic regression model output: 

https://github.com/dietrimj/Community-Science-Pb-Prediction 

Note: The input CSV file has been updated to include a sample that contained survey responses and a Pb 

value of 80 mg/kg (right at our threshold for determination of high/low Pb). This was added to the testing 

data set a posteriori, which changed the confusion matrix output of the rmd file from 3 samples 

misclassified as “Low” Pb when they were really “High” Pb to 4 misclassified samples. This has been 

updated in Table 2 in the main manuscript. 

Text S2. 

Questions in the online DustSafe survey for the variables used in the logistic regression model in the 

manuscript and Table 1. 

Approximately what year was your house built in? 

_________ 

Does the exterior of your house have any large areas of peeling paint? 

Yes/No 

Does the interior of your house have any large areas of peeling paint? 

Yes/No 

 

 

 

 

https://github.com/dietrimj/Community-Science-Pb-Prediction
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Figure S1: Example of a part of the report issued back to households participating in DustSafe, with lead 

(Pb) specifically shown as the reported element. 
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Figure S2: Embedded boxplots within violin plots for both monthly resolution vacuum frequency (A) 

and weekly resolution vacuum frequency (B). The boxes represent the interquartile range (IQR) of 25th-

75th percentiles of data, the horizontal line is the median, and the whiskers represent 1.5 times the IQR. A 

two-sample paired t-test result between yes/no responses in (A) are also provided, while an ANOVA test 

p-value is provided in (B). The y-axes are transformed on a log10 scale, and the red dashed line in (A) 

represents California’s safe screening level for soil Pb at 80 ppm. 
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Figure S3: Treemap displaying the proportions (size of rectangles) and raw values (color shading) of 

housing age category responses from surveys that were included in the logistic regression model. 
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Figure S4: SEM imagery of technogenic Fe-oxide spherules likely of anthropogenic origin found in 

house dust (A—Sample AA0078, B—Sample AA0254). 
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Figure S5: EDS spot point for analysis and the resulting spectra, with major peaks of detected elements 

labeled. For Pb particle in Fig. 5A. 
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Figure S6: EDS spot point for analysis and the resulting spectra, with major peaks of detected elements 

labeled. For Pb particle in Fig. 5B. 
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Figure S7: EDS spot point for analysis and the resulting spectra, with major peaks of detected elements 

labeled. For Pb particle in Fig. 5C. 
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Figure S8: EDS spot point for analysis and the resulting spectra, with major peaks of detected elements 

labeled. For Pb particle in Fig. 5D. 
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Figure S9: EDS spot point for analysis and the resulting spectra, with major peaks of detected elements 

labeled. For Pb particle in Fig. 5E. 
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Figure S10: EDS spot point for analysis and the resulting spectra, with major peaks of detected elements 

labeled. For Pb particle in Fig. 5F. It is noted that the Pb spectra may be complicated by the presence of 

barite (BaSO4). 
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